
विद्युत सुशासन

विद्युत नियमन आयोगको स्मारिका -२०८२

बर्ष: १

अंक: १

२०८२ बैशाख

विद्युत नियमन आयोग

सानोगौचरण, काठमाडौं, नेपाल ।

विद्युत - सुरासन

(विद्युत नियमन आयोगको स्मारिका)

वर्ष १, अंक १ (२०८२ साल बैशाख २५ गते बुधबार)

सम्पादक मण्डल

डा. भक्तप्रसाद शर्मा

मन देवी श्रेष्ठ

सन्दिप न्यौपाने

विशाल श्रेष्ठ

सरोज कोइराला

सन्तोष पराजुली

प्रकाशक

विद्युत नियमन आयोग

सानोगौचरण, काठमाडौं, नेपाल

शुभकामना

विद्युत् नियमन आयोगले आफ्नो छैटौं वार्षिकोत्सवका अवसरमा विद्युत् सुशासन स्मारिका प्रकाशन गर्न लागेको खबरले मलाई खुशी तुल्याएको छ । यस सुखद् अवसरमा म आयोगलाई हार्दिक बधाई तथा शुभकामना व्यक्त गर्दछु ।

नेपालको विद्युत् विकासले पछिल्लो समयमा राम्रो लय समातेको छ । त्यसमा पनि २०८१ साल नेपालको विद्युत् विकासको मामिलामा अर्थपूर्ण रथ्यो । विगतमा भारतमा विद्युत् निर्यात गर्दै आएको नेपालले लामो कसरतपछि पहिलोपटक बंगलादेशमा विद्युत् विक्री गर्न सुरु गरेको छ । आर्थिक वर्ष २०८१ र ०८२ सम्ममा विद्युत्को आयातलाई विद्युत् निर्यातले उछिन्नै नेपाल विद्युत्को खुद निर्यातकर्ता बन्न सफल प्रनि भएको छ । जलविद्युत् उत्पादनको वृहत् सम्भावनालाई मूर्त रूप दिई विद्युत्को रणनीतिक प्रयोग एवम् व्यापारमार्फत् देशलाई समृद्धितर्फ अग्रसर गराउने चाहना राख्ने हामी सबै नेपालीको लागि यी महत्वपूर्ण उपलब्धिहरु हुन् ।

आर्थिक क्षेत्रका सबै गतिविधिमा स्वच्छता, जवाफदेही र प्रतिस्पर्धा कायम गर्न नियमनको व्यवस्था गर्दै सर्वाङ्गीन राष्ट्रिय विकासमा प्रोत्साहन र परिचालन गर्ने राज्यको अर्थ, उद्योग र वाणिज्यसम्बन्धी नीति रहेकोमा व्यापक सम्भावना बोकेको विद्युत् क्षेत्रलाई नियमन गर्न विद्युत् नियमन आयोगको स्थापना आवश्यकता मात्र नभई अन्तर्राष्ट्रिय उत्कृष्ट अभ्याससंगत पनि थियो । विद्युत्को प्राविधिक नियमन, महसुल तथा दस्तुर निर्धारण, विद्युत्मा प्रतिस्पर्धाको प्रवर्द्धन तथा उपभोक्ता हित संरक्षण, अनुमतिपत्र प्राप्त व्यक्तिहरुको संगठनात्मक क्षमता अभिवृद्धि तथा विवाद समाधान गर्ने जस्ता वृहत् महत्वका जिम्मेवारीसहित विद्युत् नियमन आयोग ऐन, २०७४ को व्यवस्था अनुरूप स्थापना भएको हो । नेपाल सरकारले खर्खै जारी गरेको ऊर्जा विकास मार्गचित्र, २०८१ ले सन् २०८५ भित्र नेपालको जडित क्षमता २८,५०० मेगावाट पुऱ्याउदै प्रतिवर्कि विद्युत् खपत १,५०० युनिट पुऱ्याउने लक्ष्य प्राप्तिमा पनि विद्युत् नियमन आयोगको ठूलो भूमिका रहने नै छ । प्रचलित कानूनद्वारा प्रदान गरिएका अधिकारहरुको प्रयोग गर्दै सरकारको यस अभियानमा सक्षम, सक्रिय एवम् दक्ष पात्रको रूपमा आयोगले आफ्नो हैसियत गर्न सक्षम हुनेछ भन्ने आशा व्यक्त गर्दछु ।

अन्त्यमा, प्रकाशोन्मुख विद्युत् सुशासन स्मारिकामा नेपालका जलक्षेत्रका सम्भावना, अवसर, देशको आर्थिक र सामाजिक रूपान्तरणमा सहयोग पुग्ने विषयवस्तुले स्थान पाउने छन् भन्ने अपेक्षा गरेको छु ।

३८४

कैपी शर्मा भ्रौली

मा. दिपक खड्का

मन्त्री
ऊर्जा, जलस्रोत तथा सिंचाइ मन्त्रालय

सिंहदरबार, काठमाडौं, नेपाल
www.moewri.gov.np

पत्र संख्या:

चलानी नं.:

शुभकामना

विद्युत नियमन आयोगले आफ्नो सार्वो वार्षिकोत्सव मनाउन गईरहेको यस सुखद अवसरमा ऊर्जा, जलस्रोत तथा सिंचाइ मन्त्रालय तथा मेरो व्यक्तिगत तर्फबाट समेत हार्दिक बधाई तथा शुभकामना व्यक्त गर्दछु। स्थापनाको छोटो समय, सीमित जनशक्ति र स्रोतसाधनका वावजुद पनि आयोगले स्थापनाकालदेखि नै नियामकीय निकायको रूपमा प्रदर्शन गरेको कार्यकुशलता र भूमिका सराहनीय छ। विगत ६ वर्षको यात्रामा नियमन आयोगले उपभोक्ता विद्युत महसुल निर्धारण, विद्युत खरिद-विक्री सम्झौता, शेररको सार्वजनिक निष्कासन, नेपाल विद्युत ग्रिड कोड तथा विद्युत उपभोक्ता हित संरक्षण सम्बन्धी निर्देशिका लगायतका नियामकीय उपकरणहरूको प्रभावकारी प्रयोग गरेको छ। उल्लेखित उपकरण मार्फत विद्युत क्षेत्रको नियमनलाई सुदूर, परिणाममुखी र पूर्वानुमानयोग्य बनाउन कार्यरत छ। यी प्रयासहरूले भविष्यमा नियामकीय प्रणालीलाई थप परिष्कृत गर्न बलियो आधार तयार पार्ने छ। आयोगका यस्ता गतिविधिहरूले राज्यलाई नीति कार्यान्वयनमा भरपर्दो संयन्त्रको विकास गर्नेछ भन्ने मैले विश्वास लिएको छु। त्यसैगरि आयोगले निजी क्षेत्रका लागि लगानीमैत्री वातावरण सिर्जना गर्न भूमिका खेल्नुका साथै सरकार र निजी क्षेत्रबीच सेतुको भूमिका समेत निर्वाह गर्न सक्ने भएको हुदा आगामी दिनमा यस तरफ पनि आयोगले प्रवाभकारी भूमिका लिनेछ भन्ने मैले विश्वास लिएको छु।

नेपालको ऊर्जा क्षेत्रको विकास मार्फत राष्ट्रिय समृद्धिको साझा संकल्प साकार पार्न विद्युत नियमन आयोगको भूमिका निस्चितरूपमा अग्रणी रहेनेछ। तसर्थ आगामी दिनहरूमा आयोगले ऊर्जा क्षेत्रमा सुशासन, पारदर्शिता र दिगोपनाको प्रवर्द्धनमा महत्वपूर्ण योगदान पुर्याउने छ। विद्युत उत्पादन, प्रसारण, वितरण र व्यापारका अनुमतिपत्र प्राप्त व्यक्ति तथा संस्थाहरूको कार्यक्षमता अभिवृद्धि गर्दै उपभोक्ताको हित संरक्षण र लगानीमैत्री वातावरण निर्माणबीच सन्तुलन कायम गर्न आयोगले दृढतापूर्वक उभिने र अभिभावकीय भूमिका निर्वाह गर्नुपर्नेछ। देशको आवश्यकता र अन्तर्राष्ट्रिय बजार मागलाई समेत दृष्टिगत गरि विद्युत क्षेत्रलाई थप प्रतिस्पर्धी बनाउनु पर्नेछ। साथै आर्थिक गतिविधिलाई प्रोत्साहन गर्न सक्षम विद्युत बजार विकासमा आयोगको थप योगदान उल्लेखनीय हुनेछ। यसका लागि आयोगले आन्तरिक सुदृढीकरणका गतिविधिलाई जोडारार रूपमा अगाडि बढाउँदै आवश्यक सबै प्रणालीको विकासमा ध्यान दिनु अपरिहार्य छ। तालुक मन्त्रालयको रूपमा ऊर्जा, जलस्रोत तथा सिंचाइ मन्त्रालय यस कार्यमा सधै सहयोगी भूमिकामा रहनेछ।

अन्तमा, नेपाल सरकारले हालै जारी गरेको “ऊर्जा विकास मार्गचित्र, २०८१” मा उल्लिखित लक्ष्यहरू हासिल गर्न आयोगको नियामकीय ढाँचा र नीतिगत स्पष्टता महत्वपूर्ण हुनेछ। यो मार्गचित्रले आयोगबाट अपेक्षा गरेका कार्यहरू समयमै सम्पन्न हुनेमा म पूर्ण विश्वस्त छु।

यस गौरवमय यात्रामा संलग्न सबैलाई पुनः हार्दिक बधाई दिँदै आगामी वर्षहरूमा थप सफलता, समृद्धि र सकारात्मक परिवर्तनको शुभकामना व्यक्त गर्दछु।

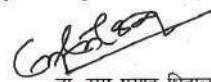
दिपक खड्का

मिति: २०८२/०९/२५
मा. दिपक खड्का

विद्युत नियमन आयोग

(नेपाल सरकारको विद्युत क्षेत्रको नियामक निकाय)

प्रतिबद्धता


विद्युत नियमन आयोगले आफ्नो स्थापनाको छैठौं वर्ष पूरा गरी सातौं वर्षमा प्रवेश गरेको छ। यस ऐतिहासिक यात्रामा हामीलाई निरन्तर सुझाव र सहयोग प्रदान गर्नुहोने नेपाल सरकार, ऊर्जा, जलशोत तथा सिंचाइ मन्त्रालय र उपभोक्ता लगायत विद्युत क्षेत्रका सम्पूर्ण सरोकारवालाहरूप्रति आयोग हार्दिक कृतज्ञता व्यक्त गर्दछ।

विद्युत नियमन आयोग ऐन, २०७४ को व्यवस्था अनुरुप २०७६ वैशाख २५ मा स्थापना भएको यस आयोगले सञ्चालनको छोटो अधिकार नै विद्युत क्षेत्रमा तात्कालिकरूपले सकारात्मक प्रभाव पार्ने गतिविधिहरू गर्न सक्यो। उपभोक्ता विद्युत महसुल निर्धारण प्रक्रियालाई लागत प्रतिविम्बित बनाउने, सर्वसाधारणको सूचनाको अधिकार सुनिश्चित गर्ने उपभोक्ताको हितसम्बन्धि विषयमा बहस सुरु गर्ने, विद्युत क्षेत्रको प्राविधिक व्यवस्थापनका लागि प्रारम्भिक कदमहरू चाल्ने, आदि विषयमा आयोगका सुरुवाती बर्षहरू केन्द्रित रहे।

पछिल्ला केही वर्षहरूमा नेपालको विद्युत क्षेत्रको अवस्था निकै गतिशील छ र यसले नियामक निकायको रूपमा आयोगको तर्फबाट पनि अग्रसक्यिता र क्रियाशीलता मार्ग गर्दछ। नेपालको उत्पादन सुहाउदो रूपमा खपत वृद्धि गर्नु, ऊर्जा सुरक्षा कायम गर्न आयोजनाहरूको निर्माणलाई प्रोत्साहन गर्नु, आन्तरिक विद्युत बजारको विकास गर्नु, आन्तरिक र बाह्य बजार दुवैमा विद्युत विक्री गर्दा नेपाली उपभोक्ताको हितमा प्रतिकूल वसर पर्न नदिनु आदि जस्ता जिम्मेवारीहरू आयोगको स्थापना काल देखि नै टड्कारो थिए। यद्यपि, स्थापनाको ५ वर्षमा सीमित स्रोत तथा जनशक्तिका कारण यी विषयमा आयोगले ध्यान दिन सकेन। नेपाल सरकारद्वारा जारी गरिएको ऊर्जा विकास मार्गाचित्र, २०८१ ले पनि नेपालको ऊर्जा क्षेत्रको विकासको लागि छोटो अवधिमा बृहत् महत्वका द्वेरै कार्यहरू गर्नु पर्ने देखाएको छ। यसका लागि, आयोगको आन्तरिक सबलीकरण तथा सम्पूर्ण क्षेत्राधिकार समेतने नियामकीय संरचनाको विकास गर्न आयोगले आफ्नो पाँच वर्ष मार्गाचित्र निर्माण गरी कार्यान्वयन गरिरहेको छ।

उक्त मार्गाचित्र अनुसरणका क्रममा आयोगका लागि आन्तरिक स्रोतको परिचालन साथै पर्याप्त मात्रामा जनशक्ति आवश्यक हुनेछ। विगतमा जारी गरिएका कृतिपय व्यवस्थाको समयानुकूल पुनरावलोकन र संरीचन चर्चाएँ बन्र बौकी नियामकीय उपकरणहरू समयमै निर्माण गर्नु पर्ने हुन्छ। यद्यपि, अधिल्लो पाँच वर्षमा जस्तो अहिले स्रोत तथा जनशक्तिको अभाव नभएको हुनाले प्राविधिक एवम् प्रशासनिक जटिलताका कारण चुनावी देखिन्दैन। आगामी दिनमा नेपाल सरकार मातहतका विद्युत तथा ऊर्जा सम्बन्धी संघन-वहरू बीच बृहत्तर संवाद तथा सहकार्य आवश्यक देखिन्दै। त्यसका लागि आयोग प्रयत्नरत रहने नै छ।

सरकारको नीतिलाई प्रभावकारी रूपले अवलम्बन गर्न, सेवा प्रदायकको वित्तीय सशक्तता सुनिश्चित गर्न, लगानीकर्ताको लगानी सुरक्षा गर्न र उपभोक्ताको हक हित रक्षा गर्न आवश्यक सशक्त नियामकीय प्रणाली निर्माण गर्ने उद्देश्यलाई सर्वोपरी राख्दै राष्ट्रको विद्युत क्षेत्रको प्रतिष्ठित तथा विश्वसनीय नियामक निकायको रूपमा स्थापित हुने दूरदृष्टिप्रति विद्युत नियमन आयोग इमान्दार रहेको प्रतिबद्धता व्यक्त गर्दछु।

डा. राम प्रसाद थिताल
अध्यक्ष

२०८२।१।२५

विद्युत नियमन आयोग

सानो गैचरण, काठमाडौं, नेपाल

ईमेल: info@erc.gov.np | वेबसाइट: www.erc.gov.np

फोन: +९७७-१-४४२२४४२, ४४३९००४, ४४४३३९० | फैसला: +९७७-१-४४३२५८२

सम्पादकीय तथा प्रकाशकीय

विद्युत नियमन आयोगले आफ्नो स्थापनाको छैठौं वर्ष पूरा गरी सातौं वर्षमा प्रवेश गरेको पुनित अवसरमा आयोगको स्मारिका विद्युत-सुशासनको पहिलो अंक पाठकवर्गसमक्ष भेट स्वरूप पस्कन समर्थ भएकामा हामी गौरवान्वित छौं । हाम्रो हौसला बढाउँदै सारगर्भित शुभकामना सन्देश प्रदान गरिदिनहुने सम्माननीय प्रधानमन्त्री केपी शर्मा ओली तथा माननीय ऊर्जा, जलस्रोत तथा सिंचाइ मन्त्री दिपक खँडकाप्रति हार्दिक कृतज्ञता व्यक्त गर्नु हामी सर्वप्रथम आफ्नो कर्तव्य ठान्दछौं । यसको अलावा सीमित समयमा आफ्ना अमूल्य लेखरचना उपलब्ध गराएर योगदान दिनहुने तमाम विद्वान् लेखक महानुभावहरूप्रति हामी सदा नतमस्तक रहेको व्यहोरा निवेदन गर्न चाहन्छौं । त्यसो त हामीलाई प्राप्त भए जस्ति सबै लेखरचनाहरू प्राविधिक कारणले समावेश गर्न नसकेकोमा चिन्तित पनि छौं । जे भए पनि प्रकाशित रचनाहरूमा विषयवस्तुको विविधता पस्कन भरमधूर प्रयत्न गरेका छौं र सबै सामग्रीहरू खोजमूलक र जानकारीमूलक भएका हुनाले यी सामग्री सबैखाले नियामक निकायहरू, नियमनको कर्तव्य निर्वाह गर्नुपर्ने राष्ट्रसेवकहरू, सरोकारवाला निकाय तथा व्यक्तिहरू, प्राध्यापक तथा विद्यार्थीहरू, अनुसन्धाता तथा सामान्य पाठकहरू, विद्युत क्षेत्रमा आवद्ध लगानीकर्ता, उत्प(ादक, वितरक, उपभोक्ता, नीति निर्माता, विधायक, राजनीतिज्ञ लगायत सबै तह र तप्काका सम्बन्धित सबैको लागि र अन्ततोगत्वा समग्र समाजका लागि पठनीय, उपयोगी र संग्रहणीय हुने हामीले अपेक्षा राखेका छौं ।

समकालीन विश्वमा सुशासन, नियमन, व्यवस्थापन जस्ता विषयहरू अत्यन्त ग्राह्य मात्र होइन अपरिहार्य नै भएको वर्तमान युगको यथार्थलाई आत्मसात गर्दै प्रस्तुत स्मारिकामा हामीले यिनै विषयवस्तुमा आधारित सामग्रीहरूलाई प्राथमिकता दिने भरमधूर प्रयत्न गरेका छौं । यो हाम्रो प्रथम प्रयास भएको हुनाले सुहाउँदा विषयका लागि तत् तत् विषयका विज्ञ तथा ज्ञाता सर्जकहरूसम्म हाम्रो पहुँच पुन्याउन र वहाँहरूको मन जितेर सामग्री प्राप्त गर्ने कार्य निश्चय नै चुनौतिपूर्ण थियो । यति हुँदा हुँदै पनि विद्वान् लेखकहरूले हामीप्रति सदाशयता राखी सीमित छोटो समयमा प्रचूर मात्रामा विविधतायुक्त सामग्रीहरू उपलब्ध गराएर हाम्रो हौसला मात्र बढाइदिनुभएको होइन अपितु कहिलै तिन नसक्ने युन पनि लगाउनुभएको छ । सर्जकहरूको हैसियतकै कुरा गर्नु पर्दा एक से एक लब्धप्रतिष्ठित महानुभावहरूको मन जित्न हामी सफल भएका छौं जुन हाम्रो लागि खुशी र आगामी दिनका लागि प्रेरणाको कुरा पनि हुन गएको छ । एक से एक लब्धप्रतिष्ठित महानुभावहरूमध्येबाट कसको रचनालाई कुन क्रममा राखेर स्थान दिने भने कुरा हाम्रो लागि अर्को चुनौति थियो । यो चुनौतिलाई हामीले सहज मार्गको अवलम्बन गर्दै जसको जे हैसियत भए पनि नामको आधारमा नेपाली उच्चारण अनुसार हुन आउने वर्णानुक्रममा सजाउने उपाय सबैभन्दा उपयुक्त ठानेर त्यही विधिको अवलम्बन गरेका छौं । यसो गर्दा विशिष्ट अतिथि लेखक महानुभावहरू, अतिथि लेखक महानुभावहरू र विद्युत नियमन आयोगमा कार्यरत लेखक महानुभावहरूलाई क्रमाण्तरस्थिती तीन समूहमा वर्गीकरण गरी हरेक समूहलाई अलग अलग वर्णानुक्रममा राखेर प्रस्तुत गरेका छौं । स्वीकृत रचनाका लेखकहरू सबैलाई सन्तुलित न्याय होस् भन्ने नै हाम्रो एक मात्र ध्येय भएको व्यहोरा निवेदन गर्दछौं जसमा जसको जेसुकै हैसियत भए पनि ठूलो सानोको विभेद नगरी सबैलाई लेखकको हैसियतमा मात्र प्रस्तुत गर्ने धृष्टता गरेका छौं । हामी आशा गर्दछौं, हाम्रो यो विधिलाई यहाँहरूले सहर्ष स्वीकार गरिदिनहुने नै छ ।

यो हाम्रो प्रथम प्रयास हो । हाम्रा प्रेरणाका मूल स्रोत भनेका हाम्रा पाठकहरू नै हुनुहुन्छ र पाठको रुचिमा नै हाम्रो प्रयासको सार्थकता निर्भर रहन्छ । तसर्थ विषयवस्तुका विज्ञ पाठक, समीक्षक तथा समालोचकहरूबाट प्राप्त हुने आलोचना, समालोचना र पृष्ठपोषणले हाम्रो भावी कृयाकलापमा ठूलो महत्व राख्ने हुँदा हामी त्यसको व्यग्रतासाथ अपेक्षा गर्दछौं र आगामी दिनहरूमा पनि यसप्रकारको रचनात्मक प्रयास जारी राख्ने हाम्रो प्रतिवद्धता व्यक्त गर्दछौं ।

विद्युत नियमन आयोगका विशिष्ट
अतिथि लेखक महानुभावहरु
वर्णनुऋमानुसार

विद्युत विकास मार्गचित्र कार्यान्वयनमा विद्युत नियमन आयोगको अपेक्षित भूमिका

दिपक खड्का १

नेपाल ऊर्जा उत्पादनको व्यापक सम्भावना बोकेको मुलुकमा पर्दछ । जलस्रोतको धनी देश नेपाल जलविद्युतको उच्च सम्भावनाको लागि परिचित छैंदै छ तर सौर्य विद्युतीय ऊर्जा, वायु ऊजा तथा हाइड्रोजन ऊर्जाका सम्भावनाको बारेमा समेत पछिल्ला समयमा छलफल हुन थालेको छ । ८३००० मे.वा. जलविद्युतका साथै ३,००० मे.वा. सौर्य विद्युतीय ऊर्जा एवम् ३,५०० मे.वा. वायु ऊर्जा उत्पादनको सम्भावना हुनु भनेको नेपालको लागि सुखद कुरा हो । यद्यपि सम्भावना मात्रैले समृद्धि प्राप्त हुँदैन । नेपालको पछिल्लो एक शताब्दीभन्दा लामो जलविद्युत विकासको इतिहासले सिकाएको पाठ यही नै हो । उक्त सम्भावनालाई यथार्थमा परिणत गर्न परिपक्व रणनीति, सशक्त नियामकीय संरचना एवम् पर्याप्त स्रोत पनि अपरिहार्य छन् ।

आर्थिक वर्ष २०८१/८२ को चैत मसान्तसम्ममा नेपालको विद्युत उत्पादन जडित क्षमता करिब ३५०० मे.वा. रहेको छ । वितरणतर्फ, ९९% जनसंख्यामा विद्युतको पहुँच पुगेको छ । त्यसै गरी ६,५०८ सर्किट किलोमिटर प्रसारण लाइन तथा १३,०५० एम.भि.ए. क्षमताका सबस्टेसन निर्माण भएका छन् । यसका बावजुद पनि नेपाल अझै विद्युत विकासमा आत्मनिर्भर हुन सकेको छैन, विद्युतको पहुँच पुगे पनि विद्युत आपूर्तिको गुणस्तर तथा विश्वसनीयतामा कमी छ र विद्युतको आन्तरिक खपत र निर्यात दुवैको लागि देशभर प्रसारण संजाल तथा सबस्टेसन क्षमता विस्तार गर्नु पर्ने आवश्यकता छैंदैछ ।

हालै ऊर्जा, जलस्रोत तथा सिंचाइ मन्त्रालयको पहलकदमीमा नेपाल सरकार (मन्त्रिपरिषद्) ले स्वीकृत गरेको ऊर्जा विकास मार्गचित्र, २०८१ ले आगामी दश बर्षको विद्युत विकासका लागि रणनीतिक मार्गचित्रको रूपमा एउटा लक्षको खाका अधिक सारेको छ । ऊर्जा विकास मार्गचित्र, २०८१ ले सन् २०३५ सम्ममा कुल जडित क्षमता २८,५०० मेगावाट पुर्याइने, प्रति व्यक्ति विद्युत खपत १,५०० युनिट (KWh) मे.वा. पुर्याइने, छिमेकी राष्ट्रहरूमा १५,००० मे.वा. आयात गर्न सक्ने क्षमता विस्तार गर्ने, शत प्रतिशत जनसंख्यामा विद्युतको पहुँच स्थापित गर्ने र १७,४४६ सर्किट किलोमिटर प्रसारण लाइन तथा ४०,००० एम.भि.ए. बराबरका ग्रीड सबस्टेसनहरू निर्माण गर्ने जस्ता गुणात्मक लक्ष्य राखेको छ । उक्त मार्गचित्र कार्यान्वयनमा नियामक निकायको रूपमा विद्युत नियमन आयोगको विशिष्ट भूमिका हुनेछ ।

विद्युत नियमन आयोग ऐन, २०७४ ले परिकल्पना गरे अनुरूप स्थापना भएको विद्युत नियमन आयोगलाई प्राविधिक व्यवस्थापन गर्ने, विद्युत उपभोक्ताको हित संरक्षण तथा विद्युतमा प्रतिस्पर्धा कायम गर्ने, महसुल तथा विद्युतसम्बन्धी अन्य दस्तुर निर्धारण गर्ने जस्ता जिम्मेवारी तोकिएका छन् । त्यसै गरी संगठनात्मक क्षमता अभिवृद्धि गर्ने, नीतिगत सुभाव दिने तथा सिफारिस गर्ने र विद्युत क्षेत्रसम्बन्धी विवाद समाधान गर्ने जस्ता गहन जिम्मेवारीहरू प्रदान गरिएका

१ लेखक नेपाल सरकारको ऊर्जा, जलस्रोत तथा सिंचाइ मन्त्री हुनुहुन्छ । -सम्पादक

छन् । विद्युत उत्पादन, प्रसारण, वितरण वा व्यापारलाई सरल, नियमित, व्यवस्थित तथा पारदर्शी बनाई विद्युतको माग र आपूर्तिमा सन्तुलन कायम राख्न, विद्युत महसुल नियमन गर्न, विद्युत उपभोक्ताको हक र हित संरक्षण गर्न, विद्युतको बजारलाई प्रतिस्पर्धात्मक बनाउन तथा विद्युत सेवालाई भरपर्दो, सर्वसुलभ, गुणस्तरयुक्त तथा सुरक्षित बनाउने मूल संयन्त्रको रूपमा विद्युत नियमन आयोगको गठन गरिएको हो । विद्युत नियमन आयोगले आफ्नो स्थापना कालदेखि नै विद्युत क्षेत्रको सार्थक नियमन गर्ने गरेका प्रयत्नहरू प्रशंसनीय छन् । यद्यपि ती प्रयत्नहरू पर्याप्त छैनन् । आगामी दिनमा नेपाल सरकारले ऊर्जा विकास मार्गचित्र, २०८१ मार्फत अधि सारेका गुणात्मक लक्ष्यहरूको प्राप्तिका लागि विद्युत नियमन आयोगले आवश्यक नियामकीय उपकरणहरूको तर्जुमा गर्दै तिनको सशक्त कार्यान्वयन गर्नु आवश्यक छ ।

विद्युत नियमन आयोग एक स्वायत्त आयोगका स्वरूपमा रहेकाले मूलतः कानूनसम्मत अधिकारहरू प्रयोग गर्दै ऐनले निर्दिष्ट गरेका जिम्मेवारीहरू वहन गर्न स्वतन्त्र छ । यद्यपि स्वतन्त्र निकाय भए पनि आयोग नेपालको राज्यसंयन्त्रकै पाटो भएकाले राज्यले अवलम्बन गरेका सिद्धान्त र नीतिसंगत रूपमा चल्नु पर्दछ । नीति कार्यान्वयन र नियमन एकै सिक्काका दुई पाटाहरू भएकाले यी दुईका बीचमा तादात्म्यता हुन जस्ती छ । त्यसैले ऊर्जा विकास मार्गचित्र, २०८१ कार्यान्वयन गर्ने र ऊर्जाक्षेत्रको समग्र विकासका लागि विद्युते नियमन आयोगले देहायका कार्यहरूलाई प्राथमिकतामा राखी कार्ययोजना बनाउन जस्ती रहेको छ ।

१. विद्युत बजार विकास

विगतमा नेपालको विद्युत विकासको गति सुस्त भएता पनि पछिल्लो दशकमा नेपालले विद्युत उत्पादन, प्रसारण, व्यापार र वितरण/खपतका सन्दर्भमा हासिल गरेको विकास उल्लेखनीय छ । विद्यमान आन्तरिक संरचनाको सीमितताले विद्युत उत्पादन तथा व्यापार वृद्धि गर्न चुनौतिपूर्ण रहेको छ । तसर्थ नियमन आयोगले नेपालको आन्तरिक माग पूर्ति गर्न आवश्यक विद्युतको सुनिश्चितता गर्दै इच्छुक उत्पादकहरूलाई अन्तर्राष्ट्रिय विद्युत व्यापार गर्न समेत मार्ग प्रशस्त गर्न जस्ती छ । त्यसका लागि आयोगले आफ्नो क्षेत्राधिकारभित्र रहेका विद्युत प्रणालीमा खुल्ला पहुँच लागू गर्ने, विद्युत खरिद विक्री सम्भौतामा सहमति दिने, विद्युत व्यापार गर्दा पालना गर्नुपर्ने शर्तहरू तोक्ने र प्रणाली सञ्चालकको निष्पक्षता सुनिश्चितता गर्नु पर्दछ । विद्युत खरिद विक्री प्रक्रियालाई प्रतिस्पर्धी बनाउन मात्र नभई विद्युत उत्पादक एवम् ठूला उपभोक्तालाई विद्युत खरिद विक्रीका विभिन्न विकल्प प्रदान गर्न खुल्ला पहुँचको भूमिका अपरिहार्य छ । आयोगले नेपालको विद्युत प्रणाली सुहाउँदो खुल्ला पहुँचसम्बन्धी व्यवस्था निर्माण गरी कार्यान्वयन गर्नु ऊर्जा विकास मार्गचित्र, २०८१ का लक्ष्यहरू प्राप्तिका लागि अत्यावश्यक देखिन्छ । विद्युत बजार विकासका लागि अर्को मूल आवश्यकता भनेको विद्युत व्यापार हो । यस सम्बन्धमा भने थप केही कानूनी प्रावधानको अभाव रहेको छ र त्यसको समाधानका लागि मन्त्रालय पनि क्रियाशील रहेको छ ।

२. विद्युत खरिद बिक्री दर एवम् प्रसारण शुल्कको निर्धारण

विद्युत नियमन आयोगले स्थापना कालदेखि नै आफ्ना नियामकीय उपकरणहरूको प्रयोग गरेर विद्युत महसुल दर र विद्युत खरिद बिक्री दर निर्धारण गर्दै आएको छ । विद्युत नियमन आयोगको गठन पश्चात जारी भएको विद्युत खरिद बिक्री दर निर्धारणसम्बन्धी व्यवस्थाले हालसम्म विद्युत विकासको क्रमलाई प्रोत्साहन नै गरेको भएता पनि नेपाललाई सही अर्थमा ऊर्जामा आत्मनिर्भर बनाउन सक्ने जलाशययुक्त जलविद्युत आयोजनामा लगानी गर्न हालको विद्युत खरिद बिक्री व्यवस्थामा समयानुकूल परिवर्तन गर्नु पर्ने देखिन्छ । ठूलो पुँजीगत लगानी एवम् जटिल निर्माण प्रक्रिया हुने

भएकाले त्यस्ता किसिमका जलविद्युत आयोजनाको निर्माणिका लागि आकर्षक हुने विद्युत महसुल दर निर्धारण गर्न सके जलविद्युत क्षेत्रका प्रवर्द्धकहरु जलाशययुक्त आयोजना निर्माणितर्फ आकर्षित हुने अवस्था बन्दछ । यसो गनृ सके अन्तर्राष्ट्रिय लगानी समेत भित्राउन सहज हुनेछ । त्यसै गरी नियमन आयोगले विद्युत प्रसारण दस्तुर निर्धारणमा समेत तदारुकता देखाउनु जस्ती छ । खुल्ला पहुँचको कार्यान्वयनका साथै सार्वजनिक-निजी साफेदारी मोडेलमा प्रसारण लाइनको विकास गर्ने कार्यका लागि प्रसारण शुल्क निर्धारणसम्बन्धी व्यवस्था हुनु अपरिहार्य छ ।

३. निजी क्षेत्रको सार्थक परिचालन

नेपाल विकासशील देश भएका कारण राज्यकोषमा भएको सीमित आर्थिक स्रोतले सबै क्षेत्रमा पर्याप्त लगानी नपुग्ने हुनसक्छ । निजी क्षेत्रलाई विद्युत विकासमा सहयोगी सरह व्यवहार गरेर विद्युत विकासलाई प्राथमिकतामा राख्दा राज्यकोषमा अनावश्यक दवाव बिनै राज्यको विद्युत विकासको लक्ष्य पूर्ति गर्न सकिन्छ । नेपालको निजी क्षेत्रले दुई दशक देखि विद्युत क्षेत्रमा लगानी गर्दै उल्लेखनीय नतिजा हासिल गर्न सफल भएको छ । यद्यपि यो लगानी विद्युत उत्पादनमा सीमित छ । विद्युतका जलाशययुक्त आयोजनाहरूको निर्माण तथा सञ्चालन एवम् विद्युत प्रसारण र विद्युत वितरणमा समेत निजी क्षेत्रमा रहेको प्रमाणित क्षमता र दक्षतालाई परिचालन गर्न सकिन्छ । यसका लागि आयोगले स्थिर, पारदर्शी र समयानुकूल नियमकीय व्यवस्थाको निर्माणलाई प्राथमिकतामा राख्नुपर्दछ । बिभिन्न विषयमा हुनसक्ने विवादलाई समाधान गर्ने एक निष्पक्ष एवं सवल विवाद समाधान संयन्त्रको विकास गर्नु पनि उत्तिकै अपरिहार्य रहेको छ ।

४. महसुल प्रणाली सुधार तथा उपभोक्ताको हित संरक्षण

विद्युत नियमन आयोगले विद्युत सेवा प्रदायक (वितरक) को वित्तीय स्वास्थ्यलाई मध्यनजर गर्दै समयानुकूल हिसाबले उपभोक्ताले तिर्ने विद्युत महसुल दर निर्धारण गर्दै आइरहेको छ । यद्यपि विद्युत महसुललाई वैज्ञानिक बनाउन अझै पनि थप सुधार गर्नु आवश्यक देखिन्छ । विद्युतको पर्याप्ततामा अधिक विद्युत खपत गर्न र विद्युतको कमी हुने अवधिमा न्यून खपत गर्न प्रोत्साहन गर्ने किसिमको Seasonal Tariff निर्धारण गर्न सके विद्युत आयातमा कमी भई विद्युत सेवा प्रदायक (वितरक) को वित्तीय स्वास्थ्य कायम गर्न सहज हुनेछ ।

नियमन सम्बन्धी प्रचलित अवधारणाले “विद्युत उपभोक्ताको हित” लाई विद्युत नियमनको केन्द्रविन्दुमा राख्नुपर्दछ भन्ने मान्यता राख्दछ । तसर्थ विद्युत नियमन आयोगले पनि यससै अनुरूप आफ्ना नीति तथा कार्यक्रम तय गर्नु पर्दछ । यद्यपि विद्युत नियमन आयोगले विद्युत उपभोक्ताको हक्कसम्बन्धी निर्देशिका, २०८० जारी गरी गुणस्तरीय एवम् विश्वसनीय विद्युत आपूर्तिको हक र उच्च प्रतिक्रियाशीलता सहितको उपभोक्ता हितको लागि प्रारम्भिक व्यवस्था गरेको छ । ऊर्जा विकास मार्गीचित्रले विद्युत सेवा प्रदायकले असाधारण अवस्थामा बाहेक पूर्व सूचना बिना विद्युत कटौती गरेमा वा भोल्टेज लगायत अन्य कारणले उपभोक्तालाई क्षति पुग गएमा सो वापतको क्षतिपूर्तिसम्बन्धी व्यवस्था गरिनु पर्ने व्यवस्था गरेको छ र त्यसको ससक्त कार्यान्वयनको मूल जिम्मेवारी विद्युत नियमन आयोगमा नै निहित छ । मार्गीचित्रले परिकल्पना गरेको जिम्मेवारी विद्युत उपभोक्ताको हित संरक्षण गर्न र विद्युत सेवा प्रदायकलाई थप जवाफदेही बनाउन चरणबद्ध रूपमा उपभोक्तालाई क्षतिपूर्ति प्रदान गर्नेसम्बन्धी व्यवस्था कार्यान्वयन गर्नेतर्फ आयोगले आवश्यक नियामकीय उपकरणको तर्जुमा गर्ने गृहकार्य थाल्नुपर्ने देखिन्छ ।

५. नीति निर्माण

कुने पनि नीति निर्माण गर्दा सबैको प्रतिनिधित्व सुनिश्चित हुनुपर्दछ । त्यसमा पनि नियामक निकायको त नीति निर्माणमा अझै महत्वपूर्ण भूमिका हुने गर्दछ । नियामक संस्थाले आवश्यक अनुसन्धान, आँकडा सङ्कलन र विश्लेषण गरी नीतिनिर्मातालाई सहयोग गर्न सक्छ, साथै कस्ता नीति कार्यान्वयन गर्न सम्भव छ/छैन र कार्यान्वयन गर्दा कस्ता जटिलता आउन सक्दछन् भन्ने सुझाव नियामक निकायले दिन सक्छ । यसै गरी जारी गरिएका नीतिहरूको कार्यान्वयनको स्थिति कस्तो छ र नीतिमा कस्ता परिमार्जनहरू आवश्यक छन् भन्ने विषयमा सरकारलाई प्रतिक्रिया दिई नीति निर्माणमा योगदान गर्न सक्दछ । विद्युत नियमन आयोग ऐन, २०७४ को दफा १६ ले समेत आयोगको यस भूमिकालाई कानूनी जिम्मेवारीकै रूपमा स्थापित गरिएको छ । तसर्थ नियामक निकायको रूपमा रहेको आयोग एक “नीति कार्यान्वयनकर्ता” मात्र होइन, “नीति सुधारक” को रूपमा पनि क्रियाशील हुन जरुरी छ ।

६. विद्युत विकासका लागि नियामकीय दायित्व

विद्युत विकास भनेको पूँजीसघन (Capital Intensive) प्रक्रिया हो र यसको तात्त्विक नियमनका लागि विभिन्न नियामक निकायहरूको सहयोग आयोगलाई आवश्यक पर्छ । त्यसका साथै नेपालले निर्यातका लागि समेत विद्युत आयोजनाहरूको विकास गरिरहेको हुँदा अन्य राष्ट्रको तुलनामा नेपालले विद्युत विकासलाई थप संवेदनशीलताका साथ हेर्नुपर्ने हुन्छ । अन्य क्षेत्र जस्तै जलविद्युत विकासका लागि आवश्यक पूँजीको संकलनका लागि धितोपत्र बोर्ड, नेपाल र ऋण लगानी एवम् वैदेशिक लगानीसम्बन्धी व्यवस्थाको नियमन नेपाल राष्ट्र बैंकले गर्ने गर्दछ । विद्युत आयोजनाको जोखिम व्यवस्थापनका लागि नेपाल विमा प्राधिकरणको भूमिका रहन्छ । कम्पनी रजिस्ट्रार कार्यालयको पनि महत्वपूर्ण भूमिका हुन आउँछ । विद्युत क्षेत्रको नियमन एवम् समयानुकूल सहजीकरणका लागि यस्ता विभिन्न निकायहरूले आफ्नो एवम अर्काको जिम्मेवारी तथा दायित्व के हो भन्ने बुझी सहकार्यका सम्भावनाहरूलाई मूर्त रूप दिन, एक अर्काको परिपूरक जसरी कार्य गर्न तथा समग्र नियामकीय संयन्त्रका विद्यमान कमी कमजोरी पहिल्याउदै नेपाल सरकारलाई नीतिगत सुझाव दिन नियामकहरूको एक मञ्च (Forum) निर्माण गरी क्रियाशील बनाउन सके विद्युत क्षेत्रको विकासमा थप बल पुग्ने देखिन्छ ।

निष्कर्ष

नीति बनाउनु सरकारको कर्तव्य हो भने त्यसलाई निष्क्रिय, पारदर्शी र प्रभावकारी ढंगले कार्यान्वयन गर्नु नियामक निकायहरूको धर्म हो । विद्युत नियमन आयोगले सक्षम, सक्रिय र पारदर्शी भई कार्य गरे मात्र नेपालका विद्युत विकाससम्बन्धी नीतिहरूले मूर्तरूप प्राप्त गर्नेछन् र नेपाल सरकारले तय गरेका लक्ष्यहरू हासिल हुन सक्दछन् । तसर्थ विद्युत नियमन आयोगले सरकार र निजी क्षेत्रको बीचमा एक गतिशील साँघुको रूपमा कार्य गर्दै विद्युत विकाससम्बन्धी नीतिहरूको कार्यान्वयनमा सक्रिय भई लाग्नु जरुरी छ । नीतिहरू कार्यान्वयन गर्ने क्रममा नेपाल सरकारका तर्फबाट सहयोग आवश्यक परेको अवस्थामा आयोगको तालुक मन्त्रालयको रूपमा ऊर्जा, जलस्रोत तथा सिंचाई मन्त्रालय सदैव सजग एवम् तत्पर रहेको छ ।

नेपालमा ऊर्जा सम्मिश्रणको विविधीकरण प्रक्रियामा विद्युत नियमन आयोगको भूमिका

सुरेश आचार्य १

ऊर्जा सम्मिश्रण (Energy Mix) ले कुनै देश, क्षेत्र अथवा व्यक्तिले प्रयोग गर्ने ऊर्जाको विभिन्न स्रोतहरूको अनुपातल (ई जनाउँछ)। देश अथवा क्षेत्रमा स्रोतको उपलब्धता, प्रविधि तथा जनशक्तिको विकास, आर्थिक सम्पन्नता, पर्यावरणीय परिस्थिति एवं सांस्कृतिक तथा सामाजिक पक्षहरूले त्यस देश वा क्षेत्रको ऊर्जा सम्मिश्रण कस्तो हुन्छ भन्ने निर्धारण गर्दछन्। जल तथा ऊर्जा आयोगको सचिवालयद्वारा प्रकाशित Energy Sector Synopsis Report, २०२४ का अनुसार नेपालमा वि.सं. २०७९/८० मा दाउरा, कृषि अवशेष, आदि जस्ता परम्परागत स्रोतबाट ६३.८७%, कोइला, पट्रोलियम तथा एल.पी.ग्यास जस्ता व्यावसायिक इन्धनबाट २५.८%, ग्रिड जडित विद्युत उत्पादन आयोजनाबाट ७.२३% तथा बायो ग्यास, सौर्य ऊर्जा, वायु ऊर्जा तथा माइक्रो हाइड्रोबाट ३.१०% ऊर्जा प्राप्त भएको आँकडा छ।

नेपालको ऊर्जा परिदृश्यमा अहिले नै केही विविधता नआएको होइन। यद्यपि, ऊर्जा सम्मिश्रणको विविधीकरण रणनीतिक आधारमा हुनु पर्दछ र विविधीकरण गर्दा ऊर्जाका विभिन्न उपलब्ध स्रोतलाई प्रयोगमा त्याएर मात्र हुँदैन। यसका लागि उपलब्ध विभिन्न ऊर्जाका स्रोतहरूको दक्षता (Efficiency), सहज प्रयोग (Ease of use), किफायती (Affordability), विश्वसनीयता (Reliability) र दिगोपन (कागतबज्जलबदर्पितथ) जस्ता गुणहरूको आधारमा यथोचित उपभोग गरिनु पर्दछ। देशमा रोजगारी प्रवर्द्धन, उत्पादकत्व एवं आर्थिक विकास ऊर्जामा निर्भर हुने भएका कारण ऊर्जा सम्मिश्रण सम्बन्धी विषय देशको रणनीतिक महत्वको विषय हो।

विगत ४/५ वर्षहरूको आँकडाको आधारमा नेपालले विद्युत उत्पादन बढाउँ गर्दै जाँदा परम्परागत एवं व्यावसायिक ऊर्जा स्रोतहरूमा नेपालको निर्भरता घट्दै गएको छ भने विद्युत तथा नवीकरणीय ऊर्जाको प्रयोग बढादो छ। तल उल्लिखित तालिकाले नेपालमा ऊर्जा सम्मिश्रण कसरी परिवर्तित भइरहेको छ भन्ने स्पष्ट पार्दछ।

इन्धनको प्रकार	ऊर्जा खपत (हजार मिगाजुल)		परिवर्तन प्रतिशत (%)
	२०७८/७९	२०७९/८०	
परम्परागत	४१०,६७८.५९	३४०,०३९.७४	-१७.२०%
दाउरा	३७४,५६२.९५	३०४,६२५.३०	-१८.६७%
कृषि अवशेष	१७,९६५.५०	२५,६२३.२२	४२.६२%
गाई-बस्तुको गोचर	१८,९५०.९४	९,७९,९.२३	-४६.०५%
व्यावसायिक	१८१,४०६.९१	१३७,३८३.८३	-२४.२७%
काइला	५८,९५०.९४	९,७९,९.२३	-८६.०५%
पेट्रोलियम	१२३,२५८.६९	१०३,३६७.९६	-१६.९४%
विद्युत	३१,७६६.४०	३८,४३५.००	२१.१८%
नवीकरणीय	१६,११३.८८४	१६,४५९.४३	२.३९%
जम्मा	६३९,९६५.७९	५३२,४१८.०१	-१६.८१%

श्रोत: जल तथा ऊर्जा आयोगको प्रतिवेदन

१ लेखक नेपाल सरकार, ऊर्जा, जलस्रोत तथा सिंचाइ मन्त्रालयमा सचिव (ऊर्जा) पदमा कार्यरत हुनुहुन्छ ।

विद्युतलाई सहज रूपमा रूपान्तरण, नियन्त्रण एवं प्रसारण गर्न सकिने हुँदा यो ऊर्जा प्रयोगको सर्वव्यापी माध्यम हो । यिनै गुणका कारण आधुनिक सभ्यताको संरचना नै विद्युतीय ऊर्जाको जगमा बसेको छ र ऊर्जा सम्मिश्रणको विषयमा विश्लेषण गर्दा विद्युतलाई अग्रणी स्थानमा राखेको गर्नुपर्ने हुन्छ । जलवायु परिवर्तनका प्रकोप तथा नेपालले सन् २०४५ सम्मा शुन्य कार्बन उत्सर्जन (Net zero Emission) गर्ने जस्ता अन्तर्राष्ट्रिय मञ्चहरूमा जलवायु परिवर्तनको न्यूनीकरणका लागि गरेका प्रतिबद्धतालाई मध्यनजर गर्दा परम्परागत एवं व्यावसायिक प्रकृतिका उच्च कार्बन उत्सर्जन गर्ने इन्धनहरूको प्रयोग कटौती गर्दै नवीकरणीय ऊर्जा, विशेष गरी नवीकरणीय स्रोतबाट प्राप्त विद्युतको प्रयोग गर्दै जानुपर्ने देखिन्छ । फेरी, विद्युत उत्पादनको हिसाबले प्रचुर सम्भावना बोकेको नेपालको लागि स्वाभाविक बाटो पनि यही नै हो ।

विद्युत प्रयोगमा एउटा निश्चित वितरण प्रणाली भए पनि यसका उत्पादनका स्रोतहरू फरक फरक हुन्छन् । ऊर्जा समि(मिश्रणको विविधीकरणको कुरा गर्दा विद्युत प्राप्तिका स्रोतहरूको पनि विविधीकरणको छुट्टै अध्ययनको आवश्यकता पर्दछ । नेपालमा जलविद्युतको प्रबल सम्भावना भएका कारण दशकौ सम्म हाम्रो प्राथमिकता जलविद्युतमा रह्यो । नेपाल विद्युत प्राधिकरणको वार्षिक प्रतिवेदन, आ.व. २०८०/८१ अनुसार जडित क्षमताको आधारमा नेपालको विद्युत मिश्रणको अवस्था देहाय बमोजिमको रहेको छ:

क्र. सं.	स्रोत	उत्पादन (मे.वा.)	प्रतिशत
१.	जलविद्युत (जलासययुक्त)	१०६.००	३.३५%
२.	जलविद्युत (अर्ध-जलासययुक्त)	२,८८४.८३	९१.३७%
३.	जलविद्युत (नदि-प्रवाहि)		
४.	सौर्य ऊर्जा (फोटोभोल्टायिक)	१०६.९४	३.३८%
५.	थर्मल (डिजेल/मलिटफ्युल)	५३.४१	१.६९%
६.	सहउत्पादन	६.००	०.११%
कुल उत्पादन (मे.वा.)		३,१५७.१८२	१००%

श्रोत: ने.वि. प्रा. को वार्षिक प्रतिवेदन

कुनै एक स्रोतमा पूर्ण निर्भरता हुँदा प्राकृतिक प्रकोप, मौसममा आउने असामान्यता वा प्राविधिक समस्याले आपूर्ति अवरुद्ध हुन सक्छ र उक्त क्षेत्रको ऊर्जा सुरक्षामा खलल पुग्दछ । जलविद्युत मात्रैमा निर्भर हुँदा पछिल्लो समयमा नेपालमा केही बेफाइदाका साथै केही जोखिम पनि देखिएका छन् । प्रथमतः नदी प्रवाही जलविद्युत आयोजनाहरूको बाहुल्य भएका कारण मौसमी रूपमा विद्युत उत्पादन कम भई छिमेकी राष्ट्रमा निर्भर हुनु परेको अवस्था छ । यी सबै विषयलाई मनन गरी ऊर्जामा परनिर्भरताबाट माथि उद्धन आवश्यक छ । जलविद्युतमा अधिक निर्भरताका कारण ऊर्जा सुरक्षामा जोखिमहरू पनि देखिँदै गएका छन् । कुनै एक नदी वा नदी बेसिनमा बाढी आउँदा सम्पूर्ण बेसिनमा रहेका विद्युत आयोजनामा क्षति पुग्ने अथवा जोखिमबाट बचाउन Preventive Shut-down गर्नु पर्ने भएका कारण ऊर्जा असुरक्षा निर्मित नै सम्भावना हुन्छ । फेरी, जलवायु परिवर्तनका प्रभावहरू पनि देखिन थालेका छन् जसले गर्दा जल(विद्युतको उत्पादनमा समेत प्रभाव पर्ने देखिन्छ । भोलिका दिनमा देशको विद्युत उत्पादनको जडित क्षमता वृद्धि हुँदै

समग्र स्थितिमा सुधार त आउँछ तर जोखिम भने रहि रहन्छ । यसरी जलविद्युतको प्रचुरताका बावजुद ऊर्जा सुरक्षाका लागि विद्युतीय ऊर्जा उत्पादनको विविधीकरण गर्ने योजना र कार्यक्रम आवश्यक देखिन्छ ।

विद्युत उत्पादन सम्बन्धी भिन्न भिन्न प्रविधिका बेगला बेगलै आयाम हुन्छ । थर्मल, आणविक र प्राकृतिक ग्याँस जस्ता विद्युत आयोजनाहरू द्यबकभीयबम मा सञ्चालन गर्न उपयुक्त हुन्छ र क्षण भरमै यिनको उत्पादन सुरु गर्न अथवा घटबढ गर्न मिल्दैन । साथै पानीको उपलब्धता भएसम्म जलविद्युतलाई एभेपीयबम तथा Base Load दुवैमा सञ्चालन गर्न उपयुक्त हुन्छ । अर्कोर्तफ, भण्डारण बिनाका सौर्य ऊर्जा एवं वायु ऊर्जा भने Non-Dispatchable प्रकृतिका भएका कारण तिनको उपलब्धता भएको अवधिमा अधिकतम फाइदा लिईसक्नु पर्ने हुन्छ । थर्मल विद्युत उत्पादनको बाहुल्य भएको प्रणाली जस्तो जलविद्युतको बाहुल्य भएको प्रणालीमा पिक डिमाण्ड धान्नको लागि दोब्बर अथवा तेब्बर क्षमताका योजनाहरू निर्माण गर्दा लागतका हिसाबले सम्भाव्य नहुन सक्छ । यसले विद्युतको दर पनि महँगो भएर जान्छ । तसर्थ, हरेक स्रोत तथा प्रविधिको उपलब्धता र उपयुक्तताका आधारमा रणनीतिक हिसाबले प्राथमिकीकरण गर्नु उपयुक्त हुन्छ । ऊर्जा विकास मार्गिच्च, २०८१ ले पनि विद्युतीय ऊर्जा मिश्रण विविधीकरणका लागि जलाशययुक्त जलविद्युत आयोजना तथा सौर्य विद्युतीय ऊर्जाको प्राथमिकीकरण गर्ने थप व्यवस्था गरेको छ ।

यस अनुरूप विद्युतीय उत्पादनको विविधीकरण मार्फत समग्र ऊर्जा सम्मिश्रणको स्थिति सुधार गरी देशको ऊर्जा सुरक्षा(लाई सबल बनाउन आयोगले आफ्नो क्षेत्राधिकार भित्र रही निकै महत्वपूर्ण भूमिका खेल्न सक्दछ । ऊर्जा सम्मिश्रणको विविधीकरणका लागि आयोगको प्रत्यक्ष सहभागिता आवश्यक पर्ने अथवा आयोगले खेल्न सक्ने भूमिकाहरू देहाय बमोजिम रहेका छन्:

अ. उत्पादन सम्मिश्रणसम्बन्धी आवश्यकता निर्धारण

विद्युत नियमन आयोग ऐन, २०७४ को प्रस्तावनामा विद्युतको माग र आपूर्तिको सन्तुलन कायम गर्न स्थापना गरिएको उल्लेख गरेको छ । तसर्थ, भविष्यमा कुन अवधिसम्म देशलाई करिं विद्युतीय ऊर्जा आवश्यक पर्दछ भन्ने प्रक्षेपण गर्ने र सो अनुसार ऊर्जाको आपूर्ति हुन सक्ने नियामकीय संरचना सिर्जना गर्ने आयोगको मुख्य काम हो । त्यसै गरी उक्त ऐनको दफा १३ ले प्रक्रिया निर्धारण गर्ने एवं उत्पादित विद्युत खरिद बिक्री गर्न अनुमतिपत्र प्राप्त व्यक्तिहरू बीच विद्युत खरिद सम्भौता गर्न सहमति दिने अधिकार आयोगलाई दिएको छ । आयोगले विद्युत खरिद बिक्री सम्भौतामा स्वीकृति दिने क्रममा कुन स्रोतबाट करिं विद्युत उत्पादन हुनु पर्ने हो, सो सम्बन्धी निश्चित कोटा निर्धारण गरी ऊर्जा सम्मिश्रण कायम हुने गरी आपूर्ति मिश्रण निर्धारण गर्न सक्दछ । जलविद्युतमा पनि जलाशययुक्त, अर्ध-जलाशययुक्त तथा नदी प्रवाही जलविद्युत आयोजना, सौर्य-विद्युतीय आयोजना, वायु-ऊर्जा आयोजना, आदि लगायत ब्याट्री ऊर्जा भण्डारण प्रणाली (Battery Energy Storage System) बाट विद्युत वितरकले कुन अनुपातमा विद्युत खरिद गर्न सक्ने हो, सो सम्बन्धी स्पष्ट व्यवस्था आयोगले गर्न सक्दछ ।

आ. विद्युत खरिद दर निर्धारण

ऊर्जा सम्मिश्रणको विविधीकरणका लागि आयोगले विद्युत खरिद बिक्री दर निर्धारण सम्बन्धी व्यवस्थालाई थप परिमार्जित गरी वैज्ञानिक ढङ्गबाट तय गर्न आवश्यक छ । विद्युत नियमन आयोग ऐनको दफा १३ अन्तर्गत विद्युत खरिद बिक्रीको थोक बजार स्थापना नभएसम्म वितरण अनुमतिपत्र प्राप्त व्यक्ति र उत्पादन अनुमति पत्र प्राप्त व्यक्ति

वा व्यापार अनुमति पत्र प्राप्त व्यक्ति वा प्रचलित कानुन बमोजिम नेपाल सरकारले स्थापना गरेको सङ्गठित संस्थाबीच हुने विद्युत खरिद बिक्री दर र प्रक्रिया निर्धारण गर्ने एवं उत्पादित विद्युत खरिद बिक्री गर्न अनुमति पत्र प्राप्त व्यक्तिहरू बीच विद्युत खरिद सम्झौता गर्न सहमति दिने अधिकार आयोगलाई प्राप्त छ । यस अधिकारको प्रयोग गर्दै आयोगले विद्युतीय ऊर्जा विविधीकरणका लागि ऊर्जा सुरक्षाका दृष्टिकोणबाट महत्वपूर्ण किसिमका आयोजनाहरूको निर्माण(लाई प्रोत्साहन गर्न आयोगले तुलनात्मक रूपमा अधिक प्रतिफल सहितको खरिद बिक्री दर उपलब्ध गराउन सक्दछ । उदाहरणका लागि नेपालमा जलाशययुक्त जलविद्युत आयोजनाहरूको आवश्यकता रहेको सन्दर्भमा आयोगले त्यस्ता आयोजनाहरूमा लगानी होस् भने सुनिश्चित गर्न कानुनसम्म हिसाबले विद्युत खरिद बिक्री दरसम्बन्धी व्यवस्था पुनरावलोकन गर्न सक्दछ ।

इ. लगानी प्रवर्द्धन एवं निजी क्षेत्रको परिचालन

ऊर्जा विकास मार्गचित्र, २०८१ ले नेपालमा सन् २०३५ भित्र विद्युत उत्पादनको जडित क्षमता २८,५०० मे.वा. पुन्या(उने लक्ष्य राखेको छ र यसका लागि करिब ४६ अर्ब अमेरिकी डलर अर्थात्, ६३ खर्ब रुपैयाँ आवश्यक पर्ने देखिन्छ । उल्लिखित विद्युत उत्पादन क्षमता प्राप्त गर्ने क्रममा ऊर्जा सुरक्षाका दृष्टिकोणबाट विद्युतीय ऊर्जाको विविधीकरणलाई पनि साथसाथै अगाडि बढाउन पनि जरुरी हुन्छ । उक्त लक्ष्य प्राप्त गर्न ठूलो मात्रामा गैर-सरकारी वित्तको परिचालन हुनु पर्ने देखिन्छ, जसमा स्वाभाविक रूपमा प्रतिफलको अपेक्षा गरिन्छ । यद्यपि, ऊर्जामा ठूलो परिमाणको लगानी भित्र्याउन विद्युत सम्बन्धी व्यवसायमा आकर्षक प्रतिफलका साथ साथै सहज, स्पष्ट एवं व्यवसाय-मैत्री नियामकीय व्यवस्था आवश्यक देखिन्छ । यसका अतिरिक्त, अन्तर्राष्ट्रीय रूपमा प्रचलित उत्कृष्ट नियामकीय अभ्यासहरूको अध्ययन गरी नेपालमा अनुसरण गर्न सकिने अभ्यासहरू नेपालमा लागू गर्न सके अन्तर्राष्ट्रीय लगानीकर्ताहरूका लागि पनि नेपालको ऊर्जा क्षेत्र आकर्षक गन्तव्य हुन सक्छ जुन ऊर्जा सम्मिलनको विविधीकरण र लगानीको मामिलामा मात्र नभई प्रविधि(धको प्रयोगका दृष्टिकोणबाट पनि थप फलदायी हुन्छ ।

ई. विद्युत बजारको विकास एवं प्रवर्द्धन

हाल नेपालमा विद्युतको एकल खरिदकर्ताको रूपमा रहेको नेपाल विद्युत प्राधिकरणले विद्युत खरिद विक्री सम्झौता गरी आयोजनाहरूसँग तोकिएको मात्रामा विद्युत खरिद-बिक्री गर्न सक्दछ । यद्यपि, नेपालमा विद्युतको आन्तरिक मागको सीमितताले गर्दा नेपाल विद्युत प्राधिकरण एकलैले समग्र विद्युत खरिद गर्न सम्भव नहुने अवस्था छ । तसर्थ, एकल विद्युत खरिदकर्ता सहितको यो प्रणालीले हरेक अवस्थामा विविधीकरणलाई प्रोत्साहन नगर्न पनि सक्छ । यस्तो अवस्थामा विद्युत नियमन आयोगले विद्युतको बजार विकासका लागि सहजीकरण गर्न सक्ने कार्यहरू पनि छन् । हुन त, संसदमा विचाराधिन रहेको विद्युत विधेयक, २०८० ले कानुनी रूपमा मार्ग प्रसास्त नगर्दासम्म आयोगले पूर्ण रूपमा बजार विकाससम्बन्धी गतिविधि अघि सार्न सक्ने स्थिति छैन तर सीमित क्षेत्रमा विद्युत नियमन आयोग, २०७४ का प्रावधानहरू मातहतमा रहेर तत्काल सुरु गर्ने मिल्ने गतिविधिमा “प्रसारण प्रणालीमा खुल्ला पहुँचसम्बन्धी व्यवस्था” पनि एक हो । प्रसारण दस्तुरको निर्धारण ९त्बचषा दबकभम अकउभतष्टष्टब्ध उचयखष्टष्टल० पनि अर्को यस्तो नयाँ विधि हो जस मार्फत आयोगले विद्युत बजार विकासमा सधाउ पुन्याउन सक्दछ । विद्युत बजारको विकास हुँदै जाँदा निजी क्षेत्रका ऊर्जा उद्यमीहरूले पनि विभिन्न प्रविधि तथा स्रोतबाट विद्युत उत्पादन गरी बिक्री गर्ने अवसर प्राप्त गर्दछन् । विद्युत वितरकले दीर्घकालीन विद्युत खरिद बिक्री सम्झौता मार्फत विद्युत खरिद नगरे पनि आवश्यकता परेको

खण्डमा अल्पकालीन एवं मध्यकालीन रूपमा त्यस्ता स्रोतहरूबाट विद्युत खरिद गर्न सक्दछन् । तसर्थ, खुल्ला पहुँच एवं विद्युत प्रसारण दस्तुर निर्धारण पश्चात् निजी क्षेत्रले विद्युत विकासमा योगदान दिन सक्ने बहुआयामिक मार्गहरू प्रशस्त हुनेछन्, जसका कारण विद्युत प्रसारण र विद्युत खरिदका लागि विद्युत उत्पादनकर्ता राज्यमै निर्भर हुनु पर्ने अवस्थाको अन्त्य हुनेछ ।

वास्तवमा देशको ऊर्जा नीति, ऊर्जा सुरक्षा र ऊर्जा सम्मिश्रणको सम्बन्धमा नीति निर्माण गर्ने मूल भूमिका ऊर्जा, जलस्रोत तथा सिंचाइ मन्त्रालयको भएतापनि बढ्दो विद्युतीकरण एवं विद्युतको प्रयोग राष्ट्रको हितसँग प्रत्यक्ष जोडिएका कारण ऊर्जा सम्मिश्रणको विविधीकरणमा विद्युत नियमन आयोगको भूमिका सदैव अहम् हुन्छ । आयोगले विद्युत नियमन आयोग ऐन, २०७४ ले दिएको अधिकार प्रयोग गरी सक्रिय रूपमा कार्य गरे ऊर्जा विविधीकरण मार्फत ऊर्जा रूपान्तरणका साथ ऊर्जा सुरक्षामा सुधार गर्न सकिने कुरामा दुईमत नहोला ।

विद्युत नियमन आयोगका
अतिथि लेखक महानुभावहरु
वर्णनुऋमानुसार

नेपालमा विद्युत क्षेत्रको विकास र नियमन: ऐतिहासिक दृष्टिकोण र वर्तमान स्थिति

अनुप कुमार उपाध्याय १

नेपालले २०४८ सालदेखि खुला र उदार अर्थनीति अवलम्बन गरेपछि देशमा उपलब्ध प्रचुर जलस्रोतको उपयोग गर्दै राष्ट्रिय तथा अन्तर्राष्ट्रिय निजी लगानीकर्ताहरूको अग्रसरता बढाएर जलविद्युत उत्पादन गर्ने, ग्रामीण तथा सहरी क्षेत्रमा विद्युतीकरण गर्ने तथा औद्योगिकीकरणलाई प्रवर्द्धन गर्ने उद्देश्य अनुसार २०४९ सालदेखि जलविद्युत विकास नीति अवलम्बन गरेको छ । यस नीतिलाई कार्यान्वयन गर्नका सार्वजनिक निजी साझेदारी (Public Private Partnership-PPP) का मान्यता र सिद्धान्तमा आधारित रही Built, Own Operate, Transfer (BOOT) बिधिबाट जलविद्युतको बिकास निर्माण गर्ने विद्युतको बिकास निर्माण, संचालनका विभिन्न चरणहरू जस्तै, सर्वेक्षण, उत्पादन, प्रसारण र वितरणलाई नियमित गर्दै विद्युत शक्तिको विकास र सेवालाई स्तरीय तथा सुरक्षायुक्त बनाउने उद्देश्य राखी २०४९ सालमै विद्युत ऐन र २०५० मा विद्युत नियमावली अधिनियमित गरि निजी लगानी प्रवर्द्धनको लागि विशेष पहल गरिएको छ ।

यसै ऐनको दफा ३६ को प्रावधान अनुसार जलविद्युत विकासमा निजी क्षेत्रको लगानी प्रोत्साहन गर्ने तथा समग्र विकास कार्यको अनुगमन गर्नका लागि २०५० सालमा विद्युत विकास केन्द्र (हालको विद्युत विकास विभाग) स्थापना गरिएको हो । विद्युत विकास विभागलाई निजी क्षेत्रको लगानी प्रवर्द्धन गर्नुका साथै नियमनको भूमिका पनि दिइएको छ । यस विभागको कार्यक्षेत्र नर्वेको ऊर्जा मन्त्रालय अन्तर्गतको NVE (Norwegian Energy Regulatory Authority) जसले नर्वेका जल तथा ऊर्जा स्रोतको व्यवस्थापन गर्दछ) ले अवलम्बन गरेको मोडलमा आधारित छ ।

जलविद्युत विकास नीति र ऐनको प्रभाव:

यस विभागको स्थापना सँगसँगै खिम्ती जल विद्युत योजनामा निजी क्षेत्रको (नर्वेको) लगानी प्रवर्द्धनको थालनी भएको थियो । २०५० सालमा स्थापित यो विभागलाई विद्युत क्षेत्रमा निजी लगानी प्रवर्द्धनको जिम्मेवारी दिइयो र यसैबीच नेपालको विद्युत क्षेत्रको नियमनको लागि प्रभावकारी नियमन निकायको आवश्यकता पनि महसूस गर्न थाएँ लयो । विद्युत ऐन, २०४९ मा निजी क्षेत्रको सहभागिता सुनिश्चित गर्नका साथसाथै नेपाल सरकार स्वयं पनि जलविद्युत क्षेत्रमा सक्रिय रूपमा संलग्न हुन आवश्यक भएकोले निजी क्षेत्र र सार्वजनिक क्षेत्रलाई समान रूपमा परिचालन गर्न एउटा स्वतन्त्र नियमक निकायको आवश्यकता महसुस गरी विद्युत ऐन, २०४९ को दफा १७ मा त्यसको परिकल्पना गरिएको छ ।

^१ लेखक संघीय नेपाल सरकारको पूर्वसचिव हुनुहुन्छ । - सम्पादक

विद्युत नियमन आयोगको स्थापना:

२०४९ को ऐनमा लगानीको वातावरणलाई व्यवस्थित बनाउन र विद्युत क्षेत्रमा प्रतिस्पर्धा बढाउनको लागि विद्युत नियमन आयोगको आवश्यकता महसूस गरिएको थियो । ऐनको दफा १७ मा सार्वजनिक र निजी क्षेत्रको समान सहभ(गिता सुनिश्चित गर्न नियामक निकायको प्रावधान गरिएको थियो । यसको परिणाम स्वरूप प्रारम्भिक चरणमा विद्युत महसुल निर्धारण आयोगको स्थापना गरी यसको सचिवालयको रूपमा विद्युत विकास विभागलाई कार्य सञ्चालन गर्न तोकिएको थियो । यद्यपि नियमावलीको आधारमा यस आयोगलाई प्रभावकारी नियामक आयोगको रूपमा सञ्चालन गर्नको लागि प्रावधान गरिएको थियो, तर उक्त आयोगले प्रारम्भिक अध्यास मात्र गर्यो, जसमा उपभोक्ताको विद्युत महसुल निर्धारणको काममा मात्र सीमित राखियो । फलस्वरूप विद्युत उत्पादन, प्रसारण, वितरण र व्यापारलाई सरल, व्यवस्थित र पारदर्शी तरिकाले सञ्चालन गर्न विद्युत नियमन आयोग ऐन, २०७४ अधिनियमित गरि २०७५ मा विद्युत नियमन आयोग गठन गरियो । आयोगले विद्युतको माग र आपूर्तिमा सन्तुलन कायम राख्ने, विद्युत महसुललाई नियमन गर्ने, उपभोक्ताको हकहितको संरक्षण गर्ने, विद्युत बजारलाई प्रतिस्पर्धात्मक बनाउने र विद्युत सेवालाई भरपर्दो, सर्वसुलभ, गुणस्तरयुक्त र सुरक्षित बनाउने उद्देश्यले काम गर्नुपर्नेछ । विद्युत नियमन आयोगको स्थापना भई कार्य थालनी भएको सातौं वर्षमा पनि पुगिसकेको छ र यसले नेपालको विद्युत क्षेत्रको समग्र नियमनमा सकारात्मक परिवर्तन ल्याउन आवश्यक छ ।

विद्युत नियमन आयोगका लागि चुनौती:

सरोकारवालाहरूको चासो र स्वार्थ सन्तुलन : ऊर्जा क्षेत्रमा विभिन्न सरोकारवालाहरूका आ-आफ्ना चासो, प्राथमिकता र स्वार्थहरू छन्, जसलाई समेटेर सन्तुलन कायम गर्नु विद्युत नियमन आयोगका लागि अत्यन्तै चुनौतीपूर्ण कार्य हो । जे भए पनि दिगो, न्यायोचित र समावेशी ऊर्जा प्रणाली निर्माणका लागि यो सन्तुलन अपरिहार्य छ ।

सरकारको भूमिका : सरकारको प्रमुख दायित्व जनहितको संरक्षण गर्नु हो । यस अन्तर्गत न्यायोचित र उचित दर सुनिश्चित गर्नु, सुरक्षित तथा भरपर्दो सेवा उपलब्ध गराउनु, वातावरणीय न्याय कायम गर्नु, सरोकारवालाहरूको स्वार्थबीच सन्तुलन ल्याउनु, आर्थिक विकासलाई प्रवर्द्धन गर्नु र रेगुलेटरी स्थिरता एवं विश्वास निर्माण गर्नु पर्दछ । यदि विद्युत सेवामा प्रतिफल अत्यन्तै कम भयो भने उपभोक्ताले सस्तो सेवा त पाउँछन्, तर सेवा प्रदायकहरूले पूँजी जुटाउन गाहो हुन्छ, जसले सेवा गुणस्तरमा असर पार्न सक्छ । त्यसैले दर निर्धारणमा सन्तुलन कायम गर्नु अत्यावश्यक हुन्छ ।

सेवाप्रदायक कम्पनीहरूको दृष्टिकोण : कम्पनीहरूका लागि रेगुलेटरी सुनिश्चितता, उचित लाभ, नीतिगत लचकता, सार्वजनिक छवि र विश्वास कायम राख्ने क्षमता, कार्यबलसँगको सुसम्बन्ध तथा प्रतिस्पर्धा सामना गर्ने योग्यता अत्यन्तै महत्त्वपूर्ण हुन्छन् । यी पक्षहरू नीतिगत र नियामक ढाँचासँग सिधै सम्बन्धित हुन्छन् ।

उपभोक्ताहरूको अपेक्षा :

उपभोक्ताहरू ऊर्जा सेवा प्रदायकहरूबाट विभिन्न किसिमका अपेक्षाहरू राख्छन्, जसमा प्रमुख रूपमा गुणस्तरीय सेवा सस्तो मूल्यमा प्राप्त गर्ने चाहना पर्दछ । उनीहरूको प्राथमिक आवश्यकता भनेको सेवा निरन्तर, भरपर्दो र प्राविधिक रूपले सक्षम हुनु हो, जसले उनीहरूको दैनन्दिन जीवन तथा व्यवसायिक क्रियाकलापमा अवरोध नआओस् । त्यस्तै उपभोक्ताहरू सेवा सहज, सरल र सहज पहुँचयोग्य होस् भन्ने चाहन्छन्, अर्थात् बिल भुक्तानी प्रणाली, ग्राहक सेवा,

मर्मत तथा अनुरक्षण सेवा लगायतका पक्षहरू सरल र प्रभावकारी होउन् भन्ने अपेक्षा राखिन्छ । साथै विद्युत दरहरूमा अनावश्यक उतारचढाव नहोस् र मूल्य स्थिर रहन सकोस् भन्ने उनीहरूको ठूलो चासो हुन्छ, किनभने अस्थिर दरले आर्थिक योजना बनाउने कार्यमा असहजता ल्याउन सक्छ । अन्ततः उपभोक्ताहरूको लागि सेवाप्रदायकको विकल्प उपलब्ध हुनु अत्यन्त महत्वपूर्ण मानिन्छ, जसले प्रतिस्पर्धात्मक वातावरण सिर्जना गरी सेवा गुणस्तरमा सुधार ल्याउन सहयोग पुऱ्याउँछ । विकल्प नभएको अवस्थामा उपभोक्ता बाध्यतामा पर्न सक्छन्, जसले उनीहरूको सन्तुष्टिमा प्रत्यक्ष असर पुऱ्याउँछ । त्यसैले ऊर्जा सेवा क्षेत्रले उपभोक्ताहरूका यस्ता अपेक्षाहरूलाई केन्द्रमा राखी आफ्नो नीति, सेवा ढाँचा, र व्यावसायिक रणनीति निर्माण गर्नु आवश्यक छ ।

वातावरणीय समूहहरूको चासो :

वातावरणीय सरोकार बोकेका समूहहरू जसमा गैरसरकारी संस्था (NGOs), स्थानीय समुदायका प्रतिनिधि, अनुसन्ध(नकर्ता, तथा वातावरण संरक्षणमा सक्रिय अभियानकर्ताहरू संलग्न हुन्छन् र उनीहरूको ध्यान ऊर्जा क्षेत्रसँग सम्बन्धित परियोजनाहरूमा सार्वजनिक वस्तुहरूको संरक्षणमा केन्द्रित हुन्छ । यी समूहहरू ऊर्जा उत्पादन तथा वितरणका क्रममा हुने वातावरणीय प्रभावप्रति संवेदनशील हुन्छन् र दीगो तथा न्यायसंगत विकासको पैरवी गर्छन् । विशेषतः स्थान चयनको सन्दर्भमा उनीहरूको प्रमुख चासो रहन्छ, किनभने जलविद्युत वा सौर्य परियोजना जस्ता पूर्वाधारले प्राकृतिक वनस्पति, जीवजन्तु, पानीको स्रोत, तथा स्थानीय जनजीवनमा प्रत्यक्ष असर पार्न सक्छ । परियोजनाको स्थान चयन गर्दा जैविक विविधता, पारिस्थितिकीय तन्त्रको सन्तुलन तथा सांस्कृतिक सम्पदाहरूको संरक्षण अनिवार्य मानिन्छ ।

यसैगरी वातावरणीय समूहहरूले ऊर्जा दक्षता प्रवर्द्धनमा पनि विशेष ध्यान दिन्छन् । उनीहरूको विचारमा, केवल उत्प(ादन वृद्धि गरेर ऊर्जा माग पूरा गर्नु दीगो विकल्प होइन; बरु ऊर्जा खपत घटाउने, प्रविधिमा सुधार ल्याउने र नोकसानी न्यूनीकरण गर्ने उपायहरू प्रभावकारी हुन्छन् । ऊर्जा दक्षता प्रवर्द्धनले स्रोत संरक्षण मात्र होइन, वातावरणीय दुष्प्रभाव कम गर्न पनि मद्दत पुऱ्याउँछ ।

त्यस्तै यी समूहहरूले निर्णय प्रक्रियाको पारदर्शिता र समावेशितामा जोड दिन्छन् । परियोजनाहरूको योजना, स्वीकृति, र कार्यान्वयनमा स्थानीय समुदाय, महिला, दर्लित तथा अन्य वज्ज्यत वर्गको प्रतिनिधित्व र राय संलग्न हुनुपर्छ भन्ने उनीहरूको धारणा हुन्छ । पारदर्शी निर्णय प्रक्रियाले परियोजनाको दीर्घकालीन स्वीकृति र सामाजिक स्वामित्व सुनिश(चत गर्छ, जसले गर्दा दिगो ऊर्जा विकास सहज र स्वीकार्य बन्छ । तसर्थ वातावरणीय समूहहरूको चासोलाई बेवास्ता नगरी, नीति निर्माण तथा परियोजना कार्यान्वयनमा उनीहरूको सन्देश र सुभावलाई गम्भीरतापूर्वक समावेश गर्नु आवश्यक हुन्छ ।

प्रतिस्पर्धीहरूको चासो : ऊर्जा क्षेत्रमा प्रतिस्पर्धा गरिरहेका व्यवसायीहरूको लागि निष्क्र प्रतिस्पर्धाको सुनिश्चित(ता अत्यन्तै संवेदनशील र महत्वपूर्ण विषय हो । यस्तो निष्क्र वातावरणले सबै व्यवसायीहरूलाई समान अवसर प्रदान गर्छ, जसले नवप्रवर्तन र सेवा सुधारलाई प्रवर्द्धन गर्दछ । प्रतिस्पर्धी व्यवसायीहरूले बजारमा कुनै एक पक्षद्वारा शक्ति वा प्रभावको दुरुपयोग नगरियोस् भन्ने गहिरो चासो राख्छन्, किनभने यस्तो अवस्थामा साना वा नयाँ प्रवेश गर्ने व्यवसायहरू विस्थापित हुन सक्छन् । बजार शक्तिको दुरुपयोगले मूल्य नियन्त्रण, सेवाको गुणस्तर र उपभोक्ताको छनोटमा असर पार्न सक्छ, जसले समग्र प्रणालीलाई नै कमजोर बनाउँछ । यस्तै ऊर्जा बजारमा सूचना पारदर्शिता पनि अत्यावश्यक हुन्छ । मूल्य, आपूर्ति, माग, नीति र प्रविधिसम्बन्धी सूचना समयमै उपलब्ध भएमा प्रतिस्पर्धी व्यवसायीह(

रुको लागि निर्णय लिन सक्ने स्थिति बन्छ । साथै सरकारी निकायको भूमिका न्यूनतम तर प्रभावकारी रहनुपर्छ किनकि अत्यधिक हस्तक्षेपले बजारलाई विकृत बनाउने खतरा हुन्छ, तर पूर्ण स्वतन्त्रताले अनियन्त्रणको अवस्थालाई पनि जन्म दिन सक्छ । त्यसैले नीति निर्माणमा सूक्ष्म सन्तुलन आवश्यक हुन्छ ।

स्वार्थको सन्तुलन : ऊर्जा क्षेत्र स्वार्थहरूको जटिल धेरो हो, जहाँ विविध स्वार्थ समूहहरू आपसमा अन्तर्रक्तिया गर्छन् । एकातिर उपभोक्ताहरू गुणस्तरीय सेवा सस्तो मूल्यमा चाहन्छन् भने अर्कातिर लगानीकर्ताहरू आफ्नो पूँजीमा राम्रो प्रतिफलको अपेक्षा गर्छन् । यस्तै सरकारको आर्थिक विकासको लक्ष्य र सामाजिक समावेशीताको उद्देश्यबीच पनि सन्तुलन आवश्यक हुन्छ । उदाहरणका लागि दुर्गम बस्तीमा बिजुली पुऱ्याउने काम लाभदायक नहुन सक्छ, तर साम(आजिक दृष्टिले अत्यन्त जरूरी हुन्छ । त्यसैगरी, श्रम र व्यवस्थापनबीचको सम्बन्धमा पारदर्शिता, निष्पक्षता र आपसी सम्मान हुन आवश्यक छ, ताकि उत्पादनशीलता बढोस् र औद्योगिक सम्बन्ध सुदृढ होस् । अर्को महत्वपूर्ण पक्ष हो-निजी क्षेत्रको प्रतिस्पर्धात्मक भावना र सरकारको नियामक भूमिकाबीच सन्तुलन । अत्यधिक प्रतिस्पर्धाले सेवाको गुणस्तरमा असर पार्न सक्छ भने अत्यधिक नियमनले नवप्रवर्तन रोक्न सक्छ । त्यसैले ऊर्जा क्षेत्रको दिगो विकासको लागि यी विविध स्वार्थहरूबीच सन्तुलन कायम राख्ने नीति, संरचना, र संवाद आवश्यक छ, जसले सबै पक्षको हित(लाई सम्बोधन गर्न सकोस् ।

दर संरचना र निर्धारण : विद्युत महशुल दरको संरचना र निर्धारण ऊर्जा क्षेत्रको दिगो सञ्चालन तथा उपभोक्ताको न्य(यपूर्ण सेवा पहुँचका लागि अत्यन्त संवेदनशील विषय हो । दर निर्धारणको आधार मुख्यतः उत्पादन, प्रसारण, वितरण तथा प्रशासनिक लागतमा आधारित हुनुपर्छ, जसले सेवा प्रदायक संस्थालाई आर्थिकरूपमा सक्षम बनाउने सुनिश्चितता दिन्छ । यद्यपि केवल लागतमा आधारित दरले सबै प्रकारका उपभोक्ताको हित नसमेट्ने भएकाले विभिन्न वर्ग जस्तै-घरेलु, व्यावसायिक, औद्योगिक, कृषि आदि) का लागि उचित र सन्तुलित दर कायम गर्न आवश्यक हुन्छ । साथै, समय (पिक आवर र अफ-पिक), सिजन (वर्षा र हिँडँ) र भोल्टेज (LT/HT) का आधारमा पनि दरमा फरक पार्न सकिन्छ, जसले प्रणालीको प्रभावकारिता बढाउँछ र उपभोक्तालाई लचिलो विकल्प दिन्छ । समयानुकूल महसुल दरमा सुधार गर्दै लाने कार्यले प्रविधिको विकास, बजार संरचनामा आएको परिवर्तन र आर्थिक परिस्थितिको आधारमा सेवाको समायोजन गर्न मद्दत पुऱ्याउँछ ।

माग र आपूर्ति व्यवस्थापन : ऊर्जा क्षेत्रमा सन्तुलित माग र आपूर्ति कायम गर्नु रणनीतिक तथा प्राविधिक चुनौती हो । नेपाल जस्तो देशमा, जहाँ जलविद्युतमा अत्यधिक निर्भरता छ, सिजनअनुसार आपूर्तिमा ठूलो भिन्नता देखिन्छ, जसले माग व्यवस्थापनलाई अभ्य जटिल बनाउँछ । यस्तो परिस्थितिमा Demand Side Management (DSM) को भूमिका भै महत्वपूर्ण हुन्छ जसले उपभोक्तालाई ऊर्जा बचतका उपायहरू, दक्ष उपकरणहरूको प्रयोग तथा समयानुसार प्रयोग परिवर्तन गर्ने प्रोत्साहन दिन्छ । तर माग र आपूर्ति व्यवस्थापन गर्दा आउने लागतको वहन कसले गर्ने भने विषयमा स्पष्ट नीति र सार्वजनिक संवाद आवश्यक हुन्छ । यो लागत उपभोक्ताले, सरकारले वा सेवा प्रदायकले कर्ति हिस्सा व्यहोर्ने भने निर्णयले नीति र वित्तीय संरचनामा गम्भीर प्रभाव पार्न सक्छ ।

निम्न आय भएका उपभोक्ताहरूको आवश्यकता : निम्न आय वर्गका उपभोक्ताहरूको ऊर्जा पहुँचलाई एक मौलिक हक्को रूपमा लिने नीतिगत दृष्टिकोण अबको आवश्यकता हो । तिनीहरूलाई सुलभ मूल्यमा गुणस्तरीय ऊर्जा सेवा उपलब्ध गराउनका लागि लक्षित र पारदर्शी सब्सिडी व्यवस्था अत्यावश्यक हुन्छ । यसका साथै “Energy Burden”

अर्थात् कुल आम्दानीको कति प्रतिशत ऊर्जा खर्चमा जान्छ भन्ने तथ्याङ्कीय विश्लेषणले वास्तविक समस्याको पहिचान गर्न सहयोग पुऱ्याउँछ । यस्तो विश्लेषणको आधारमा प्रभावकारी सहायता कार्यक्रम लागू गर्न सकिन्छ, जसले ऊर्जा न्याय (भलभचनथ वगकतज्जभ) को परिकल्पनालाई व्यवहारमा उतार्छ ।

दर संकेत र सेवा गुणस्तर सन्तुलन : विद्युत दर केवल आर्थिक पक्ष होइन, यसले उपभोक्ताको प्रयोग व्यवहारमा पनि ठोस प्रभाव पार्न सक्छ । यदि दर संरचना उपयुक्त संकेत (price signals) दिन सक्षम हुन्छ भने, उपभोक्ता आफ्नो प्रयोग समय, मात्रा, वा प्रविधिमा परिवर्तन गर्न प्रेरित हुन सक्छन् । यद्यपि यसैबीच सेवा गुणस्तरको सुनिश्चितता पनि अत्यन्त अनिवार्य हुन्छ । दर बढाउँदा गुणस्तर घट्न गयो भने त्यसले उपभोक्ताको विश्वासमा चोट पुऱ्याउँछ । त्यसैले दर र सेवा गुणस्तरबीच समुचित सन्तुलन राख्नु आवश्यक छ । साथै उपभोक्तालाई ऊर्जा खपत बारे स्पष्ट जानकारी दिने, स्मार्ट मीटरिङ प्रणाली लागू गर्ने र उपयोगी प्रोत्साहन कार्यक्रम ल्याउने कार्यहरूले उनीहरूको निर्णय क्षमता वृद्धि गर्न मद्दत गर्दछ ।

नीतिगत उद्देश्य र नीति निर्माण : ऊर्जा क्षेत्रको नीतिगत निर्माणले केवल प्रविधि वा बजार व्यवस्थापन मात्र होइन, समग्र आर्थिक, सामाजिक तथा औद्योगिक विकासलाई समेत लक्षित गर्नुपर्छ । ऊर्जा नीति बनाउँदा आर्थिक वृद्धिको मार्गिच्चर, उद्योगहरूलाई ऊर्जा आपूर्तिको सुनिश्चितता, श्रम व्यवस्थापनमा उत्पन्न विवादहरूको स्वतन्त्र र निष्पक्ष समाधान तथा प्रतिस्पर्धा र नियमनबीच स्पष्ट सीमांकन आवश्यक हुन्छ । नीतिगत समन्वय नभएमा नीति द्वैधता, कार्यान्वयन जटिलता र संस्थागत असहयोग उत्पन्न हुन सक्छ । त्यसैले, नीति निर्माणको प्रत्येक चरणमा स्वार्थ सन्तुलन, पारदर्शिता र दीर्घकालीन दृष्टिकोण राख्नु अपरिहार्य हुन्छ ।

निष्कर्षः

नेपालमा विद्युत क्षेत्रको विकास र नियमनको इतिहासले सरकारी र निजी क्षेत्रको साझेदारीको माध्यमबाट देशको जलविद्युत सम्भावनालाई पूर्ण उपयोग गर्ने र विद्युत क्षेत्रको व्यवस्थित विकास गर्न सुभवुभको प्रयोग र कडा मेहनत गरिएको देखाएको छ । सबै चरणहरूमा सुधार र पारदर्शिता ल्याउनको लागि विद्युत ऐन, २०४९ को अधिनियमिनीकरण र विद्युत नियमन आयोगको स्थापना प्रभावकारी बनेका छन् । परिणामस्वरूप नेपालमा जलविद्युतको विकास मात्र होइन, विद्युत क्षेत्रमा समग्र सुधार र प्रतिस्पर्धात्मक वातावरण पनि सम्भव भएको छ ।

विद्युत नियमन आयोगका लागि ऊर्जा क्षेत्रमा सरोकारवालाहरूका विविध चासोलाई बुझेर समुचित सन्तुलन कायम गर्नु चुनौतीपूर्ण भए तापनि यो अत्यन्त आवश्यक छ । प्रभावकारी नीति निर्माण, पारदर्शी प्रक्रिया, तथ्यमा आधारित निर्णय र व्यापक सार्वजनिक सहभागिताबाट मात्र न्यायोचित, दिगो र समावेशी ऊर्जा क्षेत्रको निर्माण सम्भव छ ।

विद्युत प्रणालीको नियमन: आवश्यकता, अवस्था र अपेक्षा

अर्जुन कुमार गौतम^१

सारांश

नियामक निकायहरु स्वतन्त्र, स्वायत्त, सुदृढ, सक्षम र अधिकार सम्पन्न हुनु पर्छ भने सर्वस्वीकार्य मान्यता रहि आएको छ। सोहि मान्यताका आधारमा त्यस्ता निकायहरुको संस्थागत स्वरूप र कार्य क्षेत्र निर्धारण गर्ने प्रचलन छ। यस्ता निकायहरु राज्यको विशेष कानून (Special Law) द्वारा स्थापना गरिएका हुन्छन र कुनै खास क्षेत्रक गतिविधिलाई समेट्छन। नियमाकीय प्रवन्ध सुदृढ संस्थागत सुशासनको प्रमुख साधन हो। यसले प्रणाली प्रति सार्वजनिक विश्वस(Public Credibility) अभिबृद्धि गर्छ। जोखिम न्यूनिकरण गर्दै लगानीको सुरक्षा कायम गर्न सहयोग गर्छ। सर्वसाधारण जनता तथा आम उपभोक्ताको हितको रक्षा गर्छ। कमजोर नियमन वा नियमन प्रणालीको अभावले संस्थागत सुशासनलाई निष्टेज र निश्चिरभावी बनाउछ। अनुशासनहिनता, अपारदर्शिता र गलत प्रबृत्तिले प्रश्न आउछ। लगानीकर्ता तथा उपभोक्ताले असूरक्षा, जोखिम र अन्योलताको महसूस गर्छन। नीतिगत तथा व्यवहारिक विचलन आँउछ। फलस्वरूप ढिलो चाडो प्रणालीमा गम्भीर वित्तीय तथा व्यवस्थापकीय संकट पैदा हुन्छ। यस सन्दर्भमा विद्युत उत्पादन, वितरण, प्रशारण तथा व्यापारसँग सम्बन्धित आयोजनाहरुको अनुमतिपत्र प्रदान गर्ने, आयोजनाका संरचन(हरुको मापदण्ड र गुणस्तर निर्धारण गर्ने, आयोजनाहरुको सुपरिवेक्षण तथा निरिक्षण गर्ने, निर्देशन दिने लगायतका सबै प्रकारका नियामकीय भूमिका समेत निर्वाह गर्ने गरी नीतिगत तथा संरचनागत रूपमा सक्षम नियमकको रूपमा विद्युत नियमन आयोगको विकास गर्ने तर्फ ध्यान दिन आवश्यक छ।

१. नियामक निकायको परिचय:

बिभिन्न मानवीय, सामाजिक तथा आर्थिक कृयाकलापसँग सम्बन्धित गतिविधिहरुको स्वतन्त्र र स्वायत्त तरिकाबाट निगरानी गर्न स्थापना गरिएको स्वतन्त्र निकायलाई नियामक निकाय (Regulatory Body) को रूपमा चिनिन्छ। यस्ता निकायहरु राज्यको विशेष कानून (Special Law) द्वारा स्थापना गरिएका हुन्छन र कुनै खास क्षेत्रलाई समेट्छन। कानूनले नै त्यस्ता निकायको कार्य क्षेत्र, अधिकार तथा जिम्मेवारी निर्धारण गरिएको हुन्छ। नियामक निकायहरु स्वतन्त्र, स्वायत्त, सुदृढ, सक्षम र अधिकार सम्पन्न हुनु पर्छ भने सर्वस्वीकार्य मान्यता रहि आएको छ। सोहि मान्यताका आधारमा त्यस्ता निकायहरुको संस्थागत स्वरूप, कार्य क्षेत्र, अधिकार तथा जिम्मेवारी निर्धारण गर्ने प्रचलन छ।

परम्परागत रूपमा सरकार वा सरकारी संयन्त्रहरुले नै नियमकको भूमिका समेत निर्वाह गर्ने प्रचलन थियो। कानूनका आधारमा भन्दा पनि कार्यकारी निर्णयका आधारमा नियमन हुन्थ्यो। त्यस्तो नियमन प्रणालीमा व्यावसायिक विज्ञता, पेशागत स्वायत्ता तथा संस्थागत क्षमताको अभाव देखिन्थ्यो। त्यस्तो नियमनले अपेक्षित नतिजा दिन नसक्ने

¹ पूर्व प्रमुख कार्यकारी अधिकृत, हाइड्रोइलेक्ट्रीसिटी इन्डेप्रेन्ट एण्ड डेमलपमेन्ट कम्पनी

अनुभव हुदै गयो र स्वायत्त नियामकहरुको जन्म प्रारम्भ भयो ।

उपरोक्त पृष्ठभूमिमा, पछिल्लो समय कुनै विशेष प्रकृतिको मानवीय, सामाजिक तथा आर्थिक कृयाकलापको खास क्षेत्रलाई समेट्ने गरी क्षेत्रगत रूपमा (Cluster Wise) बिशिष्टकृत कानून अन्तर्गत अलग अलग प्रकारका नियामक निकायको स्थापना गर्ने प्रचलन बढौदै गएको छ । नेपाल राष्ट्र बैंक, धितोपत्र बोर्ड, विमा प्राधिकरण, दुरसञ्चार प्रार्थी (धकरण, नागरिक उड्यन प्राधिकरण, राष्ट्रिय सहकारी प्राधिकरण, नेपाल मेडिकल काउन्सिल, नेपाल चार्टर्ड एकाउण्टेण्ट संस्था, विद्युत नियमन आयोग, आदि हाल नेपालमा कृयाशिल प्रमुख नियामक निकाय हुन ।

कार्यक्षेत्रसँग सम्बन्धित कृयाकलाप सञ्चालनका लागि दर्ता गर्ने तथा अनुमती पत्र प्रदान गर्ने, अनुमती पत्रका शर्तहरु तोक्ने तथा सो को पालना भए नभएको सुपरीवेक्षण गर्ने, कार्यसञ्चालनसँग सम्बन्धित मापदण्ड तथा निर्देशिका जारी गर्ने तथा सो को अनुपालना गराउने, नियमित कृयालापहरुको अनुगमन तथा सुपरीवेक्षण गर्ने, नैतिक आचरण र पेशागत अनुशासन कायम गर्ने, पारदर्शिता, जवाफदेहिता तथा संस्थागत सुशासनको प्रवर्धन गर्ने, अनुशासन सम्बन्धी कारवाही गर्ने, दण्ड जरिवाना गर्ने तथा निर्देशन जारी गर्ने, स्वच्छ एवम् प्रतिष्ठाधी व्यावसायीक वातावरणको विकास गर्ने तथा सर्वसाधारण जनता एवम् उपभोक्ताको हितको रक्षा गर्ने आदि नियामक नियकायका प्रमुख जिम्मेवारी हुन ।

२. नियमनको सान्दर्भिकता:

नियमाकीय प्रवन्ध सुदृढ संस्थागत सुशासनको प्रमुख साधन हो । यसले प्रणाली प्रति सार्वजनिक विश्वासनियता (Public Credibility) अभिबृद्धि गर्छ । प्रणालीलाई मजबुदू र विश्वसनिय बनाउछ । जोखिम न्यूनिकरण गर्दै लगानीको सुरक्षा कायम गर्न सहयोग गर्छ । सर्वसाधारण जनता तथा उपभोक्ताको हितको रक्षा गर्छ । कमजोर नियमन वा नियमन प्रणालीको अभावले संस्थागत सुशासनलाई निष्टेज र निश्चिरावी बनाउछ । अनुशासनहिनता र अपारदर्शिताले प्रश्न्य पाउछ । असूरक्षा, जोखिम र अन्योलता बढाउछ । नीतिगत तथा व्यवहारिक विचलन आँउछ । फलस्वरूप ढिलो चाडो प्रणालीमा गम्भीर वित्तीय तथा व्यवस्थापकीय संकट पैदा हुन्छ । विगतका अनुभवहरुले यो तथ्यलाई पुष्टि गरिसकेको छ । पचासको दशकमा सरकारी बैंकहरुमा देखिएको संकट भनौं वा हाल उत्पन्न सहकारी क्षेत्रमा सृजना भएको समस्या कमजोर नियमनको परिणाम हो भन्ने यथार्थमा द्विबिधा छैन ।

अर्कातर्फ, राज्यको अधिक नियन्त्रणले सम्भावना र अवसरलाई खुम्च्याउँछ । उद्यमसिलता र व्यावसायीकतालाई निरुत्साहित गर्छ । कर्मचारीतन्त्रलाई कमजोर र प्रशासनिक प्रक्रियालाई भन्जिटिलो बनाउछ । आयोजना व्यवस्थाप (नलाई जटिल बनाउछ । लगानीको वातावरण विग्रन्छ । सरकार र निजी क्षेत्र बीच आपसी बिश्वासको संकट पैदा हुन्छ । अनन्त, अर्थतन्त्रका संरचनाहरु कमजोर र शिथिल बन्न पुग्छन ।

विगत चालिस वर्ष देखि मुलुकले निजी क्षेत्र मैत्रि उदार अर्थनीति अवलम्बन गरेको छ । मुलुकको आवश्यता पनि यहि नै हो । यस्तो नीतिमा आर्थिक कृयाकलाप सञ्चालनमा निजी क्षेत्रको सार्थक उपस्थिति र प्रभावकारी भूमिकाको अपेक्षा गर्दै सरकारले अभिभावकीय जिम्मेवारी निर्वाह गर्ने मान्यता लिईएको हुन्छ । यसको परिणामस्वरूप विगत केहि वर्ष यता आर्थिक कृयाकलापमा निजी क्षेत्रको उपस्थिति र भूमिका एवम् निजी क्षेत्र प्रतिको अपेक्षा र निर्भरता क्रमशः बढ्दू हुदै गएको छ । यस्तो अवस्थामा निजी क्षेत्रले नितिगत सहजिकरण, प्रशसनिक र प्रकृयागत सरतलता एवम् सरकारको असल अभिभावकत्वको भूमिका अपेक्षा अपेक्षा गरेको हुन्छ । साथै, आर्थिक कृयाकलापमा निजी क्षेत्रको भूमिका बढौदै जाँदा त्यसलाई अनुशासित, पारदर्शि, प्रतिष्ठार्थी एवम् विधिसम्बत तवरले सहि बाटोमा हिडाउन

तथा सर्वसाधारणको हितको रक्षा गर्न सरकारको नियमनकारी भूमिका आवश्यक पर्छ । तसर्थ, अहिले मुलुक भित्रका विभिन्न प्रणालीहरूमा राज्यको कठोर नियन्त्रण हैन, सुदृढ, सक्षम र स्वतन्त्र नियामकीय प्रवन्धको आवश्यकता छ ।

३. विद्युत प्रणालीमा नियमनको आवश्यकता:

पचासको दशकसम्म नेपालको विद्युत प्रणालीको आकार अत्यन्त सानो थियो । समग्र विद्युत प्रणालीको सञ्चालन तथा ब्यवस्थापनमा सरकारको मात्रै सहभागिता थियो । विद्युतको उत्पादन, प्रशारण, वितरण तथा व्यापारको समग्र क्षेत्रमा नेपाल सरकारको पूर्ण स्वामित्वमा स्थापना गरिएको नेपाल विद्युत प्राधिकरणको संलग्नता र भूमिका रहेको थियो । सरकारको आन्तरिक स्रोतका अलावा बैदेशिक ऋण तथा अनुदानका माध्यमबाट आयोजना निर्माणका लागि वित्तीय प्रवन्ध गरिन्थ्यो । विद्युतलाई व्यापारिक वस्तु (Commercial Goods) भन्दा सामाजिक वस्तु (Social Goods) को रूपमा बुझ्ने र व्यवहार गर्ने गरिन्थ्यो । विद्युतको उत्पादन, प्रशारण, वितरण तथा व्यापारको समग्र क्षेत्रमा सरकारको मात्र सहभागिता भएका कारण विद्युतको खरिद बिक्रि दर निर्धारण गर्नु पर्ने आवश्यकता थिएन । उपभोक्ताले उपयोग गरेवापतको विद्युतको महसूल दर सामाजिक वस्तु (Social Goods) को रूपमा व्यवहार गरी सकरकाले नै निर्धारण गर्दथ्यो । त्यसमा व्यावसायीक लाभ वा हानिको विषय सान्दर्भिक हुदैनथ्यो । यस्तो अवस्थामा विद्युत प्रणालीको नियमन गर्न अलगै नियमनकारी निकायको आवश्यकता र सान्दर्भिकता थिएन ।

विद्युत ऐन, २०४९ र विद्युत नियमावली, २०५० लागू भए पश्चात विद्युत उत्पादनसँग सम्बन्धित आयोजनाहरूको विकास तथा लगानीमा निजी क्षेत्रको उपस्थिति र भूमिका उल्लेखनीय रूपमा बृद्धि भएको छ । हाल विद्युतको कूल जडित क्षमता ३५१२ मेगावाट मध्ये निजी क्षेत्रबाट उत्पादित विद्युतको अंश २१४९ मेगावाट रहेको छ । यस अर्थमा नेपालको विद्युत प्रणालीमा निजी क्षेत्रको योगदान ६१ प्रतिशत भन्दा बढी छ । यो अनुपात भविश्यमा अझै बढ्दै जाने निश्चित छ ।

विद्युतको उत्पादन, प्रशारण तथा व्यापारको कार्य गर्ने गरी विशिष्टिकृत सार्वजनिक निकायको रूपमा ऋमशः विद्युत उत्पादन कम्पनी, राष्ट्रिय प्रशारण ग्रिड कम्पनी र नेपाल विद्युत व्यापार कम्पनीको स्थापना भई सञ्चालनको क्रममा रहेका छन । हाल प्रतिनिधिसभामा विचाराधिन प्रस्तावित विद्युत विधेयकले विद्युत प्रशारण तथा व्यापारको कार्यमा समेत निजी क्षेत्रलाई खुला गर्ने तथा आयोजनहरूको अनुमतीपत्र प्रदान गर्ने कार्यलाई थप प्रतिष्ठिर्धि र पारदर्शि बनाउने व्यवस्था गरेको छ । विद्युतको उत्पादन तथा अन्तर्राष्ट्रीय प्रशारण प्रणालीका क्षेत्रमा बैदेशिक लगानी बढ्दै गएको छ । विद्युतको अन्तर्राष्ट्रीय व्यपारमा बृद्धि हुदै गएको छ ।

भविश्यमा विद्युतको प्रशारण तथा व्यापारका क्षेत्रमा नेपाल विद्युत प्राधिकरणको हालको एकाधिकार तोडिने, यस क्षेत्रमा प्रतिष्ठिर्धा हुने र उपभोक्ताले छनौटको अवसर पाउने अवस्था छ । साथै, उच्च भोल्टेजका उपभोक्ताले विद्युत उत(पादक वा विद्युत व्यापारको अनुमतिप्राप्त संस्थाहरूबाट सिधै विद्युत खरिद गर्न सक्ने प्रणालीको विकास हुने सम्भावना छ । सञ्चालनमा आएका जलविद्युत आयोजनाहरूको Renewal Energy Certificate (REC) को व्यापारको अवसर प्राप्त हुने सम्भावना पनि छ । विद्युत खपतको बृद्धिका लागि उपभोक्तालाई प्रोत्साहित गर्न ग्राहकको प्रकृति र विद्युत खपतको समय अनुसार फरक फरक महसूल दर निर्धारण गर्नु पर्ने अवस्था छ । उल्लिखित सवालहरूलाई व्यवस्थित गर्ने विषय स्वभाविक रूपमा नियामकीय कार्य क्षेत्र भित्र पर्दछ ।

सरकारको नीति तथा कार्यक्रम एवम नेपाल राष्ट्र बैंकको मौद्रिक नीति मार्फत सरकारले विद्युतका क्षेत्रमा लगानी बढाउन

निजी क्षेत्रका उद्यमीहरु, सर्वसाधारण जनता, बैंक तथा वित्तीय संस्थाहरु एवम् बैदेशिक लगानीकर्ताहरुलाई प्रोत्साहित गर्दै आएको छ । विद्युत उत्पादन तथा प्रशारण प्रणाली सम्बन्धी आयोजनाहरुमा बैंक वित्तीय संस्थाको ऋण लगानी मार्फत सार्वजनिक कोष (Public Fund) र सर्वसाधारणको वचतको उपयोग भएको हुन्छ । यसका अलावा शेयर लगानीको रूपमा सर्वसाधारण जनताबाट समेत यस्ता आयोजनाहरुमा ठूलो परिमाणको धनराशी लगानी भएको छ । नेपाल सरकारले जनताको जलविद्युत कार्यक्रम मार्फत जलविद्युत आयोजनाहरुको शेयरमा लगानी गर्न सर्वसाधारणल (ई प्रोत्साहित गरिरहेको छ । नियामकीय उपकरणका माध्यमबाट त्यस्तो लगानीको सुरक्षाको विश्वसनीय वातावरणको विकास गर्नु राज्यको जिम्मेवारी हो ।

पछिल्लो प्रकाशित तथ्याङ्क अनुसार ९३ वटा जलविद्युत उत्पादन आयोजनासँग सम्बन्धित कम्पनी धितोपत्र बजारमा सूचिकृत भएका छन् । त्यस्ता सूचिकृत कम्पनीको कूल चूक्ता पुँजी करिव रु. १३२ अर्ब र कूल बजार पुँजीकरण रु. ६०० अर्ब भन्दा बढी पुगेको छ । सर्वसाधारणका लागि शेयर निश्कासन गर्न ४० भन्दा बढी कम्पनीले धितोपत्र बोर्डमा आवेदन दिई स्वीकृतिको पर्खाईमा रहेका छन् । नेपाल राष्ट्र बैंकबाट अनुमती प्राप्त बैंक तथा वित्तीय संस्थाहरुले बिक्रम सम्बत् २०८४ सम्ममा कूल लगानीको १० प्रतिशत उर्जाका क्षेत्रका लगानी गर्नु पर्ने गरी नेपाल राष्ट्र बैंकले निर्देशन जारी गरेको छ । कर्मचारी सञ्चय कोष, नागरिक लगानी कोष जस्ता सम्झौतित वचत परिचालन गर्ने संस्थाहरुले पनि उर्जाका क्षेत्रको लगानीलाई प्राथमिकताका साथ अघि बढाईरहेका छन् । विमा व्यवसाय सञ्चालन गर्ने कम्पनीहरुले आफ्नो कूल वित्तीय स्रोतको न्यूनतम १० प्रतिशत पूर्वाधारका क्षेत्रमा लगानी गर्नु पर्ने गरी विमा प्राधिकरणले निर्देशन दिएको छ ।

सन् २०३५ सम्ममा विद्युतको कुल उत्पादन क्षमता २८,५०० मेगावाट पुर्याउने र त्यसका लागि आवश्यक प्रशारण तथा वितरण संरचनाको निर्माण गर्ने प्रमुख लक्ष्यका साथ नेपाल सरकारले हालै विद्युत विकास मार्गीचत्र, २०८१ लागू गरेको छ । सरकारको सो लक्ष्य पुरा गर्न देश भित्र उपलब्ध आन्तरिक वित्तीय स्रोतको उपयोगलाई थप प्रोत्साहित गर्दै बैदेशिक लगानी आकर्षित गर्नु पर्ने अवस्था छ । यस अर्थमा सार्वजनिक कोष, बैंक तथा वित्तीय संस्था, विमा व्यवसाय गर्ने कम्पनी, उर्जा क्षेत्रमा लगानीका लागि स्थापना गरिएका विशिष्टिकृत संस्था, निजी क्षेत्रका उद्यमी, बैदेशिक लगानीकर्ता तथा सर्वसाधारण जनताबाट यस क्षेत्रमा भविश्यमा अझै ठूलो परिमाणको लगानी हुने निश्चित छ ।

विद्युतको उत्पादन, प्रशारण, वितरण तथा व्यापारका क्षेत्रमा विभिन्न व्यक्ति तथा निकायहरुबाट भएको लगानीको सुरक्षा र न्यूनतम प्रतिफल सुनिश्चत गरी लगानीको उपयूक्त र विश्वसनीय वातावरणको विकास गर्नु राज्यको प्राथमिक दायित्व हो । साथै, विद्युत प्रणालीलाई ब्यवस्थित, पारदर्शि एवम् विधिसम्बत तरिकाले सञ्चालन गरी स्वच्छ, सर्वसुलभ र किफायती उर्जाको नियमित उपभोग गर्न पाउनु पर्ने आम उपभोक्ताको नैसर्गिक अधिकारको प्रत्याभूति गर्नु, विद्युतको उत्पादन, प्रशारण, वितरण तथा व्यापारका क्षेत्रमा संलग्न निकायहरुबीच सहज सहकार्य र स्वच्छ प्रतिष्ठर्धको वात (वारण विकास गर्नु तथा विद्युत क्षेत्रका लगानीकर्ता तथा उपभोक्ताहरुको हक हितको संरक्षण गर्नु राज्यको नियामकीय जिम्मेवारी भित्र पर्दछ ।

यसका लागि देहायका क्षेत्रमा नियामकीय उपकरण (Regulatory Instruments) को विकास गरी प्रभावकारी रूपमा नियमन गर्न आवश्यक छ:

- पूर्वीनिर्धारित मापदण्डका आधारमा पारदर्शि एवम् प्रतिष्ठर्धि तरिकाबाट विद्युत उत्पादन, प्रशारण, वितरण तथा

व्यापार सम्बन्धी अयोजनाहरूको अनुमतीपत्र प्रदान गर्ने ।

- दीगो, भरपदी र गुणस्तरीय विद्युत आपूर्तिको सुनिश्चतताका लागि उर्जा समिश्रण (Energy Mix) को अनुपात तोक्ने ।
- आयोजना विकास, सञ्चालन तथा व्यवस्थापनमा संस्थागत सुशासनको प्रवर्धन गर्ने ।
- अयोजना व्यवस्थापनमा आर्थिक अनुशासन, पारदर्शिता, आयोजनाका संरचनाहरूको गुणस्तर सम्बन्धी मापदण्डको निर्धारण गर्ने ।
- आयोजनाका कृयाकलाप तथा अनुमतीपत्रका शर्तहरूको पालना अवस्थाको नियमित अनुगमन तथा सुपरीवेक्षण गर्ने, आवश्यक निर्देशन दिने तथा अनुशासन सम्बन्धी कारबाही गर्ने ।
- विद्युतको खरिद तथा विक्रिदर, विद्युत उपभोगको महसूल दर एवम् प्रशारण प्रणाली उपयोग गरेवापतको शुल्क (Wheeling Charge) निर्धारणका लागि विधि र मापदण्डको विकास गर्ने ।
- आयोजनाहरूमा सर्वसाधारणबाट भएको लगानी सुरक्षित गर्न सर्वसाधारणका लागि सेयर जारी गर्ने तथा प्रवर्धकह(रुले खरिद गरेको शेयरको विक्रि वा हक हस्तान्तरण गर्ने सम्बन्धी मापदण्ड निर्धारण गर्ने ।
- आयोजना माथिको स्वामित्वको हक हस्तान्तरणको विधि तय गर्ने ।
- अनुमतीपत्र प्राप्त संस्थाबीच उत्पन्न हुन सक्ने विवादको निरूपणकालागि विधि र मापदण्ड तयार गर्ने आदि ।

अन्तरराष्ट्रीय प्रचलन र असल अभ्यास समेतका आधारमा विकास गरिएको सक्षम, सुदृढ, स्वतन्त्र तथा अधिकार सम्पन्न नियामक निकायबाट मात्र उल्लिखित भूमिका प्रभावकारी रूपमा निर्वाह हुन सक्छ ।

४. नेपालमा विद्युत नियमनको वर्तमान अवस्था:

मूलुकको समग्र विद्युत क्षेत्रको नियमन गर्न विद्युत नियमन आयोग ऐन, २०७४ तथा विद्युत नियमन आयोग नियमावली, २०७५ लागू भए पश्चात वि । सं । २०७६ बैशाखमा एक अभिछिन्न उत्तराधिकारवाला, स्वशासित र संगठित संस्थाको रूपमा विद्युत नियमन आयोगको स्थापना भएको हो । नेपाल सरकारबाट नियूक्त अध्यक्ष सहितको पाँच सदस्यीय आयोगले यसको नेतृत्व गर्छ । विद्युतको उत्पादन, प्रशारण, वितरण तथा व्यापारलाई सरल, नियमित, व्यवस्थित र पारदर्शी बनाउने, विद्युतको माग र आपूर्तिमा सन्तुलन कायम राख्ने, विद्युत महसूल नियमन गर्ने, विद्युत उपभोक्ताको हक हितको संरक्षण गर्ने, विद्युतको बजारलाई प्रतिस्पर्धात्मक बनाउने, विद्युत सेवालाई भरपदी सर्वसुलभ, गुणस्तरयुक्त, सुरक्षित र विश्वसनीय बनाउने, विद्युत आयोजनाहरूको निरिक्षण तथा सुपरीवेक्षण गर्ने आदि आयोगको प्रमुख उद्देश्य रहेको छ ।

ऐनको दफा ३ ले आयोगलाई विद्युतको उत्पादन, प्रशारण, वितरण तथा व्यापारको नियनम गर्ने नियमनकारी निक(ायको भूमिका प्रदान गरेको छ । सो भूमिका निर्वाह गर्ने क्रममा आयोगलाई विद्युतको उत्पादन, प्रशारण, वितरण तथा व्यापारको नियमन सम्बन्धी प्राविधिक व्यवस्थापनको कार्य गर्ने, महसूल निर्धारण गर्ने तथा विद्युत खरिद विक्रिको नियमन गर्ने, विद्युत बजारमा प्रतिष्पर्धा कायम गर्ने तथा उपभोक्ताको हित संरक्षण गर्ने, अनुमतिपत्र प्राप्त व्यक्तिको

संस्थागत क्षमता अभिवृद्धि गरी संस्थागत सुशासन कायम गराउने, विद्युतको उत्पादन, प्रशारण, वितरण तथा व्यापार सम्बन्धी व्यवस्थालाई भरपदी र प्रभावकारी बनाउन गर्नु पर्ने नीतिगत सुधारका सम्बन्धमा नेपाल सरकारलाई आवश्यक सल्लाह सुझाव दिने, अनुमतिपत्र प्राप्त व्यक्तिले प्रचलित कानून तथा तोकिएका शर्त बमोजिम काम गरेन्नगरेको सम्बन्धमा आवश्यक जाँचवुभ तथा निरीक्षण गर्ने, अनुमतिपत्र प्राप्त व्यक्तिवीच उत्पन्न विवादको समाधान गर्ने लग(यतको जिम्मेवारी प्रदान गरिएको छ ।

आयोगले नेपालको विद्युत क्षेत्रको दीगो विकासका लागि स्वतन्त्र, पूर्वानुमान योग्य, उपभोक्ता प्रति समर्पित, पारदर्शी र उत्तरदायी नियमन प्रणालीको विकास गर्ने ध्येय राखेको छ । आफ्नो जिम्मेवारी निर्वाह गर्ने क्रममा अयोगले विभिन्न नियामकीय उपकरणहरु तयार गरी कार्यान्वयनमा ल्याएको छ । विद्युत क्षेत्रको नियमनको अन्तरराष्ट्रिय अनुभव र अभ्यास तथा विगत पाँचवर्षमा हाँसिल भएका अनुभव र उपलब्धिका आधारामा गत वर्ष आयोगले आफ्नो भाविमार्ग चित्र तयार गरेको छ । सो मार्गचित्रले पारदर्शिता, निष्पक्षता, जवाफदेहिता, अग्रसक्रियता र प्रतिक्रियासिलताका सिद्धान्तलाई आत्मसात गर्दै आन्तरिक सुधार तथा नियामकीय प्राथमिकताका क्षेत्रहरु प्रष्ट गरेको छ ।

५. अपेक्षा र सुरक्षाका क्षेत्रहरु:

नेपालको विद्युत प्रणालीको नियमनको अभ्यास तथा अनुभव प्रारम्भिक चरणमा नै रहेको छ । यस निकायले निर्वाह गरेको भूमिकाको समग्र पक्षको मुल्याङ्कन गर्न विगत छ वर्षको अवधि पर्याप्त नहुन सक्छ । तथापी, अन्तरराष्ट्रिय अनुभव र अभ्यासलाई दृष्टिगत गर्दा नियामक निकायको रूपमा आयोगको कार्य क्षेत्र र जिम्मेवारी पर्याप्त देखिदैन । अहिले विद्युत विकास विभाग र विद्युत नियमन आयोगले समानान्तर रूपमा यस क्षेत्रको नियमनकारी भूमिका निर्वाह गरेको जस्तो देखिन्छ । नियामकले नै अनुमतीपत्र प्रदान गर्ने, अनुमतीपत्रका शर्तहरु तोक्ने तथा त्यसको पालनाको अवस्थाको अनुगमन गर्ने परिपाटी हुन्छ । यो मुलभूत सिद्धान्तलाई आत्मसात गर्दै भविश्यको आयोगको संस्थागत तथा संरचनागत ढाँचाको परिकल्पना गर्न आवश्यक छ ।

कतिपय सन्दर्भमा आयोग र धितोपत्र बोर्डको कार्य क्षेत्रमा दोहोरापना भएको हो कि भन्ने द्रिबविधा पनि देखिन्छ । धितोपत्र बोर्डले समग्र पुँजी बजारको नियमन गर्ने मात्र हो । विद्युत उत्पादन, प्रशारण, वितरण तथा व्यापारको क्षेत्रमा आवद्ध प्रवर्धक तथा सर्वसाधारण लगानीकर्ताको हितको संरक्षणका लागि आवश्यक मापदण्ड निर्धारण गर्ने प्राथमिक जिम्मेवारी आयोगको नै हो । तदनुरूप आयोगले आफ्नो भूमिका प्रष्ट गर्नु पर्दछ । सरकारी संरचना मातहतको एउटा निकायले विद्युत अनुमतीपत्र प्रदान गर्न हतार गर्ने तर विद्युत खरिदमा एकाधिकार प्राप्त अकी निकायले विद्युत खरिद विक्रि सम्भौता नगरिदिने विडम्बनाको अन्त्य हुनु पर्दछ । विद्युत अनुमतीपत्र प्रदान गर्ने तथा विद्युत खरिद विक्रि सम्भौता गर्ने कार्यमा तादम्यता कायम गर्न आयोगले यस विषयलाई आफ्नो नियामकीय दायरामा ल्याउनु पर्दछ ।

एकातर्फ सक्षम र सुदृढ नियामको रूपमा आयोगको भूमिका र जिम्मेवारी पर्याप्त छैन भने अर्कातर्फ प्राप्त जिम्मेवारी बमोजिमको भूमिका निर्वाह गर्न समेत आयोगको संस्थागत क्षमता र स्रोत साधनको उपलब्धताको अवस्था कमजोर देखिन्छ । सिद्धान्ततः आयोगलाई स्वायत्त र स्वतन्त्र नियमनकारी निकाय भन्ने गरिएतापनि व्यवहारमा त्यस्तो अनुभूति हुने गरी भूमिका निर्वाह गर्न नसकेको अनुभूति हुन्छ । कानूनले प्रदान गरेको जिम्मेवारी बमोजिम आयोगले आवश्यक नियामकीय उपकरण तथा मापदण्डहरु जारी गर्न तथा सुपरीवेक्षण गर्न सकेको छैन । तसर्थ, आफ्नो भूमिकालाई थप प्रभावकारी बनाई सुदृढ, सक्षम र स्वतन्त्र नियामकको रूपमा सार्वजनिक विश्वसनीयता अभिवृद्धि गर्नु आयोगका सामु

प्रमुख चुनौतिको रूपमा देखिएको छ ।

मुलुकको समग्र विद्युत प्रणालीको नियमनका माध्यमबाट संस्थागत सुशासनको प्रवर्धन गर्ने, यस क्षेत्रको सार्वजनिक विश्वसनियता अभिबृद्धि गर्ने, नियामकीय उपरकणका माध्यमबाट समग्र प्रणालीलाई व्यवस्थित गर्ने तथा सर्वसाधारण लगानीकर्ता एवम् उपभोक्ताको हित संरक्षण गर्ने सन्दर्भमा विद्युत नियमन आयोगको भूमिका र जिम्मेवारी महत्वपूर्ण रहेको छ । भविश्यमा यस आयोगको भूमिका र आयोग प्रतिको अपेक्षा अझै बढ्दै जाने निश्चित छ । करीव ६० खर्व रूपैयाँ लगानी भएको, सतप्रतिसत नेपाली जनता उपभोक्ता भएको, करीव ६० लाख लगानीकर्ता आवद्ध भएको एवम् करीव १५ मेगावाट विद्युतको अन्तरदेशीय व्यापार भएको विद्युत प्रणालीको नियमकको परिकल्पनाको आधारमा आयोगको भावि स्वरूप निर्धारण गर्न आवश्यक छ । तसर्थ, आयोगको नियामकीय जिम्मेवारीलाई प्रभावकारी र विश्वसनीय बनाउन आयोगलाई स्रोत, साधन र प्रविधिका दृष्टिकोणले सक्षम एवम् संरचनात्मक हिसावले स्वायत्त र स्वतन्त्र नियमकको रूपमा स्थापित गर्नु पर्दछ ।

साथै, अन्तरराष्ट्रीय प्रचलन र अभ्यास समेतका आधारमा साविकमा विकास गरिएका नियामकीय उपकरणलाई समसा(मयिक सुधार गर्ने, नयाँ नियामकीय उपकरणहरुको विकास गर्ने तथा आयोजनाहरुको अनुगमन तथा सुपरिवेक्षणलाई प्रभावकारी बनाउने तर्फ आयोग अधिक बढन आवश्यक छ । यसको अलावा, विद्युत उत्पादन, वितरण, प्रशारण तथा व्यापारसँग सम्बन्धित आयोजनाहरुको अनुमतिपत्र प्रदान गर्ने, आयोजनाका संरचनाहरुको मापदण्ड र गुणस्तर निर्धारण गर्ने, आयोजनाहरुको सुपरिवेक्षण तथा निरिक्षण गर्ने, निर्देशन दिने लगायतका सबै प्रकारका नियामकीय भूमिका समेत निर्वाह गर्ने गरी नीतिगत तथा संरचनागत रूपमा सक्षम नियमकको रूपमा आयोगको विकास गर्ने तर्फ ध्यान दिन आवश्यक छ ।

सन्दर्भ सामाग्री

- विद्युत ऐन, २०४९ तथा विद्युत नियमावली, २०५० ।
- विद्युत नियमन आयोग ऐन, २०७४ तथा विद्युत नियमन आयोग नियमावली, २०७५
- उर्जा विकास मार्गचित्र, २०८१
- विद्युत नियमन आयोगको वार्षिक प्रतिवेदन, २०८० ।८१
- डा. राम प्रसाद धिताल, विद्युत क्षेत्रको समृद्धि तथा लगानी सुरक्षाका लागि नियामकीय भूमिका तथा आवश्यक अधिकार (प्रतिनिधिसभा, पूर्वाधार विकास समितिद्वारा आयोजित कार्यक्रममा प्रस्तुत कार्यपत्र)
- अर्जुन कुमार गौतम, उर्जा रूपान्तरणको एजेण्डा, विद्युत विकासको लक्ष्य र हाम्रो धरातल, उर्जा खवर, २०८१ माघ ।

Digitizing Nepal's Electricity Regulatory Commission: Document Management System (DMS)

Aryak Ranjan Baral¹ & Bikas Dangol²

Electricity Regulatory Commission

Introduction

The Electricity Regulatory Commission (ERC) of Nepal, established under the Electricity Regulatory Commission Act of 2074, represents a transformative step in the country's energy sector governance. Envisioned over a decade ago, the ERC was created to address inefficiencies in Nepal's electricity market and to foster transparency, competition, and consumer protection. As Nepal's energy landscape evolves with growing hydropower and renewable energy contributions, the ERC plays a pivotal role in regulating generation, transmission, distribution, and trade.

The Electricity Regulatory Commission (ERC) of Nepal, under the 2074 Act and 2075 Rules, regulates the electricity sector by setting transparent tariffs through public hearings, approving standardized Power Purchase Agreements (PPAs) to streamline investments, developing grid and distribution codes for safety and efficiency, overseeing licensing and share approvals for market stability, and protecting consumer rights while fostering competition.

Historically, ERC's operations relied heavily on paper-based processes for application filings, approvals, and reporting, leading to delays, inefficiencies, and challenges in tracking applications. To address these issues, ERC partnered with Data Forge Consultancy to develop a web-based Document Management System (DMS), launched in January 2025, to digitize its core functions.

This article explores the development, features, and impact of the DMS, highlighting its role in transforming ERC's operations and drawing parallels with global regulatory digitization efforts. By streamlining application filings, enhancing transparency, and improving stakeholder engagement, the DMS positions ERC Nepal as a modern, efficient regulator aligned with global standards.

Background: The Need for Digitization

Nepal's electricity sector is rapidly expanding, with the National Planning Commission's 16th Plan (2024/25-2028/29) targeting an installed capacity of 11,769 MW and electricity exports of 5,500 MW by 2029/30. The ERC oversees critical functions, including tariff setting, PPA approvals, and compliance with Directives 2076, 2077, and 2078, managing over 1,023 applications from 2019 to 2024, including 168 PPA approvals and 128 IPO pre-approvals. However, manual processes created significant challenges: delayed application processing, opaque application statuses, and limited data analysis capabilities. A 2019 backlog of 6,000 MW in pending PPA projects underscored the urgency for streamlined operations.

1 The author is Director and System Analyst at Data Forge Consultancy Pvt Ltd.
2 The author is Section Officer at the Electricity Regulatory Commission.

The ERC's Five-year Roadmap (2024-2029) explicitly identifies these inefficiencies as a catalyst for digitization, listing "Incorporating Information and Communication Technology in operations and service delivery" as a key institutional priority. The roadmap highlights challenges such as delays in managing applications, lack of transparent file processing, and difficulties in communicating ERC's authority to stakeholders. It proposes solutions like implementing the Regulatory Information Management System (RIMS) and E-Document Management System to achieve a paperless institution, alongside adopting the Government Integrated Office Management System (GIOMS) for internal operations. These initiatives aim to enhance transparency, accountability, and consumer confidence, addressing the roadmap's guiding principles.

Global leaders on regulation with data-driven platforms, demonstrate digitization's transformative potential. In Nepal, the roadmap's emphasis on ICT aligns with the need to manage complex regulatory tasks, such as tariff studies and open access directives, which require robust data systems. The DMS, as a foundational step, addresses these needs by digitizing application filings and reporting, setting the stage for broader ICT integration as envisioned in the roadmap.

The Document Management System: Project Overview

Developed by Data Forge Consultancy, the DMS is a web-based platform integrated with ERC's website, designed to comply with the Integrated Data Management Center (IDMC) standards. The system's primary objectives include:

- Full digitization of application filings, requests, letters, and mandatory reporting per ERC directives.
- Creation of a user-friendly online filing portal for registered users to submit and track applications.
- Generation of traceable logs, customizable reports, and data exports in downloadable formats.
- Provision of automated notifications for users regarding ERC decisions and status of applications.

The DMS was rolled out on 8th January 2025 following extensive consultation with ERC stakeholders and iterative testing to ensure compliance with regulatory requirements. The system supports a range of applications, including PPAs for hydro and alternative energy, IPO/FPO/Right approvals, and share structure filings, making it a comprehensive tool for ERC's operations.

Key Features of the DMS

The DMS incorporates several innovative features to streamline ERC's processes and enhance user experience, as detailed in the project's coordination meeting presentation on January 24, 2025.

User-Friendly Interface and Workflow

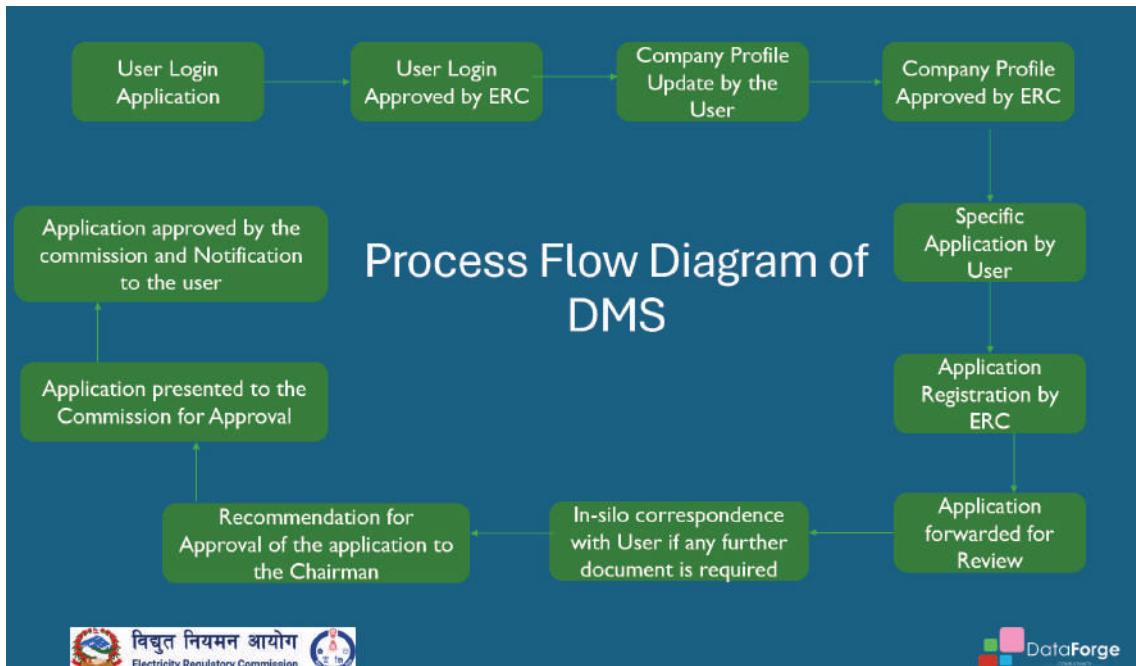
The DMS features a secure login portal where registered users can update profiles, file applications, and track their submissions. The application filing workflow is intuitive, guiding users

through task headings with checkboxes that redirect to relevant annexes based on selections, as specified in Directives 2076-2078 . For example, selecting a PPA-Hydro application prompts the system to autofill relevant fields and request necessary documents per the relevant directives .

Automated Fee Calculation and Payment

For applications requiring fees, the DMS automatically calculates the amount based on directive annexes and displays ERC's bank account details . Users are prompted to upload scanned bank vouchers, ensuring seamless payment verification . This feature reduces errors and accelerates processing, a significant improvement over manual fee submissions .

Error Handling and Application ID Generation


Before final submission, the DMS checks for blank entries, prompting users to complete all required fields . Upon submission, the system generates a unique Application ID displayed on each page, enabling easy tracking . Submissions are stored in user-specific directories, organized chronologically, ensuring accessibility and accountability .

Application Tracking and Reporting

The DMS provides real-time status updates on applications, from submission to approval or rejection . ERC staff can monitor progress through dashboards with visualization tools, such as charts and graphs, to identify trends and bottlenecks . Customizable reports allow filtering by criteria like application type, user, or time frame, with export options in PDF, CSV, and Excel formats . This functionality supports data-driven decision-making, aligning with global best practices .

Notification System

Registered users receive automated SMS and email notifications about ERC decisions, application status, enhancing communication and reducing follow-up queries . This feature fosters transparency, a critical factor for stakeholder trust .

DMS Usage: Driving Efficiency and Stakeholder Trust in ERC Nepal

Since its launch in January, DMS has demonstrated significant progress in enhancing regulatory efficiency and stakeholder engagement. With 62 companies successfully registered on the platform, 29 applications filed, and 9 applications approved to date, the DMS is steadily gaining traction as a transformative tool for streamlining application processes. This positive uptake reflects growing confidence among stakeholders, including Independent Power Producer Association (IP PAN) members and the Nepal Electricity Authority (NEA), in the system's user-friendly interface and transparent tracking capabilities. The approvals, facilitated by the DMS's automated workflows and real-time notifications, underscore its role in reducing delays and fostering a predictable regulatory environment, aligning with ERC's Five-year Roadmap vision of a digitally empowered, stakeholder-centric regulator.

Building on this momentum, DMS has significantly transformed ERC's operations and stakeholder interactions having reduced processing times by approximately 30%, enabling ERC to efficiently manage a growing volume of applications (internal sources). Real-time tracking and automated notifications have enhanced transparency, fostering trust among Independent Power Producer Association (IP PAN) members and the Nepal Electricity Authority, while traceable application logs ensure accountability, aligning with global regulatory standards. The system's customizable reports and visualizations empower ERC to analyze trends, such as application types and approval rates, supporting strategic planning. Additionally, the user-friendly interface and automated features have leveled the playing field, making it easier for small power producers to engage with ERC. These outcomes echo global successes, such as the UK's Ofgem e-portal, which boosted stakeholder satisfaction by 25% (Davies & Patel, 2023), positioning ERC Nepal as a regional leader in regulatory modernization.

Challenges and Lessons Learned

Despite its successes, the DMS faced challenges during implementation. Initial user adoption was slow due to limited digital literacy among some stakeholders, necessitating training sessions and development of detailed manuals by the developer. Integration with ERC's existing website required multiple iterations to ensure compatibility with IDMC standards. Additionally, estimating cloud storage requirements posed challenges due to unpredictable data growth. These issues were addressed through stakeholder feedback and technical adjustments, underscoring the importance of iterative development and user engagement in digitization projects.

Future Directions

The Document Management System (DMS) serves as a cornerstone for the Electricity Regulatory Commission (ERC) vision of a fully digitized, transparent, and stakeholder-centric regulator by 2029. The institutional priority of incorporating Information and Communication Technology (ICT) drives a series of planned enhancements to the DMS, aligning with regulatory priorities such as tariff frameworks, open access, and competitive markets. These enhancements, scheduled across ERC's 5 year roadmap timeline, aim to streamline operations, enhance consumer protection, and support Nepal's ambitious energy goals outlined in the 16th Plan.

Financial Information Management System: ERC targets comprehensive tariff frameworks for generation and distribution, necessitating robust financial data systems. The DMS will integrate a Financial Information Management System to allow users to update financial progress and upload reports, supporting cost-of-service studies. This will enhance tariff determination and PPA approvals, ensuring financial sustainability for utilities while maintaining affordability for consumers.

Advisor's Portal: The roadmap's plan to establish an Advisory Committee by 2025/26 requires a digital platform for expert input. An Advisor's Portal will be integrated into the DMS, enabling online tracking and contributions to regulatory decisions, such as open access directives. This will strengthen ERC's decision-making by incorporating expertise from former GoN secretaries, international experts, and consumer representatives.

Payment Gateway Integration: The DMS will incorporate payment gateways, eliminating manual voucher uploads and reducing errors. This upgrade will enhance efficiency and align with the commission's transparency goals.

Grievance Handling Portal: To support Consumer Grievance Redressal Mechanism and annual provincial public hearings, a Grievance Handling Portal will be added to the DMS. This portal will enable consumers and stakeholders to submit complaints online, leveraging the DMS's notification system to ensure timely resolution, thereby strengthening consumer rights protection.

Information Dissemination: ERC plans to enhance its website with real-time company data, application statuses, and regulatory updates, building on the DMS's user directories. This will foster transparency and accessibility, aligning with the commission's principle of public disclosure.

Regulatory Information Management System (RIMS): A key target is implementing RIMS by to manage regulatory data and achieve a paperless institution. RIMS will be integrated with the DMS to support tariff studies, open access directives, and competitive market analyses. By incorporating advanced data management and reporting features, RIMS will enable evi-

dence-based reforms, ensuring ERC's regulatory processes are predictable and efficient .

E-Hearings and E-Courts: The DMS's web based infrastructure will support these virtual platforms, enabling province-wide grievance redressal and stakeholder engagement, further aligning with the roadmap's responsiveness principle .

AI-Driven Features: To enhance DMS functionalities, ERC plans to explore AI-driven solutions, such as automated data processing, predictive analytics for regulatory reporting, and interpretation of application trends . These features will support evidence-based research goals and competitive market studies ensuring data-driven decision-making .

These enhancements call for capacity building and coordination with the Government of Nepal (GoN), which will stabilize ERC as a credible regulator . By leveraging the DMS's scalable architecture, ERC aims to create an investment-friendly environment, comparable to global leaders, while meeting the 16th Plan's energy targets for sector growth and consumer benefits .

Conclusion

The Document Management System marks a significant milestone in the digitization of Nepal's Electricity Regulatory Commission . By streamlining application filings, enhancing transparency, and empowering stakeholders, the DMS has transformed ERC's operations, benefiting ERC staff, IPPAN members, Nepal Electricity Authority, and other stakeholders . Drawing inspiration from global regulatory bodies, the DMS demonstrates the power of technology to modernize governance . As ERC implements planned upgrades, the system will further strengthen Nepal's energy sector, fostering efficiency, accountability, and stakeholder trust . This initiative serves as a model for other regulatory bodies in the region, showcasing the transformative potential of digitization .

Authors:

Mr . Aryak Ranjan Baral, Director and System Analyst, Data Forge Consultancy Pvt Ltd

Mr . Bikas Dangol, Electricity Regulatory Commission

विवाद समाधानमा विद्युत नियमन आयोगको भूमिका

उन्नति अमात्य तथा परितोष घिमिरे^१

१. सैद्धान्तिक अवधारणा

१.१ पृष्ठभूमि

न्यायपालिकाको रोहबरमा विवाद समाधान गरिने प्रक्रियाभन्दा बाहिर विवादका पक्षहरूको सहमतिमा आधारित विवाद समाधान गर्ने पद्धति जस्तै मध्यस्थता, मेलमिलाप, समझदारी आदिबाट विवादको समाधान गर्ने कुरालाई विवाद समाधानका वैकल्पिक उपाय भन्ने गरिन्छ । नेपालको संविधानमा समेत न्याय सम्बन्धी अधिकारको प्रयोग अदा(लत तथा न्यायिक निकायबाट प्रयोग गरिनेछ भनी उल्लेख गरी विवाद समाधानको वैकल्पिक उपाय अवलम्बन गर्न आवश्यकता अनुसार अन्य निकाय गठन गर्न सकिने गरी व्यवस्था गरिएको छ^२ । हाल विकसित विवाद निरूपणको वर्तमान अवधारणाहरूले अदालती कार्यविधि अवलम्बन गरेर विवाद समाधानको प्रक्रिया अवलम्बन नगरेर विशिष्ट नियमनकारी उपकरण अन्तर्गत नियमन हुने निकायहरूलाई अदालतको परिधिभन्दा बाहिर सम्बन्धित नियामकलाई नै विवाद समाधानको अधिकार प्रदान गरेको पाईन्छ । नियमन हुने निकायहरूले पालना गर्नुपर्ने नियमहरू वा दायित्व पूरा गरेको वा नगरेको तथा नियमन हुने पक्षहरू बीच विवाद उत्पन्न भएमा पक्षहरूलाई सँगै राखी विवाद समाधान गर्ने अवधारणालाई महत्त्व दिएको पाइन्छ ।

१.२ नियामक निकायलाई विवाद समाधानको अधिकार

नेपालमा ऐन तथा नियमावलीमा नै व्यवस्था गरी विवाद समाधानका क्षेत्रहरु किटान गरेर विशिष्टीकृत विषयवस्तुहरुको विवाद समाधान विशेष निकायबाट नै गरिने गरी धेरै नियामक निकायहरूलाई विवाद समाधानको अधिकार दिइएको पाइन्छ । नेपालमा नियामक निकायलाई नै विवाद समाधानको अधिकार दिइएको केही उदाहरणहरूलाई दृष्टिगत गर्दा बीमा क्षेत्रसँग सम्बन्धित विषय मध्ये प्राधिकरणमा दर्ता भएको कुनै उजुरीमा वा कम्पनी, बीमित वा बीमा कुनै पक्षले मेलमिलाप वा मध्यस्थताको माध्यमबाट विवादको निरूपण गर्न सकिने र प्राधिकरणमा निवेदन गरेमा संचालक समिति आफैले मध्यस्थता समिति मार्फत कार्यविधि बमोजिम पनि विवाद मिलाउन सकिने कानून प्रचलनमा रहेको

^१ लेखकद्वय अधिवक्ता हुनुहुन्छ र दुबै जना अभिनव ल च्याम्बर्समा कार्यरत हुनुहुन्छ । - सम्पादक

^२ विवाद समाधानमा न्यायिक समितिको भूमिका: एक सिंहावलोकन, निति अनुसन्धान प्रतिष्ठान, पृष्ठ ६३

छ^३ । त्यसैगरी सार्वजनिक खरिदसँग सम्बन्धित सार्वजनिक खरिद कार्यालयले कुनै निर्णय वा कारबाही गर्दा कुनै त्रुटि गरेको वा पालना गर्नुपर्ने कर्तव्य पालना नगरेकोले आफूलाई क्षति पुने वा पुन सक्ने कारण खुलाई कुनै बोलपत्रदाता वा प्रस्तावदाताले त्यस्तो त्रुटि वा निर्णयको पुनरावलोकनका लागि सम्बन्धित सार्वजनिक निकायका प्रमुख समक्ष निवेदन दिन सकिने व्यवस्था भएको देखिन्छ^४ । साथै, त्यस्तो विवादहरूको निरुपण गर्न पुनरावलोकन समिति समेत गठन भएको छ^५ । नेपालको दूरसंचार सेवामा आईपर्ने विवाद मध्ये अनुमतिपत्र प्राप्त व्यक्तिहरू बीच वा अनुमतिपत्र प्राप्त व्यक्ति र ग्राहक बीच दूरसंचार सेवा सम्बन्धमा कुनै विवाद परेमा त्यसबाट मर्का पर्ने पक्षले त्यसको कारण समेत खुलाई प्राधिकरण समक्ष उजुरी दिन सक्ने एवम् प्राधिकरण समक्ष उजुरी परेमा प्राधिकरणले सम्बन्धित अनुमतिपत्र प्राप्त व्यक्तिहरूलाई फिकाई आपसी छलफलबाट विवादको समाधान गर्नु पर्ने कानुनी व्यवस्था रहेको छ । आपसी छलफलबाट विवादको समाधान हुन नसकेमा प्राधिकरणले सो प्रयोजनको लागि अनुमतिपत्र प्राप्त व्यक्तिहरूको एक एक जना प्रतिनिधिहरू र प्राधिकरणको एक जना प्रतिनिधि रहेको एक मध्यस्थ नियुक्त गर्नु पर्ने व्यवस्था समेत कानुनमा पाईन्छ^६ । वैदेशिक लगानी तथा प्रविधि हस्तान्तरणको लागि तर्जुमा भएको कानुनमा समेत उद्योग विभागलाई विदेशी लगानीकर्तावीच कुनै विवाद उत्पन्न भएमा सम्बन्धित पक्षहरूले आपसी छलफल वा वार्ताबाट त्यस्तो विवादको समाधान गर्न विभागले आवश्यक सहजीकरण गर्न सक्ने अधिकार ऐनले प्रदान गरेको छ^७ । तर मुलुकको समग्र बैंकिङ तथा वित्तीय प्रणाली अभिवृद्धि गर्नको लागि केन्द्रीय बैंकको रूपमा रहेको नेपाल राष्ट्र बैंकको एवम् धितोपत्र बजारको नियमनकारी निकायको रूपमा स्थापित धितोपत्र बोर्डलाई भने स्पष्ट रूपमा नियमनकारी निकायको हैसियतमा न्यायिक रोहमा विवाद निरुपण गर्ने अधिकार ऐनले प्रदान गरेको देखिँदैन ।

२. नेपालको उर्जा क्षेत्र र उर्जा क्षेत्रमा उत्पन्न हुने विवाद

२.१ विद्युतसँग सम्बन्धित क्षेत्रको बारेमा चर्चा गर्दा हाल नेपाल विद्युत क्षेत्रमा सरकारी, निजी, तथा वैदेशिक लगानी(लाई प्रोत्साहन गर्दै विद्युत उत्पादन, बिक्री तथा वितरणमा ऋमशः वृद्धि हुँदै गएको छ । साथै, आन्तरिक खपतलाई आवश्यक विद्युत उत्पादन गरी विशेषतः बर्खायाममा बाँकी हुन आउने विद्युतलाई नेपाल बाहिर पनि विद्युतको लागि बजार खोज्न नेपाल सक्षम भएको छ । नेपाल विद्युत प्राधिकरणले आर्थिक वर्ष २०८० ।८१ मा सार्वजनिक गरेको “NEPAL ELECTRICITY AUTHORITY A YEAR IN REVIEW- FISCAL YEAR २०२३/२०२४” मा हाल संचालनमा रहेको उर्जा सम्बन्धी परियोजनाको कूल क्षमता २४०७.६७ मेगावाट रहेको भनी उल्लेख गरेको छ । त्यसैगरी वित्तीय व्यवस्थापन सम्पन्न भई निर्माणाधीन अवस्थामा रहेको ऊर्जा सम्बन्धी परियोजनाको कूल क्षमता ३८५४.०२४ मेगावाट रहेको भनी उल्लेख भएको छ । यहाँ उल्लेखनीय के छ भने संचालनमा रहेका र निर्माणाधीन अवस्थामा भएका ऊर्जा सम्बन्धी परियोजनामा नेपाल विद्युत प्राधिकरण मार्फत नेपाल सरकारको स्वामित्व रहेका परियोजनाहरू र स्वतन्त्र ऊर्जा उत्पादक कम्पनीको स्वामित्व रहेका परियोजनाहरू मार्फत लगानी भईरहेको छ । यसरी विभिन्न माध्यमबाट ऊर्जा क्षेत्रमा लगानी भईरहेको र उत्पादन क्षमता समेत वृद्धि भईरहेको अवस्थामा विद्युत उत्पादक तथा विक्री वितरक, प्रसारण सेवा उपलब्ध गराउने निकाय र विक्री वितरक तथा

^३ नेपालको संविधान २०७२, धारा १२६- धारा १२७

^४ नेपाल बीमा प्राधिकरण, मेलमिलाप तथा मध्यस्थता सम्बन्धी कार्याविधि, २०८१

^५ सार्वजनिक खरिद ऐन, २०६३ दफा ४७

^६ विदेशी लगानी तथा प्रविधि हस्तान्तरण ऐन, २०७५, दफा ४०

^७ दूरसंचार नियमावली, २०५४, नियम २३

उपभोक्ताबीच विवाद बढ़दै गएको देखिन्छ ।

२.२ **मुलतः** यस क्षेत्रमा आईपर्ने विवादहरूको प्रकृति करारीय दायित्व सम्बन्धी, भुक्तानी सम्बन्धी, प्रसारण लाईनको निर्माण गरी उपलब्ध गराउने सम्बन्धी, विद्युत महसुल सम्बन्धी लगायत हुन्छन् । यस्ता विवादहरूमध्ये अनुमतिपत्र प्राप्त व्यक्तिहरू बीच उत्पन्न विद्युत सम्बन्धी विवाद र अनुमतिपत्र प्राप्त व्यक्तिले गरेको कुनै निर्णयमा चित नबुझेको वा निजले गरेको कार्यबाट आफूलाई मार्का परेको कुरा उल्लेख गरी त्यस बापतको क्षतिपूर्तिको दाबी गरेको विषयमाड विद्युत नियमन आयोगलाई विवाद समाधान गर्ने अधिकार प्रदान गरेको छ । यसरी मूल ऐनमा के कस्ता विवादहरूमा विद्युत नियमन आयोग मार्फत विवाद समाधान गरिने हो सोको अधिकारक्षेत्र तोकिएता पनि विवादहरूको निरूपणको लागि विनियमावलीको मस्यौदा तयार भएता पनि लागू भैसकेको देखिँदैन । ढ विशेषगरी अनुमतिपत्र प्राप्त व्यक्तिहरूबीचको विवाद र कुनै निर्णय वा कार्यबाट उत्पन्न हुने दावीलाई निष्पक्ष, पारदर्शी र शीघ्र ढङ्गले समाधान गर्ने आयोगले विनियमावलीमा समेट्नु पर्ने देखिन्छ । यसरी विवाद समाधानको लागि लागू गरिने विनियमावली सरल, सहज, निष्पक्ष र तोकिएको समयावधिभित्र विवाद समाधान गर्न सक्ने गरी तयार गर्नुपर्ने देखिन्छ ।

३. अन्तरराष्ट्रिय अभ्यास

३.१ यसरी विद्युत सम्बन्धी उत्पन्न विवादलाई अदालत मार्फत निरूपण गर्नुपूर्व सम्बन्धित निकायलाई नै विवाद समा(धान गर्ने अधिकार प्रदान गरेको अन्य देशहरूको उदाहरण उल्लेख गर्दा छिमेकी मुलुक भारतको विद्युत सम्बन्धी ऐनले उत्पादक कम्पनीहरू वा विद्युत प्रसारण अनुमति प्राप्त व्यक्तिहरू संलग्न हुने विद्युत महसुल निर्धारण सम्बन्धी विवाद र अन्तरराज्य विद्युत प्रसारण सम्बन्धी विवाद निरूपण गर्ने र विवादहरूलाई मध्यस्थताको लागि सिफारिस गर्न Central Electricity Regulatory Commission लाई अधिकार प्रदान गरेको देखिन्छ^{१०} ।

३.२ त्यसैगरी, ब्राजिलमा पनि उर्जा क्षेत्रसँग सम्बन्धित विवादहरूमध्ये नियमन, उपभोक्ताको गुनासो, अनुमति कार्यान(वयन लगायतका विवादहरूलाई निरूपण गर्ने अधिकार “National Electric Energy Agency” लाई प्रदान भएको देखिन्छ^{११} । संयुक्त राज्य अमेरिकामा समेत Federal Energy Regulatory Commission अन्तर्गतको Dispute Resolution Service मार्फत “contracts disputes, tariff and rate disputes, interconnection agreements, infrastructure disputes, interagency cooperation, cultural and natural resources लगायतका विवादहरू निरूपण हुने गरी व्यवस्था भएको छ^{१२} ।

३.३ यसरी, अन्य राष्ट्रहरूमा उर्जा सम्बन्धी विवाद समाधान गर्ने अधिकारप्राप्त निकायलाई प्रदान गरिएको क्षेत्राधिकार

८ विद्युत नियमन आयोग ऐन, दफा १८

९ लेखकहरूले यो लेख तयार गर्दासम्म सो अवस्था रहेको भए पनि हाल विद्युत नियमन आयोग विवाद समाधानसम्बन्धी विनियमावली, २०८२ आयोगबाट स्वीकृत भई मिति २०८२ १११ देखि लागू भैसकेको छ । -- सम्पादक

१० विद्युत नियमन आयोग ऐन, दफा १८

११ The Electricity Act 2003, Section 79

१२ OECD (2021), Driving Performance at Brazil's Electricity Regulatory Agency, The Governance of Regulators, OECD Publishing, Paris, <https://doi.org/10.1787/11824ef6-en> .

र नेपालको विद्युत नियमन आयोगको क्षेत्राधिकारलाई तुलना गरी विश्लेषण गर्दा विद्युत नियमन आयोगलाई अदालतलाई भए सरहको अधिकार प्रदान गरी विवाद समाधान गर्नको निमित्त अझै अधिकार सम्पन्न बनाइएको देखिन्छ ।

४. विवाद समाधान गर्ने अधिकारको कानून बमोजिम र न्यायको मान्य सिद्धान्त बमोजिमको प्रयोग

४.१ विवाद समाधानको अधिकार जति उपयोगी देखिन्छ त्यसको उपयुक्त र रितपुर्वक प्रयोग भने सिमित जनशक्ति र कानुनी कार्य सम्पादन गर्ने पर्याप्त पूर्वाधार बिना निकै कठिन हुने गरेको छ । विवाद समाधानको चरणमा पुग्नु पूर्व निवेदन, उजुरी, दाबीपत्र, म्याद सूचना तामेल गर्ने, प्रतिउत्तरपत्र लगायतको दर्ता देखि आदेश गर्ने, निर्णय गर्ने, फैसला गर्ने, मिलापत्र गर्ने लगायतका फैसला कार्यान्वयनका चरणसम्म गरिने न्यायिक कार्यहरू पनि विवादको निरूपणको अभिन्न अङ्ग भएकोले यो अधिकार प्रयोग गर्दा समुचित कार्यविधि अवलम्बन गर्नुपर्छ । यसको अतिरिक्त विवाद समाधानको लागि बन्ने संयन्त्रले प्राकृतिक न्यायको आधारभूत सिद्धान्तहरू जस्तै: निष्पक्ष कारबाही, स्वार्थ बाभिने विषयमा विवाद समाधान गर्न नहुने, सुनुवाईको मौका नदिई निर्णय गर्न नहुने, हदम्याद, अधिकारक्षेत्र, नजिर जस्ता आधारभूत सिद्धान्तहरूलाई समेत अनिवार्य रूपमा पालना गर्नुपर्दछ ।

४.२ त्यसैगरी प्रभावकारी विवाद समाधानको निमित्त विवाद समाधानको लागि निर्माण हुने संयन्त्रको काम कारबाही सम्बन्धी नियन्त्रित कार्यविधिको निर्धारण गर्ने, विवादको औचित्यता र गम्भीरता अनुसार विवादको वग(र्किरण गर्ने, विवादको औचित्यता र गम्भीरता अनुसार विवादमा सुनुवाइको प्राथमिकता निर्धारण गर्ने, विवाद सुनुवाइको समय तालिका पद्धति विकास गर्ने, सूचना प्रविधिमा आधारित अनुमानयोग्य कारबाही व्यवस्थापन गर्ने, निवेदनहरू दर्ता भएपछि यथाशीघ्र सुनुवाई मिति तोकने, पुराना विवादहरूको मुद्दा स्थगनमा निरूत्साहन गर्ने, तोकिएकै दिन सुनुवाइ हुने व्यवस्था गर्ने लगायतको विषयमा पनि ध्यान पुर्याउन जरुरी हुन्छ ।^{१३}

४.३ यसरी विद्युत नियमन आयोगलाई प्राप्त अधिकारको प्रयोग गरी विवाद निरूपण गर्दा त्यस्तो निर्णयमा चित्त नबुझेमा, वा कानुन सम्पत नभएमा पुनरावेदन गर्न पाउने अवधि विवाद समाधानको निमित्त गठन भएको संयन्त्रले विवादको बारेमा निर्णय गर्दा निर्णयमा उल्लेख गरी पक्षहरूलाई समेत सोको जानकारी दिनुपर्दछ । तर रीतपूर्वक म्याद तामेल हुँदापनि प्रतिवाद नगरेको, पक्षहरूले दाबी फिर्ता लिएको, वादी वा दुवै पक्षले तारेख गुजारी थाम्ने अवधि बाँकी नभई विवाद डिसमिस भएको लगायतको विषयमा पुनरावेदनको सूचना दिनु नपर्ने गरी सम्बन्धित कार्यविधिमा नै व्यवस्था गर्नुपर्दछ ।

५. विवाद समाधानको लागि विशिष्टीकृत उपचार

५.१ अन्तर्राष्ट्रिय ऊर्जा क्षेत्रमा उत्पन्न हुने विवादहरू जिटिल एवम् प्राविधिक हुन्छन् र यससँग जोडिने परियोजनाको लागत र विवादित मूल्य पनि सामान्य हुँदैनन् । संयुक्त उपक्रमका साफेदारहरू बीच उत्पन्न हुने विवाद, उत्पादक, प्रसारक, वितरक, उपभोक्ता, विद्युत व्यापार तथा महसुल निर्धारण सम्बन्धी आईपर्ने विवादहरू मुख्य गरी उर्जा क्षेत्रसँग उत्पन्न हुने विवादहरू हुन् । यसरी उत्पन्न हुने विवादहरूको प्रभावकारी समाधान नभएमा ऊर्जा क्षेत्रमा अनुचित र जोखिमपूर्ण परिणामहरू उत्पन्न हुने गरेको पाइन्छ । तसर्थ, विवादहरूको प्रभावकारी समाधान गर्ने

13 Fed . Energy Regul . Comm'n, *Dispute Resolution Service Brochure* (Apr . 2020), <https://www.ferc.gov/sites/default/files/2020-04/Dispute%20Resolution%20Service%20Brochure.pdf> .

वातावरण निर्माण गर्नको लागि राज्यले छुट्टै संयन्त्र वा नियामक निकाय स्थापना गर्ने गरेका छन् । तर विवा(दहरुलाई न्यायिक निरूपणको दायरामा लाग्नु अघि उत्पन्न हुने विवादको जोखिम न्युनीकरण गर्नको लागि परियोजनासँग सम्बन्धित भएर भविष्यमा आईपर्न सक्ने विवाद र त्यसले निम्त्याउने जोखिमको बारेमा सचेत भई उत्पन्न हुने र अन्ततः समाधान हुने बिन्दुसम्म विवादहरूको पूर्वानुमान गरी सम्भौता गर्नुपर्दछ १४ । ऊर्जा क्षेत्रमा आईपर्ने विवादको समाधानको निमित्त विविध विविधरू प्रयोग हुने गरेको पाईन्छ । यसमा मध्यस्थता, मेलमि(लाप, विशेषज्ञद्वारा निर्धारण र विवाद समाधानको संयन्त्र गठन गरी विवाद समाधान हुने गरेको पाइन्छ । कस्ता विवादमा के कस्तो विवाद समाधानको उपाय अवलम्बन् गर्ने भन्ने सम्बन्धमा परियोजना सम्बन्धी सम्भौतामा नै उल्लेख गरिएको हुन्छ ।

५.२ यसरी ऊर्जा क्षेत्रमा आउने सम्भावित विवादहरूको जटिलता र विविधतालाई दृष्टिगत गर्दा सबै प्रकारको विवाद समाधानको निमित्त समान रूपमा लागू गर्न सकिने एकै प्रकारको समाधान विधि उपयुक्त नहुने देखिन्छ । तर, प्रचलनमा भने साना तिना विवादहरूमा वा पूर्वनिर्धारित सीमित विषयहरूका लागि विज्ञद्वारा गरिने निर्क्योल (expert determination) बाट विवाद समाधान गर्ने प्रचलन रहेको छ । त्यसपश्चात प्रारम्भिक चरणमा अनिवार्य आपसी छलफल वा वार्ता गर्ने र सोबाट समेत विवाद हुन नसके परियोजनासँग सम्बन्धित सम्भौताको सम्बन्धित दफा अनुसार मध्यस्थताद्वारा विवाद समाधानको प्रकृया अघि बढाउने प्रचलन रहेको छ ।

५.३ त्यसैगरी उर्जा क्षेत्रमा उत्पन्न विवाद समाधानको लागि कुन विधि उपयुक्त हुन्छ भन्ने निर्धारण गर्दा विदेशी लगानीकर्ता र अन्तर्राष्ट्रिय पक्षहरूको संलग्नता हुने विवादहरूमा सरोकारवालाहरूले परिचित विवाद समाधान विधि प्रणाली अपनाउने प्रयत्न गर्ने भएकोले अन्तर्राष्ट्रिय मध्यस्थता (international arbitration) लाई प्राथमिकता दिने गरेको पाईन्छ । अन्तर्राष्ट्रिय मध्यस्थताको मुख्य विशेषताको रूपमा तटस्थता (neutrality), गोपनीयता (confidentiality) र विशेषज्ञ निर्णयकर्ताहरूको भुमिका (specialist decision-makers) हुने गरेकोले यो विवाद समाधान विधि सर्वाधिक प्रचलनमा रहेको छ । यहाँ विचारणीय के छ भने अदालतभन्दा बाहिर वा विशिष्टीकृत विद्युत नियमन आयोगबाट प्राविधिक वा व्यवसायिक विवादहरूसम्म समाधान हुनसक्ने तर सार्वजनिक सम्पत्ति, नीति निर्माणमा आधारित निर्णयहरू, र सार्वजनिक हितसँग प्रत्यक्ष सरोकार राख्ने विषयलाई अदालतले सोभै ग्रहण गर्न सक्ने अवस्था विद्यमान रहन्छ । यसकारण सरकारको पूर्ण वा आंशिक स्वामित्व रहने वा कुनै पनि प्रकारको नियन्त्रण रहने परियोजनाहरूको हकमा मौलिक अधिकारको उल्लङ्घन वा कानुनको उल्लङ्घन भएमा नियमित अदालत मार्फतको विवाद समाधानलाई निषेध गर्न सकिँदैन । साथै, विद्युत नियमन आयोगलाई प्राविधिक वा व्यवसायिक विवाद समाधान गर्ने अधिकार प्रदान गरिएकोले स्थानीय तहले लागू गरेको कार्यविधिको पालनामा भएको त्रुटि वा राज्यको नियामक निकायले तय गरेको नियम, मापदण्ड वा निर्देशिकाको अनुपालनसँग सम्बन्धित विवादहरूको निरूपण नियमित अदालती प्रकृया^{१५} मार्फत भएमा थप विश्वसनीय र प्रभावकारी हुनजान्छ ^{१६} ।

14 Supreme Court of Nepal, *Annual Report 2022* (May 2023), https://supremecourt.gov.np/court/public/media/2023_05/fc55acdd431b6f211e397c213f4c7080.pdf .

15 Global Hydrogen Organization, *Contracting Guidance: Dispute Resolution* (Dec . 2022), https://gh2.org/sites/default/files/2022-12/GH2_Contracting%20Guidance_Dispute%20Resolution_2022.pdf

16 Global Hydrogen Organization, *Contracting Guidance: Dispute Resolution* 17–18 (Conclusion) (Dec . 2022), https://gh2.org/sites/default/files/2022-12/GH2_Contracting%20Guidance_Dispute%20Resolu-

५.४ माथि विवेचना गरिए अनुसार विशुद्ध व्यापारिक विवाद समाधान गर्दा मध्यस्थता मार्फत तथा मौलिक अर्थकारको उल्लङ्घन र कानुनी त्रुटि संलग्न हुने विवादहरूमा नियमित अदालत मार्फत विवाद निरुपण हुने गरेको पाइन्छ । विद्युत नियमन आयोग ऐन, २०७४ को दफा १८ (५) ले पनि पक्षहरूको स्वायत्तताको सिद्धान्तलाई अज्ञीकार गर्दै विवाद समाधानको लागि मध्यस्थतामा जान सक्ने विकल्पलाई सीमित गर्न खोजेको छैन । तसर्थ अनुमतिप्राप्त व्यक्तिहरूबीच उत्पन्न हुने केही विशुद्ध व्यापारिक विवादहरूको निरुपण गर्ने अधिकार विद्युत नियमन आयोगलाई प्रचलित ऐनले प्रदान गरेको भएतापनि दफा १८(५) बमोजिम पक्षहरूको स्वायत्ततालाई अझुस लाउने गरी अधिकारक्षेत्र प्रयोग नगर्दा उचित हुन्छ । मध्यस्थताको विकल्पको रूपमा विद्युत नियमन आयोगले अधिकार क्षेत्र प्रयोग गरी विवाद समाधान गर्ने हो भने आयोगले आफ्नो विशेषज्ञता र अनुभव वृद्धि गर्दै निष्पक्ष, प्रभावकारी र दक्षतापूर्वक समाधान गर्न सक्षम निकायको रूपमा आफुलाई स्थापित गराउन जरुरी छ ।

६. निष्कर्ष

६.१ हाल नेपालको विद्युत क्षेत्रमा अनुमतिपत्र प्राप्त व्यक्तिहरू बीच उत्पन्न हुने विवादहरू प्रायः नेपाल विद्युत प्राधिकरण (NEA) र स्वतन्त्र विद्युत उत्पादकहरू (IPPs) बीच उत्पन्न हुने विवादहरू देखिन्छ । यस्ता विवादहरूलाई वर्गीकरण गर्दा; (क) ग्रिड जडान वा परियोजना संचालनमा ल्याउन भएको ढिलाइ; (ख) विद्युत उत्पादन प्रतिबद्धता (deemed generation) तथा आपूर्ति कटौती (curtailment) बापतको क्षतिपूर्ति सम्बन्धी विवाद; (ग) विद्युत खरिद सम्झौता (PPA) का शर्तहरूको पालना नगर्नु वा भुक्तानीमा ढिलाइ भई उत्पन्न भएको विवाद; (घ) काबु बाहिरको परिस्थिति force majeure र सम्झौता खारेजी (termination) सम्बन्धी दफाहरूको व्याख्या सम्बन्धी विवाद; तथा (ड) वातावरणीय दायित्वहरूको पालना सम्बन्धी विवादहरू लगायतको विवादहरू मुख्यत रहन्छन् । यस्ता विवादहरूको समयभित्र समाधान नहुँदा विद्युत खरिद सम्झौताहरूको सफल कार्यान्वयन नभएको प्रशस्त उदाहारणहरू छन् । समय भित्र, निष्पक्ष र प्राविधिक रूपमा दक्ष विवाद समाधान गर्नसक्ने संयन्त्रको अभावले धेरै अवस्थामा दीर्घकालीन अन्योलता, वित्तीय उत्तरदायित्व र लगानीकर्ताको विश्वासमा कमी आउने अवस्था सिर्जना हुने गरेको छ ।

६.२ विद्युत नियमन आयोग ऐन तथा नियमावलीले विद्युत उत्पादन, प्रसारण, वितरण र आपूर्तिसँग सम्बन्धित विवादहरूमा विद्युत नियमन आयोगलाई विवाद समाधान गर्ने अधिकार प्रदान गरेको भएतापनि विद्युत नियमन आयोगले विवाद समाधान सम्बन्धी अधिकार विश्वव्यापी नियामक मापदण्डहरूसँग मेल खाने गरी नीति, कार्यालय वा निर्देशिकाहरू निर्माण गर्नुपर्दछ । यस्तो नभएमा आयोगको विवाद समाधान सम्बन्धी कारबाहीमा पक्षहरू बाध्यात्मक रूपमा सहभागी नहुने जोखिम उत्पन्न हुने र विद्युत क्षेत्रको विवाद समाधानमा एक प्रकारको नियामक रिक्तता (regulatory vacuum) पैदा हुने सम्भावना रहन्छ । त्यसैगरी, विवादको निरुपणमा पारदर्शिता, एकरूपता र सम्भाव्यता (उच्चभम्भउत्तबदर्षितथ) कायम राख्न विद्युत नियमन आयोगले आफ्ना विवाद समाधान सम्बन्धी निर्णयहरू प्रकाशित गर्नु आवश्यक छ ।

६.३ विद्युत नियमन आयोगमार्फत विवाद समाधान संयन्त्रको प्रभावकारी कार्यान्वयन सुनिश्चित गर्न आयोगले स्पष्ट कार्यालयिताहरूको औपचारिक विवाद समाधान प्रक्रिया स्थापना गर्नु अत्यावश्यक देखिन्छ । के-कस्ता

अवस्थामा मध्यस्थता मार्फत विवाद समाधान गर्नलाई पक्षलाई स्वायत्तता प्रदान गर्ने र कस्तो अवस्थामा सोभै विद्युत नियमन आयोगले विवाद समाधानको क्षेत्राधिकार प्रयोग गर्ने भन्ने विषयमा स्पष्ट विधि निर्माण गरी न्याय निरूपण गर्ने प्रकृया अनिवार्य अवलम्बन गर्नुपर्ने चरणहरूको लागि विनियमावली लागू गर्नुपर्ने छ । मध्यस्थताको विकल्पमा विद्युत नियमन आयोगले अधिकारक्षेत्र प्रयोग गर्दा स्वदेशी तथा विदेशी लगानीकर्ताहरु विश्वस्त हुन सकेमा मात्र स्वदेशी तथा विदेशी लगानीकर्ताले विद्युत नियमन आयोगलाई विवादहरु निरूपणको लागि सुम्पने जोखिम उठाउनेछन् । यसको अतिरिक्त अनुमति प्राप्त व्यक्तिहरु बिचको विवाद बाहेक अनुमतिपत्र प्राप्त व्यक्तिले गरेको कुनै निर्णयमा चित्त नबुझेको वा निजले गरेको कार्यबाट आफुलाई मार्का परेको सम्बन्धी विवादमा विद्युत नियमन आयोगले प्रारम्भिक तहमै समाधान गर्ने उपयुक्त निकायको रूपमा विद्युत नियमन आयोगको आफूलाई स्थापित गर्नुपर्नेछ ।

स्वच्छ र प्रतिस्पर्धी बजार : उपभोक्ताको सार्वभौम आधार

कृष्णप्रसाद भण्डारी "मार्सेली" ^१

विज्ञको भनाइ

नेपाल सरकारका पूर्व मुख्यसचिव डा. विमलप्रसाद कोइराला भनुहुन्छ "भ्रामक बजार सूचना र मनलाग्दो मूल्य प्रणा(लीका कारण हाम्रो बजार एकाधिकार र मिलोमतोबाट संचालित बजार बन्दै गएको छ । प्रतिस्पर्धाले श्रृजना गर्ने मूल्य सन्तुलन देखिदैन । कृत्रिम अभाव श्रृजना गरी चर्को मूल्य लिने उपर राज्यले गर्नुपर्ने अनुगमन कमजोर छ ।"

यसैगरी बजार शास्त्रका प्राध्यापक रमेशचन्द्र पौडेलका अनुसार "स्वच्छ बजार विकासको सवाल केवल उपभोक्ताको आर्थिक हित रक्षासम्म मात्र सीमित हुँदैन । यो सबै खाले वस्तु तथा सेवा प्रदायक व्यवसायीहरूलाई दीर्घकालीन हि(तसँग पनि उत्तिकै सरोकार राख्दछ । सिंगो देशको अर्थतन्त्रलाई स्थायित्व र समृद्धि प्रदान गर्दछ ।"

उपभोक्ता अधिकारको पृष्ठभूमि

"क्रेता होसियार हाँ" भन्ने अवधारणालाई पार गर्दै "बिक्रेता होसियार हाँ" भन्ने मान्यता स्थापना भएपश्चात् सन् १९६२ मार्च, १५ मा अमेरिकन राष्ट्रपति जोनआफ केनडीको अभियानमार्फत उपभोक्तावादले मान्यता पाएको हो । उपभोक्ता(वाद एक सामाजिक र आर्थिक व्यवस्था हो । जसले वस्तु तथा सेवाका क्षेत्र र उपभोक्ताका अधिकारका विषयमा अध्ययन गर्दछ । अधिकारहरूको पनि अधिकार अर्थात् जनजीविकाको अधिकार हो उपभोक्ता अधिकार । यस अर्थमा वस्तु तथा सेवाको छनौट, सुनुवाई, सूचना, क्षतिपूर्ति, शिक्षा, स्वास्थ्य र आधारभूत वस्तु तथा सेवामा उपभोक्ताको सहज पहुँचको अधिकार नै उपभोक्ता अधिकार हो ।

विश्व उपभोक्ता अधिकार दिवस मनाउने प्रचलन

विश्वभर उपभोक्ता अधिकार सुनिश्चित गर्न संयुक्त राष्ट्रसंघ, विश्व व्यापार संगठन र अन्य अन्तर्राष्ट्रिय निकायहरूसंग सहकार्य गर्ने उद्देश्यकासाथ सन् १९६० मा स्थापना भएको कन्जुमर इन्टरनेशनलमा विश्वका १०० देशका २०० भन्दा बढी उपभोक्ता संस्था आवद्ध छन् । प्रत्येक अंग्रेजी वर्षको १५ मार्चका दिन यस संस्थाले तय गरेको अन्तर्राष्ट्रिय नारा सहित विश्व उपभोक्ता अधिकार दिवस मनाउने गरिएको छ । नेपालले पनि प्रत्येक वर्ष राष्ट्रिय नारा तय गरी यो दिवस मनाउँदै आएको छ ।

^१ लेखक उपभोक्ता जागरण अभियान-नेपालका संस्थापक अध्यक्ष हुनुहुन्छ — सम्पादक

उपभोक्तावादको सिद्धान्त

उपभोक्तावादको सर्वमान्य सिद्धान्त अनुसार प्रत्येक उपभोक्ता आफै सचेत हुनुपर्छ । उपभोक्तालाई सचेत र जागरूक पार्ने दायित्व सरकार तथा वस्तु वा सेवा उत्पादन, आयात, संचय र विक्रीवितरण गर्ने व्यवसायीको हुन्छ । वस्तु र सेवाका प्रदायक उपभोक्ताप्रति जिम्मेवार हुनुपर्दछ । उपभोक्ता नभई बजार चल्दैन । उपभोक्ता बजारका सार्वभौम हुन् । तसर्थ, बजारले उपभोक्तालाई सम्मान गर्नुपर्दछ ।

तर, न्यून चेतना, न्यून कार्य तत्परता र न्यून श्रोत साधन र असंगठित अवस्थाका उपभोक्ता अनि ज्यादै सम्पन्न, ग्रोत साधनयुक्त राज्यको उच्च नीति निर्मातालाई सहजै प्रभाव पार्न सक्ने व्यवसायिक संगठनका कारण नेपाली बजार उपभोक्तावादबाट निर्देशित भई स्वच्छ र प्रतिस्पर्धी हुन सकेको छैन । पैसा र बाहुबलीको प्रभुत्व बढेको कारणले दण्डहीनता मौलाएको छ । आम उपभोक्तालाई विधिको शासनको अनुभूति हुन छाडेको छ ।

नेपालमा उपभोक्ता अधिकारका लागि भएका प्रयास

नेपालको सन्दर्भमा अध्ययन गर्दा राजा जयस्थिति मल्लको समयबाट उपभोक्ता अधिकारलाई सम्बोधन गर्ने प्रयास भएको पाइन्छ । यो समयमा नापतौलको लागि प्रचलनमा ल्याइएको मानापाथी, ढकतराजुलाई उदाहरणको रूपमा लिन सकिन्छ । यसैगरी ‘न्याय नपाए गोखर्खा जानु’ भने राम शाहको समयको भनाइले पनि वस्तु र सेवाको बजारमा सुशासन कायम थियो भन्ने पुष्टि हुन्छ । वि.सं. १९१० को पहिलो लिखित कानुन ‘मुलुकी ऐन’ मा ईलाज गर्ने महल, भारा खेतालाको महल, खोटा चलनको महल आदि व्यवस्था गरी उपभोक्ता अधिकारलाई सुरक्षित गरिएको थियो ।

उपभोक्तावादको सिद्धान्तबाट निर्देशित भई वि.सं. २०४३ मा आयातित धुलो दूध बहिष्कार गरिएको थियो भने वि.सं. २०४५ मा साहना प्रधानको नेतृत्वमा काठमाडौँमा रितो गाग्री प्रदर्शन सहित उपभोक्ताले सहज रूपमा पानी पाउनुपर्ने माग गर्दै आन्दोलन गरिएको थियो । वि.सं. २०४६ पश्चात् उपभोक्ता अधिकार प्राप्तिका लागि वि.सं. २०४७ मा आन्दोलन गरियो । वि.सं. २०४८ मा उपभोक्ता अदालत सहितको कानुनी अधिकार प्राप्तिका लागि आन्दोलन भएको थियो । वि.सं. २०५३ मा मनमोहन अधिकारीद्वारा संसदमा उपभोक्ता अधिकार संरक्षण सम्बन्धी विधेयक प्रस्तुत गरिएको थियो । उक्त विधेयकले वि.सं. २०५४ मा ऐनको रूप लिएपश्चात् वि.सं. २०५५ वैशाख १ गतेबाट उपभोक्ता संरक्षण ऐन, २०५४ मा लागु गरियो ।

विगतमा पनि अत्यावश्यक वस्तु संरक्षण ऐन, २०१२, प्रतिलिपि अधिकार ऐन, २०१२, अत्यावश्यक सेवा सञ्चालन ऐन, २०१४, खाद्य ऐन २०२३, स्टाण्डर्ड नाप र तौल ऐन, २०२५, कालो बजार तथा केही अन्य सामाजिक अपराध र सजाय ऐन, २०३२, औषधि ऐन, २०३५, नेपाल गुणस्तर (प्रमाण चिन्ह) ऐन २०३७ जस्ता कानुनहरूमार्फत उपभोक्ताको जीउ, ज्यान, स्वास्थ्य र सम्पत्तिको हानि नोक्सानी हुन नदिन सरकारी प्रयास भएको भए पनि उपभोक्ता हित संरक्षण ऐन, २०५४ र उपभोक्ता हित संरक्षण नियमावली, २०५६ पहिलो पटक उपभोक्ताका अधिकारहरूलाई सम्बोधन गर्न ल्याइएको उपयुक्त कानुनी व्यवस्था हो । वि.सं. २०७२ को संविधानमा मौलिक हक्को रूपमा उपभोक्ता हकलाई सुनिश्चित गरिएपछि उपभोक्ता संरक्षण ऐन, २०७५ र नियमावली, २०७६ मौलिक कानुनको रूपमा जारी भई लागु भएका छन् । उपभोक्ता अधिकारलाई संरक्षण गर्ने सिलसिलामा प्रतिस्पर्धी प्रबर्द्धन तथा बजार संरक्षण ऐन, २०६३ समेत जारी भई कार्यान्वयनमा आएको छ । पछिल्लो समयमा काठमाडौँ उपत्यका तीन जिल्ला काठमाडौँ, ललितपुर

र भक्तपुर हेर्ने गरी उपभोक्ता अदालतसमेत स्थापना गरिएको छ ।

हाम्रो बजारको अवस्था

नेपालको संविधानको धारा ४४ मा उपभोक्ता हक सुनिश्चित गरिएको छ । धारा ५१ घ ७ मा कालाबजारी, एकारी धकार, कृत्रिम अभाव शृङ्जना गरी प्रतिस्पर्धा नियन्त्रण गर्न नहुने उल्लेख छ । उपभोक्ताको संवैधानिक हक संरक्षणका लागि मौलिक कानून उपभोक्ता संरक्षण ऐन २०७५ र नियमावली २०७६ कार्यान्वयनमा छन् । क्षेत्रगत कानूनहरू पनि कार्यान्वयनमा छन् । संयुक्त बजार अनुगमन निर्देशिका अनुसार बजार अनुगमन पनि भइरहेको छ । सुशासन ऐन २०६४ ले नेपाल सरकारका प्रत्येक पदाधिकारीहरूको अधिकार समेत परिभाषित गरेको छ । राज्यको क्षमता अनुसार साधन, स्रोत र जनशक्तिको पनि उचित प्रवन्ध गरिएको छ । उपभोक्ता अधिकारको पैरैवी गर्ने संस्थाहरू पनि एक दर्जनभन्दा बढी छन् । तर पनि, नेपाली बजार स्वच्छ र प्रतिस्पर्धी हुन सकेको छैन । वस्तु र सेवाका उपभोक्ताले ठिगिनु परेको छ । आजका दिनमा नेपाल सरकारलाई बजार सुशासन चुनौती बनेको छ ।

हाम्रो बजार स्वच्छ छैन । आम उपभोक्ता वस्तु र सेवाका प्रदायकबाट पीडित छन् । वस्तुको मूल्य, गुणस्तर र तौलमा उपभोक्ता ठिगिएको अवस्था छ । अत्यावश्यक सेवामा नियमितता छैन । नागरिक सेवा प्रवाह गुनासो मुक्त छैन । नागरिक सेवा भनसुनबाट प्रभावित छ । विषादिलाई औषधी भनी जथाभावी प्रयोग गर्दा तरकारी र फलफूलमा भएको विषादिको अवशेषले आम उपभोक्ताको जीउ, ज्यान, स्वास्थ्य र सम्पत्तिमा हानी पुगिरहेको छ । विषादिका कारण एलर्जी र बाँझोपनदेखि क्यान्सरसम्मका रोगबाट उपभोक्ता ग्रसित छन् । जङ्गफुड अर्थात् प्याकेटका फूडहरूको विगर्गी छ । कुखुरा, खसी र गाई-भैसीलाई दिइएको एन्टिबायोटिक्सको प्रभाव मासु र दूध प्रयोग गर्ने उपभोक्तामा समेत परिरहेको छ । रसायनयुक्त कोल्डडिक्स, विषाक्त निक्कलले भरिएका चकलेट, क्याफिनको मात्रा अधिक भएको रेडबुल र अत्यधिक जलेर कार्बोनिक रियाक्सन भैसकेका तेलमा पकाइएका परिकारले जनस्वास्थ्यमा असर गरिरहेको छ । धुलो, धुवाँ र अत्यधिक जामका कारण नाकबाट भित्र पस्ने सीसाका सूक्ष्म कण र कार्बनले उपभोक्ताको फोकसोमा असर गरिरहेको छ । दम र मुटु रोगको प्रकोप बढ्दो छ । धुलाम्मे र हिलाम्मे सडक भत्केका ढल तथा नाला र सडक विस्तारको क्रममा भत्काइएका घरहरूको निर्माण कार्य द्रुतगतिमा हुन नसकदा सडकको नाला, खाल्डामा परेर स्कूलका विद्यार्थीले ज्यान गुमाउनु परेको उदाहरण छ । सामान्य दुर्घटनाको त लेखाजोखा नै छैन । वस्तुको क्षेत्रमा मात्र होइन सेवाका क्षेत्रबाट पनि उपभोक्ता पीडामा छन् । खानेपानी, बिजुली, टेलिफोन लगायतका सेवाहरू नियमित र उपभोक्ता मैत्री नभएको अवस्था छ ।

वस्तु र सेवाको बजारमा उतारचढाव हुँदा स्वभाविक रूपमा मूल्यवृद्धि हुन्छ । तर, हाल हाम्रो बजारमा सिमेन्ट लग (यतका निर्माण सामग्री एवम् खाद्यान्तको मूल्य अस्वभाविक रूपमा वृद्धि भएको अवस्था छ । सिमेन्ट र छडको मूल्य वृद्धि मिलोमतोमा भएको गुनासो आइरहेको यसै अवधिमा नेपाल सरकारले कालोबजारी तथा केही सामाजिक अपराध सम्बन्धी ऐन, २०३२ (हालसम्मको संशोधन) मा अध्यादेश मार्फत संशोधन गरी बीस प्रतिशतभन्दा बढी मुनाफा लिन नपाउने दफा हटाएर अस्वाभाविक मूल्यवृद्धिलाई कानूनी मान्यता दिएको आम उपभोक्ताको आरोप छ । समग्रमा भन्नुपर्दा हाम्रो वस्तु र सेवाको बजार उपभोक्ता मैत्री छैन ।

नेपालमा बिजुली बत्तीको ऐतिहासिक पृष्ठभुमि

नेपालमा बिजुली बत्तीको ऐतिहासिक पृष्ठभूमि केलाउँदा बेलायत सरकारको सहयोगमा निर्माण भएको फर्पिंड जलाई विद्युत आयोजना पहिलो हो । तत्कालीन राणा प्रधानमन्त्री चन्द्रशमशेरले वि.सं. १९६४ मा बेलायतको भ्रमण गरेका र बेलायतबाट फर्किएपछि सोही वर्ष यो योजना सुरु भई वि.सं. १९६८ मा पुरा भएको थियो । बेलायत सरकारको सहयोगमा बनेको ५०० किलोवाट क्षमताको यो आयोजनामा प्राविधिक सल्लाहका लागि बेलायतको जनरल ईलेक्ट्रीक कम्पनीबाट एकजना इन्जिनियर समेत ल्याइएको थियो । काठमाडौंबाट १२ कि.मि. दक्षिण-पश्चिममा रहेको फर्पिंड जलविद्युत आयोजना नै नेपालमा बिजुली बत्ती उत्पादन गर्ने र उपभोक्तालाई वितरण गर्ने पहिलो आयोजना हो ।

बेलायत सरकारको पूर्ण आर्थिक सहयोग रु ७ लाख १३ हजारको लागतमा निर्माण भएको फर्पिंड लघु जलविद्युत आयोजना २०३८ देखि बन्द छ । भनिन्छ काठमाडौंमा आवादी बढेर पानीको अभाव भएपछि पानी वितरणको व्यवस्था मिलाउन यो आयोजना बन्द गरिएको हो ।

विद्युत नियमन आयोग र उपभोक्ताका प्रश्न

नेपाल सरकारले जलविद्युतको उत्पादन वृद्धि, सहज र गुणस्तरीय आपूर्ति एवम् उपभोक्ताका गुनासालाई सम्बोधन गर्न स्वतन्त्र विद्युत नियमन आयोग गठन गरेको छ । विद्युत नियम आयोग ऐन, २०७४ को 'प्रस्तावना'मा "विद्युत उत्पादन, प्रसारण वा व्यापारलाई सरल, नियमित, व्यवस्थित तथा पारदर्शी बनाई विद्युतको माग र आपूर्तिमा सन्तुलन राख्न, विद्युत महसुल नियमन गर्न, विद्युत उपभोक्ताको हक र हित संरक्षण गर्न, विद्युतको बजारलाई प्रतिस्पर्धात्मक बनाउन तथा विद्युत सेवालाई भरपर्दो, सर्वसुलभ, गुणस्तरयुक्त तथा सुरक्षित बनाउन" भनिएको छ ।

नेपालको कुल विद्युत उत्पादन क्षमताको लगभग ९५ प्रतिशत जलविद्युतबाट विद्युत उत्पादन हुने हुँदा उपभोक्ताले स्पष्ट, नियमित र सुरक्षित विद्युत सेवाको उपभोग गर्न पाउनुपर्छ । विद्युत प्रयोगकर्ताले गरेको गुनासोको उचित सुनुवाई र जवाफ पाउने अधिकार उपभोक्ताको हो । यी र यस्ता उपभोक्ताका अधिकारलाई विद्युत नियमन आयोगले सम्बोधन गर्न सकेमा मात्र आयोगको औचित्य प्रमाणित हुनेछ । आजका दिनमा विद्युत उपभोक्ताले प्राधिकरणबाट विलिङ र पटकपटक हुने लोडसेडिङ अर्थात् अव्यवस्थित विद्युत आपूर्तिबाट दुःख पाएका छन् । धेरै उपभोक्ताले मिटर जडान एवम् सेवामा समस्या भोगेका छन् । सेवा प्रवाहमा कन्जुस्याइँ, नयाँ जडानमा ढिलाई, विद्युत दुर्घटनाको जोखिम लगायतमा पटकपटक उपभोक्ताले गुनासो गर्नुपर्ने र समयमा गुनासो सुनुवाइ नहुँदा उपभोक्ता पीडामा पर्नुपरेको आजको अवस्थाप्रति नियमन आयोगको गम्भीर ध्यानार्थण हुन जस्ती छ ।

नेपाली अर्थतन्त्रका तीन मुख्य स्तम्भ मध्येको एक जलविद्युत नै हो । सरकारले भोलामा खोला बोकेर हिँडनेहरूलाई निर्मम भएर नियमन गर्दै विद्युत उत्पादन बढाउन सक्नुपर्छ । विद्युतको सहज आपूर्ति हुनसकेमा पेट्रोलियम पदार्थको आयातमा कमी आई व्यापार घाटा घट्ने छ । कृषिको लागि अनुदानमा विद्युत उपलब्ध हुन सकेमा उत्पादन वृद्धि हुनेछ । उत्पादन वृद्धिसहित पुर्वाधार निर्माण भएमा पर्यटन व्यवसायको प्रबढ्दन हुनेछ । यस अर्थमा राष्ट्रको समृद्धिको मूल आधार विद्युत नै भएकाले विद्युत नियमन आयोगले सम्बेदनशील र गम्भीर भएर नीति बनाउने र निर्णय लिने कार्य गर्न जस्ती छ ।

अबको बाटो

- बजार अनुगमनका लागि व्यवस्था गरिएका तीनै तहका बजार अनुगमन समिति केन्द्रीय बजार अनुगमन समिति,

प्रदेश बजार अनुगमन समिति र स्थानीय बजार अनुगमन समितिले कार्ययोजना सहित सक्रिय भएर नियमित रूपमा सार्थक र प्रभावकारी बजार अनुगमन गर्न जरुरी छ ।

- बजार अनुगमन कुन समितिले कुन व्यवसायिक क्षेत्रमा गर्ने भन्ने किटानी गरिनुपर्दछ ।
- उपभोक्ता संरक्षण ऐन, २०५४ ले प्रमुख जिल्ला अधिकारीलाई चिन्दथ्यो । तर, २०७५ ले चिनेको छैन । सहायक प्रमुख जिल्ला अधिकारीलाई निरीक्षण अधिकृत तोकेर मात्र हुन्न । बजार अनुगमनको कार्य जटिल भएकाले जिल्लाको शान्ति सुरक्षाको जिम्मेवारीमा रहेका प्रमुख जिल्ला अधिकारीको संयोजकत्वमा जिल्लाका प्रहरी प्रमुख सदस्य रहने गरी जिल्ला समन्वय समितिको गठनको व्यवस्था हुनुपर्छ ।
- सुशासनका लागि निर्मम भएर कानुनको कार्यान्वयन हुनुपर्छ । विधिसम्मत वस्तुगत नियमनले मात्र सुशासन कायम हुन सक्दछ । गुनासो सुनुवाईलाई प्राथमिकता राख्नुपर्दछ ।
- वस्तु र सेवामा प्रदायकले 'म आफू पनि उपभोक्ता हो' भन्ने महसुस गरेमा मात्र बजार स्वच्छ र प्रतिस्पर्धी हुनसक्दछ ।
- उत्पादनमा गुणस्तरीयता उपभोगमा विवेकशीलता र आपूर्तिमा सहजता आजको खाँचो हो ।
- स्वच्छ र प्रतिस्पर्धी बजार उपभोक्ता संरक्षणको दिगो आधार भन्ने नारालाई सार्थक तुल्याउन बजार अनुगमनका लागि नेपाल सरकारद्वारा नियुक्त निरीक्षण अधिकृतको कार्यसम्पादनलाई बजार अनुगमनको प्रगतिसँग समेत जोड्नुपर्छ ।
- विद्युत उपभोक्ताले आज लोडसेडिड भोगिरहेका छन् । रिभेट हुटको रकम घटेको छ । ग्राहस्थ विद्युत प्रयोगमा मिटरको क्षमताको आधारमा रु. ७५ देखि रु. ३०० सम्म र थ्रिफेज लाइनमा रु. ३०० देखि रु. ६०० सम्म अतिरिक्त शुल्क तिर्नुपरेको छ । विद्युत महशुल निर्धारण गर्दा खर्च र मुनाफासमेत जोडिएको अवस्थामा हुँडै शुल्क लिनु उपभोक्ता मैत्री नीति होइन । तसर्थ यस्तो अतिरिक्त शुल्क हटाउनुपर्छ ।
- एकातर्फ विद्युत शुल्क समयमा नबुझाउँदा लाग्ने जरिवाना अव्यवहारिक देखिन्छ भने अर्कोतर्फ हिजोआज दिनहुँ विद्युत शर्ट भई आगलागीका घटनाहरू बढेका छन् । जरिवाना पुनरावलोकन गर्दै दुर्घटना नियन्त्रणको व्यवस्था गर्नुपर्ने आवश्यकता छ ।

निष्कर्ष

वस्तु र सेवाको बजार स्वच्छ र प्रतिस्पर्धी छैन । हिडदेखि हर्दीसम्म, सुनदेखि नुनसम्म, आलीदेखि थालीसम्म र गोठदेखि ओठसम्मका वस्तुले उपभोक्ताको जीउ, ज्यान, स्वास्थ्य र सम्पत्तिमा हानि पुगिरहेको छ । यसैगरी सेवातर्फ अनलाइन व्यापार, इन्टरनेटसेवा, टेलिफोन सेवादेखि शिक्षा, स्वास्थ्य, बिजुली, पानी लगायत दैनिक सेवा दिने सरकारी अड्डा अदालतबाट पनि उपभोक्ताले ठिगिनु परेको छ । दुःख पाउनुपरेको छ ।

वस्तु र सेवाको बजारलाई स्वच्छ र प्रतिस्पर्धी बनाउन बजारका खेलाडी व्यवसायी, उपभोक्ता, पैरवीकर्ता र नियामक निकाय इमान्दार र आफ्ना मूल्य र मान्यताप्रति प्रतिबद्ध हुनुपर्दछ । तर, व्यवसायी मूल्य र मान्यता अनुसार नचलेको र सरकारका नियामक निकायले विधिसम्मत वस्तुगत नियमन गरेर सुशासन कायम गर्न नसकेको आजको सन्दर्भमा व्यवसायीलाई जति मूल्य राखे पनि हुने गरी कानूनद्वारा छाडा छोड्नु उपभोक्ताको संवैधानिक हकको अपमान गर्नु हो ।

वस्तु र सेवाको बजार समस्यै समस्यामा जकडिएको छ । उत्पादनमा, गुणस्तरमा, नीतिमा, कानुनको कार्यान्वयनमा यत्रतत्र सर्वत्र समस्या देखिन्छ । जबसम्म यी र यस्ता समस्याहरु हल हुदैन् तबसम्म उपभोक्ताको सार्वभौम र्गा(धकारको संरक्षण हुन सक्दैन । हाम्रो बजारमा सुशासनको अभावको कारण उपभोक्ता पीडामा छन् । विधि सम्मत वस्तु र सेवाको नियमन गरेर बजारलाई स्वच्छ र प्रतिस्पर्धी बनाउनुपर्नेमा सो हुन सकेको छैन । बजारमा एकाधिकारपूर्ण, अनुचित र कानूनद्वारा निर्धारित व्यापारिक, क्रियाकलाप हुने गरेका छन् । तीनै तहका सरकार बजार सुशासन कायम गर्ने सवालमा चनाखो भएको देखिदैन ।

सरकार तब लोकप्रिय हुन्छ जब देशमा असल शासन र कुशल प्रशासन हुन्छ । विधिवत वस्तुगत नियमन, छिटोछिरितो र प्रभावकारी सेवा, जनसहभागितामूलक शासन, जनउत्तरदायी प्रशासन, सेवामा पारदर्शिता र जवाफदेहिता, निर्णय प्रक्रियामा सहजीकरण, कानूनको पालना, स्वतन्त्र प्रेस र भ्रष्टाचारप्रति शुन्य सहनशीलता सुशासनका आधार स्तम्भ हुन् । यस अर्थमा लोककल्याणकारी राज्यले आफ्ना नीति तथा कार्यक्रममार्फत वस्तु र सेवाको बजारमा सुशासन कायम गर्न सकेमात्र बजार स्वच्छ र प्रतिस्पर्धी भई उपभोक्ताको हित संरक्षण हुनेछ ।

नियमन र सुशासन

कृष्ण ज्ञावाली

विषय-प्रवेश

कुनै निश्चित उद्देश्य लिएर स्थापित एवं निर्धारित कार्यक्षेत्रमा कार्यरत निजी वा गैर-सरकारी संस्थाको कार्यसम्पा(दन विधिसम्मत होस्, पारदर्शी होस्, त्यसमा स्वेच्छाचारिता नहोस्, जबाफदेहिताको पूर्ण पालना गरियोस्, विधि वा कानुनको निर्माण र कार्यान्वयन गर्दा र गराउँदा न्यायपूर्ण समानताको सिद्धान्त अवलम्बन गरियोस्, बजार अर्थतन्त्रको निर्माप्रहारबाट सीमान्तीकृत उपभोक्ताहरु आहत नहोऊन्, र निजी क्षेत्रका सम्बन्धित उत्पादक वा आपूर्तिकर्ता संस्था(लाई पनि मर्का नपरोस्, उनीहरु बजारको स्वस्थ प्रतिस्पर्धामा सहभागी हुन पाऊन्, उनीहरुको स्वाभाविक र विधिसम्मत आम्दानी र नाफा नघटोस्, बजारमा कुनै एक कम्पनी वा कम्पनीहरुको सांठगांठले कार्टेल सृजना नगरोस्, कृत्रिम मूल्यवृद्धिबाट उपभोक्ताहरु जोगियून् र जोगाइयून् भन्ने हेतुले गरिएको संस्थागत प्रबन्धलाई नै नियमन (Regulatory Arrangement) भनिन्छ । यस्तो प्रबन्ध नीति, कानुन, संगठन, पद्धति, प्रक्रिया एवं कार्यविधि मार्फत गर्ने-गराउने प्रचलन छ ।

यद्यपि नियमन आफैमा सुशासनको संवाहक हो, तर नियमनमै त्रुटिहरु देखिए भने, अर्थात् नियामक संस्थाका विधि, पद्धति र प्रक्रिया न्यायोचित भएनन् भने, नियामक संस्थामा कार्यरत जनशक्ति र नेतृत्व कुशल, सक्षम र सदाचारी भएन भने र यसले गर्दा संस्थाकै साख गिर्न थालेको अनुभव हुन थाल्यो भने त्यहां पनि सुशासनको हस्तक्षेप आवश्यक पर्छ । यसका लागि नियामक संस्थाको कानुन, विधि, पद्धति, प्रक्रिया, जनशक्ति संरचना र कार्यसम्पादनमा सामयिक परिष्कार र परिमार्जन गर्दै रहनुपर्ने हुन्छ ।

नेपालमा विद्युत उत्पादन, प्रसारण, वितरण, व्यापार र ती सबै कार्यको नियमन समेतको काम साबिकमा एकै निकायले अर्थात् नेपाल विद्युत प्राधिकरणले नै गरिआएको हो । नेपाल विद्युत प्राधिकरण ऐन, २०४१ द्वारा २०४२ मा स्थापित यो संस्था त्यसवेला कार्यरत जलम्प्रोत मन्त्रालय अन्तर्गतको विद्युत विभाग र नेपाल विद्युत कर्पोरेशन एवं सम्बन्धित विकास ऋणपत्रहरुलाई विलय र एकीकरण गरी गठन गरिएको थियो । यसरी एकै निकायबाट परस्पर विरोधी प्रतीत हुने कामहरु (जस्तो उत्पादन, प्रसारण, वितरण, व्यापार, मूल्य निर्धारण र नियमन समेत) गराउँदा स्वार्थको द्वन्द्व उत्पन्न हुन सक्छ, कार्यसम्पादनको दक्षता र प्रभावकारितामा हास आउन सक्छ, जबाफदेही र पारदर्शिता क्षीण हुन सक्छ, प्रतिस्पर्धाको अभावमा एकाधिकारबाट मूल्य निर्धारण हुंदा उपभोक्ताहरुलाई विद्युतको मूल्य महंगो पर्न सक्छ, र निरन्तर सुधार र नवप्रवर्तनका काम अवरुद्ध हुन सक्छन् भन्ने दृष्टिकोण राखेर नेपालले समग्र विद्युत वा ऊर्जा क्षेत्रको सुधारको सोंचसहित उक्त कार्यहरुको पृथक्करण (Unbundling) गर्दै जाने नीति लियो । यो नीति २०४६ सालको राजनीतिक परिवर्तनको फलस्वरूप २०४७ मा नयां संविधान जारी भएपछि २०४८ मा नयां निर्वाचित सरकारले सत्ता

सम्हालेसँगै लागू गरिएको आर्थिक उदारीकरणको मूल नीति अन्तर्गत अवलम्बन गरिएको थियो । फलस्वरूप, २०४९ मा नयाँ विद्युत ऐन जारी गरियो र विद्युत उत्पादनका क्षेत्रमा निजी कम्पनीहरूले प्रवेश पाए । विद्युत महसूल निर्धारण आयोग छुट्टै गठन गरियो । तर यतिले मात्र सुधारको गति थामिएन, पृथक्करणको नीतिलाई विश्वव्यापी रूपमै सुधारको शक्तिशाली उपकरणका रूपमा अवलम्बन गरिन थाल्यो र नेपालमा पनि त्यसको व्यापक र आक्रामक प्रभाव पर्यो । विश्व बैंकजस्ता दातृ संस्थाहरूले यो विषयलाई तारन्तर उठाई नै रहे । यसेबीच २०७२ मा राष्ट्रिय प्रसारण ग्रिड कम्पनी र २०७३ मा विद्युत उत्पादन कम्पनी ऋमशः प्रसारण र उत्पादनको काम गर्ने प्राधिकरणका सहायक संस्थाका रूपमा स्थापना गरिए । अन्ततः विद्युत उत्पादन, प्रसारण, वितरण, व्यापार र महसूल निर्धारण सम्बन्धी विद्युत क्षेत्रका सबै गतिविधिहरूलाई नियमन गर्नका निमित वि.सं. २०७४ मा विद्युत नियमन आयोग ऐन पारित भई विद्युत नियमन आयोगको स्थापना गरिएपछि भने विद्युत क्षेत्रको पृथक्करण (Unbundling) को एजेण्डाले करीब-करीब मूर्त रूप लियो । अब आयोगले आफुलाई कानुन बमोजिम प्राप्त अखितयारी र जिम्मेवारीको निवेदन कर्ति इमानदारी र सक्ष(मताका साथ गर्न सक्छ र साथसाथै आयोग स्थापनाको उद्देश्य बमोजिम उसलाई सहजताका साथ काम गर्ने वातावरण कत्तिको उपलब्ध हुन्छ, सरकारले कत्तिको सघाउँछ र स्वयं उसले पनि सरकारसँग वान्छित समन्वय र सामन्जस्य कायम गरेर सहयोग कत्तिको लिन सक्छ, आगामी दिनमा विद्युत क्षेत्रको सुशासन यसैमा निर्भर रहनेछ । किनभने नियमन भनेको सुशासनको अपरिहार्य अंग हो र नियामक संस्था बलियो (अर्थात् सक्षम र सदाचारी) भयो भने मात्र सुशासन कायम हुने हो ।

आयोगको कार्यक्षेत्र र जबाफदेहिता

ऐनको प्रस्तावनामा आयोग स्थापनाको जम्मा पाँचवटा प्रयोजनको उल्लेख गरिएको छ-

- विद्युत उत्पादन, प्रसारण, वितरण वा व्यापारलाई सरल, नियमित, व्यवस्थित तथा पारदर्शी बनाई विद्युतको माग र आपूर्तिमा सन्तुलन कायम राख्ने,
- विद्युत महसूल नियमन गर्ने,
- विद्युत उपभोक्ताको हक र हित संरक्षण गर्ने,
- विद्युतको बजारलाई प्रतिस्पर्धात्मक बनाउने, र
- विद्युत सेवालाई भरपर्दो, सर्वसुलभ, गुणस्तरयुक्त तथा सुरक्षित बनाउने ।

यी प्रयोजन वा उद्देश्यहरू पूरा गर्नका लागि आयोगले सम्पादन गर्नुपर्ने काम, कर्तव्य र अधिकारको उल्लेख गर्दा परिच्छेद ३ मा जम्मा १० वटा शीर्षकमा विस्तृत चर्चा गरिएको छ । यस अनुसार-

- १) विद्युत उत्पादन, प्रसारण, वितरण वा व्यापारको नियमन सम्बन्धी प्राविधिक व्यवस्थापन,
- २) विद्युत महसूल निर्धारण तथा खरीद बिक्री नियमन,
- ३) विद्युत खरीद बिक्री दरमा प्रतिस्पर्धाको सुनिश्चितता तथा उपभोक्ता हित संरक्षण,
- ४) विद्युत उत्पादन, प्रसारण, वितरण वा व्यापारका लागि अनुमतिपत्रप्राप्त व्यक्ति वा संस्थाको सांगठनिक क्षमता अभिवृद्धि तथा संस्थागत सुशासनको सुनिश्चितता,

- ५) विद्युत उत्पादन, प्रसारण, वितरण वा व्यापारका क्षेत्रमा नेपाल सरकारलाई आवश्यक नीतिगत पृष्ठपोषण,
- ६) अनुमतिपत्रप्राप्त व्यक्ति वा संस्थाले सम्बन्धित कानुन वा निर्धारित शर्तबमोजिम कार्य गरे-नगरेकोबारे जांजबुझ तथा निरीक्षण,
- ७) अनुमतिपत्रप्राप्त व्यक्ति वा संस्थाबीच उत्पन्न विद्युत सम्बन्धी विवाद समाधान,
- ८) अनुमतिपत्रप्राप्त व्यक्ति वा संस्थालाई सम्बन्धित कानुन वा आयोगको निर्देशनको अवज्ञा गरेकोमा जरीबाना,
- ९) अनुमतिपत्रप्राप्त व्यक्ति वा संस्थाबाट तोकिएबमोजिम सेवा शुल्क संकलन, र
- १०) विद्युत महसूल निर्धारण गर्नुपूर्व सार्वजनिक सुनुवाइ लगायतका काम आयोगले गर्ने भनी तोकिएका छन् ।

यी काम दक्षता, कुशलता र इमानदारीपूर्वक सम्पादन गर्नु आयोगको कर्तव्य र जिम्मेवारी हुन आउककंछ जसको सम्पा(दनको प्रक्रिया र त्यसबाट निस्कने परिणाम प्रति आयोग जबाफदेही बन्नुपर्ने हुन्छ । वास्तवमा सुशासन भनेकै यही हो । कानुनले दिएको कार्यादेश (काम, कर्तव्य र अधिकार) को पालना र कार्यान्वयन गर्दा विधिपूर्वक (निर्धारित प्रक्रियाको अनुसरण गर्दै, पारदर्शी र सदाचारी ढंगबाट) आवश्यक र उपलब्ध स्रोत-साधन (रणनीति तथा कार्यनीति, वित्तीय प्रबन्ध, उपयुक्त संस्थागत संरचना, सक्षम एवं उत्प्रेरित मानव संसाधन र प्रविधि) को अत्युत्तम परिचालन गर्दै निश्चित प्रतिफल (Output) निकाल्ने गरी गर्नु र त्यो प्रतिफलको बृहत् परिणाम (Outcome or Impact) प्रति जबाफदेही बन्नु नै सुशासन हो । यही कुरा जब संस्था संचालनमा लागू हुन्छ तब त्यहाँ संस्थागत सुशासन भएको मानिन्छ ।

आयोगको ऐनमा सदाचारिता (Integrity) को सुनिश्चितताका लागि केही व्यवस्था गरिएको छ । जस्तो स्वार्थको द्वन्द्व (Conflict of Interest) नहोस् भनाका लागि दफा २५ को उपदफा (४) मा आयोगबाट सेवानिवृत्त भएको पदाधिकारी एक वर्षसम्म अनुमतिपत्रप्राप्त व्यक्तिको कम्पनीको सन्चालक, कर्मचारी वा परामर्शदाताको हैसियतमा कुनै पनि रूपमा संलग्न हुन नपाउने भनिएको छ । त्यस्तै दफा २७ मा आयेगका अध्यक्ष वा सदस्यले आफु आयोगमा नियुक्त भएको मितिले तीस दिनभित्र आफुमात्र नभई आफ्नो परिवारको नामको समेत सम्पूर्ण पेशागत वा व्यावस(अर्थिक कारोबारको विवरण पेश गर्नुपर्ने भनिएको छ । त्यसैगरी दफा २८ ले “नियमनकारी अवसर Regulatory Opportunity को दुरुपयोग हुनेगरी सूचना वा जानकारी चुहाउने वा उपलब्ध गराउनेजस्ता अनैतिक कार्य गर्न रोक लगाएको छ भने दफा २९ ले प्रष्ट शब्दावलीमा “स्वार्थ बाफ्किएमा निर्णय गर्नमा बन्देज” लगाएको छ । त्यस्तै, दफा ३० मा तोकिएबमोजिम पेशागत आचरण पालना गर्नुपर्ने भनेर उल्लेख गरिएको व्यवस्थालाई नियमावली २०७५ को परिच्छेद ७ मा जम्मा २० वटा नियममा समेटेर पूरै त्यसबारे व्याख्या गरिएको छ । यी नियमहरूमा पदीय मर्यादा र अनुशासनको पालना; समयको सम्मान; दान, उपहार, चन्दा, सापटी वा आर्थिक लेनदेनमा निषेध; राजनीतिक तटस्थिता; पूर्व स्वीकृति नलिई वा स्वार्थ बाफ्किने प्रकृतिका आयोगसँग सम्बन्धित समाचार, लेख, वक्तव्य वा भाषणको प्रकाशनमा रोक; साम्प्रदायिक दुर्भावनाको विस्तारमा निषेध; कम्पनीको स्थापना र संचालन तथा व्यापार-व्यवसायमा रोक; विदेशमा स्थायी आवासीय अनुमति लिनमा निषेध, सम्पत्ति विवरण बुझाउनेजस्ता किटानी सहितका आचरणका प्रावधानसँगै आयोगको अहित हुने कार्य गर्न वा आयोगलाई हानि-नोकसानी पार्न नहुने; आयोगको नीति विपरीत हुने गरी कुनै संस्थाको सदस्य हुन नहुने; नेपाल सरकारबाट स्वीकृत नीति बमोजिम कार्य गर्नुपर्ने, व्यावसायिकता र विशेष(

ज्ञाताको संस्कार राख्नुपर्ने; स्वच्छ, तर्कसंगत र सहितेको आधारमा कार्यसम्पादन गर्नुपर्ने, सरोकारवालाको अवधारणा मनन गर्नुपर्ने, तोकिएबमोजिम बाहेक अन्यत्र नोकरी वा सेवा गर्न नहुने जस्ता केही अति सामान्य प्रकृतिका र केही अनुदार प्रकृतिका वा नियन्त्रणमुखीजस्ता लाग्ने (र त्यसले गर्दा वेलाबखतमा विवाद निस्किँ थप व्याख्याको दरकार पर्ने) प्रावधान पनि समाविष्ट छन् ।

अबको बाटो

आयोगको उल्लिखित कार्यक्षेत्र हेर्दा आयोग एउटा विशिष्टीकृत नियामक निकायका रूपमा स्थापित भएको छ । आफ्नो कामलाई चुस्त-दुरुस्त ढंगबाट सम्पन्न गर्नाका लागि यसले तदनुरूपको विशिष्टीकृत जनशक्तिको अपेक्षा राख्दछ । त्यो विशिष्टीकरणले सम्बन्धित क्षेत्रको ज्ञान, सीप र प्रविधिमा पोख्त, इमानदार र निष्ठावान् जनशक्तिको माग गर्दछ । नियामक संस्था भएकाले इमान र सदाचारको आवश्यकता अलि बढी नै पर्दछ, यद्यपि यी गुण सबैतर आवश्यक पर्ने हुन् । किनभने अरु बेइमान भए भने त कम्तीमा नियामक निकाय छ नि भन्ने आड-भरोसा हुन्छ, तर नियामक निकाय नै बेइमान छ भने चाहिँ कहां जाने हो? भनिएला, अदालत छ नि । तर अदालत पनि त एक हिसाबले नियामक संस्था हो । कार्यपालिका र व्यवस्थापिकाको कानुनसम्मत न्यायिक नियमन न्यायपालिकाको जिम्मेवारी हो, यद्यपि शक्ति पृथक्करण एवं नियन्त्रण र सन्तुलनको सिद्धान्त अनुसार राज्यका तीनोटै अंग-व्यवस्थापिका, कार्यपालिका र न्यायप(लिका- को एक प्रकारको नियमन परस्परमा एक-अकाले गर्ने गर्दछन् । त्यसैले त न्यायसम्पादनका माध्यमबाट समग्र मुलुकलाई नै सुशासनको प्रत्याभूति दिने सन्दर्भमा न्यायपालिकाको जिम्मेवारी राज्यका अरु अंगभन्दा अभ बढी रहन्छ र त्यसकारण न्यायपालिकालाई भ्रष्ट हुने छुट कथमपि र कदापि छैन भन्ने तथ्यमा विमर्ति छैन ।

यदि आयोगलाई आफ्नो समग्र जिम्मेवारीको पालनामा सक्षम र इमानदार, कानुनद्वारा निर्धारित उद्देश्यको कार्यान्वयनमा कुशल तथा कामको परिणामप्रति जबाफदेही बनाई आयोगको छवि र साख स्थापित गरी “नियमनको सुशासन” कायम गर्ने हो भने निम्नलिखित पांचोटा पक्षमा विशेष ध्यान पुर्याउनुपर्छ जस्तो मलाई लाग्दछ—

क. कानुनमा सुधार

आयोगको ऐन र नियमले आयोगका पदाधिकारी (अध्यक्ष र सदस्यहरु) को नियुक्ति प्रक्रिया र सेवा, शर्त तोकेको छ । सर्वर्ती हेर्दा अध्यक्ष र सदस्यहरुका लागि तोकिएको शैक्षिक योग्यता, अनुभव र सिफारिसको प्रक्रिया ठीकै देखिन्छ । तर आयोग आफैमा विद्युत वा ऊर्जाजस्तो राष्ट्रको सबभन्दा सम्वेदनशील, दूरगामी एवं रणनीतिक महत्व रहेको क्षेत्रको एकमात्र शक्तिशाली नियामक निकायका रूपमा कानुनद्वारा परिकल्पित भएकाले र अध्यक्ष तथा सदस्यहरुको काम, कर्तव्य र अधिकार एवं पेशागत आचरणका विधि-निषेधका प्रावधानहरु पनि सोही अनुसार व्यवस्थित गरिएकाले यी पदाधिकारीको छनोट र नियुक्ति प्रक्रियालाई अभ उन्नत, स्तरीय, मर्यादित र कठोर (Rigorous) बनाउनुपर्छ भन्ने मलाई लाभ । यसका लागि, कानुनमा सुधार गरी, शैक्षिक योग्यता र अनुभवको मापदण्ड तोकदा अरु विषय-क्षेत्रह(रुभन्दा पनि भरिसक्य विद्युत वा ऊर्जा क्षेत्रसँगै सम्बन्धित विषयहरु तोकने र खासगरी अनुभवका हकमा नियमनको अनुभव हासिल गरेका उम्मेदवारलाई प्राथमिकता दिनेगरी मापदण्ड परिमार्जन गर्नु आवश्यक देखदछु । किनभने अहिले हरेक विधामा उपविधाहरुको विकास भएको छ, विशिष्टीकृत ज्ञान र सीपमूलक क्षमताको माग बढेको छ, प्रविधिसँगको सामान्य भलाकुसारी र साक्षरताले मात्र पुग्दैन, अन्तरंग साक्षात्कार नै आवश्यक हुन गएको छ । त्यसैले परम्परागत हिसाबले अर्थशास्त्र, वाणिज्य, व्यवस्थापन, लेखा, कानुन वा इन्जीनियरिंग भनेर पुग्दैन, के गर्दा ऊर्जा क्षेत्रका सुयोग्य

मान्छे भित्रिन सकछन् भनेर हेरिनुपर्छ जस्तो मलाई लाग्छ । उपाधिको हकमा भने कम्तीमा स्नातकोत्तर भनेको एकदम ठीक छ । अनुभवको म्याद पनि अध्यक्ष र सदस्यहरुका लागि क्रमशः २० र १५ वर्ष उचित छ ।

यसैगरी सिफारिश समितिको गठन पनि मिलेको छैन । नियम ४७ ले अध्यक्षको हैसियत राष्ट्रिय योजना आयोगको सदस्य सरह भनेर तोकेपर्छि सिफारिश समितिको संयोजकमा योजना आयोगका उपाध्यक्षलाई तोक्नु न्यायोचित हुन्छ । सदस्यहरुमा सम्बन्धित क्षेत्रको स्वतन्त्र वरिष्ठ विज्ञ र मन्त्रालयका सचिव रहनुपर्छ । समितिको सचिवको काम चाहिँ नन-भोटिंग हैसियतमा सह-सचिवले गर्न सकछन् । अरु नियामक निकाय भनेपर्छि मन्त्रालयसँग एउटा मर्यादित दूरी कायम राखेर सदाचारिता, स्वायत्तता र विशेषज्ञताका आधारमा काम गर्ने निकायका रूपमा यसलाई स्थापित गरिनुपर्ने हुन्छ, मन्त्रालयका मन्त्री र सचिवहरुसँगको सम्बन्ध सोही अनुरुप पारस्परिक सम्मान र अहस्तक्षेपका आधारमा तय गरिनु उपयुक्त हुन्छ ।

त्यस्तै, आयोगलाई जनशक्ति र वित्तीय स्रोत व्यवस्थापनका विषयमा विस्तारै कसरी स्वायत्त र आत्मनिर्भर बनाउन सकिन्छ, त्यसतर्फ पनि कानुनले पर्याप्त मार्ग प्रशस्त गरिदिनुपर्छ । अर्को कुरा ऊर्जा भन्नाले जलविद्युत मात्र नभई स्वच्छ एवं नवीकरणीय ऊर्जाका अन्य स्रोतहरु (सौर्य, वायु, जैविक, पारमाणविक, हाइड्रोजन, भू-थर्मल, आदि) पनि उत्तिकै महत्त्वपूर्ण भएकाले ती सबैको मिश्रणलाई ध्यान दिएर यस क्षेत्रको विकास गरिनुपर्छ भने कुरालाई मनन गर्दै आयोगको कार्यक्षेत्रमा विस्तारै त्यो पनि समावेश गरिनुपर्छ भने मलाई लाग्छ । त्यसैले यी कुराहरुउपर विचार गरी कानुन परिमार्जन गरिनुपर्ने देखदछु ।

ख. संस्थागत क्षमता अभिवृद्धि

आयोगलाई संस्थागत रूपमा सक्षम र सुदृढ बनाउनका लागि सर्वप्रथम यसलाई निर्णयको स्वायत्तता प्रदान गरिनुपर्छ । विना कुनै राजनीतिक र प्रशासनिक हस्तक्षेप यसले निर्णय गर्ने पाउनुपर्छ । ऐनमा यो कुरा प्रष्टसँग बोलिएको छैन, बोलिनुपर्छ । यद्यपि कानुनी भन्दा पनि कार्यसन्चालनात्मक प्रकृतिको स्वायत्तता (Operational Autonomy) बढी प्रभावकारी हुन्छ भन्ने अरु संस्थाको अनुभवले देखाएको छ । यो भनेको के हो भने आयोगले कानुनप्रदत्त मूल कार्यदिशाको अधीनमा रही आफ्नो कार्य सन्चालन रणनीति बनाएर लागू गर्ने, आफुलाई चाहिने दक्ष र अनुभवी जन(शक्तिको व्यवस्था आफैले गर्ने पाउने, आफुलाई चाहिने वित्तीय स्रोतको प्रबन्ध र परिचालन पनि आफैले गर्नसक्ने, र आयोगको काम सुचारू रूपले सम्पादन गर्नका लागि प्रक्रियागत सरलीकरण, कार्यविधि निर्माण, सरोकारवाला र उपभोक्ताहरुसँग सुसम्बन्धको विकासजस्ता गतिविधिहरु मार्फत आफैले सुधार योजना लागू गर्न सक्ने अधिकार र सुविधाको उपभोग गर्ने पाउनुपर्छ । वित्तीय स्वायत्तता हासिल गर्न सजिलो छैन र समय लाग्छ, तर क्रमशः त्यतातिर उन्मुख चाहिँ हुनैपर्छ । त्यसका लागि कानुनले नै सहजीकरण गरिदिनुपर्छ । सरकारी अनुदान, आफुले उठाउन सक्ने शुल्क र विकास साफेदारको सहयोग यी सबै स्रोतलाई उच्ततम ढंगबाट परिचालन गर्न सक्नुपर्छ । तर यसको अभिप्राय सरकार, खास गरी सम्बन्धित मन्त्रालय, लाई उछ्नेर वा वास्ता नगेर आयोग एकलै दौडिनुपर्छ भने चाहिँ कदापि होइन । कार्यात्मक दृष्टिले स्वायत्त बनाउनुपर्छ भनेपनि यसको अभिभावक भनेको त राज्य हो र त्यो भनेको राज्यको अग्रदृश्य प्रतिनिधि सरकार र अभ त्यसमाथि सम्बन्धित मन्त्रालय नै हो । अभ शुरु-शुरुमा राज्यको अनुदान र जन(शक्ति विना त यो चल्नै सक्दैन । तर नियामक संस्था भएकाले त्यसको मर्यादा राखिनुपर्छ भने मात्र यी पंक्तिहरुको आशय हो । यस सन्दर्भमा अरु देशका नियामक निकायहरुको अनुभवाट पनि सिक्न सकिन्छ । दक्षिण एशियाली

मुलुकहरु खास गरी भारतको केन्द्रीय र राज्य स्तरका विद्युत नियमन आयोगहरु (CERC / SERC) र तिनको साभा मन्चसँग ज्ञान र प्रविधिको साटासाटका लागि सम्वाद र सहकार्य गर्न सकिन्छ ।

ग. प्रविधिक क्षमता निर्माण र त्यसको उच्चतम प्रयोग

आयोगको कामको प्रकृति हेर्दा यसलाई प्राविधिक विशेषज्ञता भएको जनशक्ति अत्यन्तै आवश्यक छ । विद्युत प्रणाली सम्बन्धी प्राविधिक व्यवस्थापन, विद्युत महसूल निर्धारण तथा खरीद-बिक्रीको नियमन, विद्युत बजारमा प्रतिस्पर्धाको कार्यनीति अवलम्बन, जांचबुझ तथा निरीक्षण, विवाद समाधान जस्ता कार्यहरूले विद्युत वा ऊर्जा इन्जीनियरिंग, व्यवस्थापन, चार्टर्ड एकाउन्टेन्सी र कानूनका विशिष्टीकृत विधामा दक्षताको माग गर्दछन् । वास्तवमा मैले यहां प्राविधिक भनेर केवल इन्जीनीयरिंगलाई मात्र भन्न खोजेको हैन, आज हरेक विधा र उपविधामा प्रविधिको प्रयोग हुन थालेको छ र सबै विद्याहरु आ-आफ्नो विशिष्टीकृत एंव विविधीकृत ज्ञान र सीपका कारण प्राविधिक बन्न गएका छन् । अहिले पहिलेको जस्तो प्राविधिक र प्रशासनिक भनेर पारम्परिक सामान्यीकृत वर्गीकरणले पुग्दैन । एक विधा अर्को विधासँग अन्तरसम्बन्धित हुन गएका छन् । तिनलाई जोड्ने काम सूचना प्रविधिले गरेको छ । सूचना प्रविधिमा दक्ष जनशक्ति आयोगलाई अपरिहार्य छ, किनभने त्यसबाट कार्यसंचालन र सेवाप्रवाह प्रणाली सहज, सुलभ र पारदर्शी बन्दछ । त्यसैले आयोगले यस कुरालाई मनन गरी दक्ष मानव संसाधनको प्राप्ति र परिचालन गर्नुपर्छ र तिनलाई उपयुक्त हौसला र सुविधाहरु दिई काममा उत्प्रेरित गर्दै संस्थामै अद्याइरहन सक्नुपर्छ । आजकल योग्य कर्मचारीको उपलब्धता जति दुर्लभ छ त्योभन्दा बढी कठिन उसको निरन्तरता (Retention) छ । सधै बाहिरबाट आफुलाई खांचो पर्दा ल्याउने अनि काम चलाउने गरेर मात्र पुग्दैन, न्यूनतम जनशक्ति आफैसँग सुरक्षित रहनुपर्छ । नियमनको गोपनीयता र सदाचारको दृष्टिले पनि यो जरुरी छ ।

घ. सरोकारवाला तथा उपभोक्ताको विश्वास आर्जन

आयोग देशको सम्पूर्ण विद्युत क्षेत्रको नियामक संस्था भएकाले यसले यस क्षेत्रको विकासमा संलग्न सरोकारवालाहरु (विद्युतको उत्पादन, प्रसारण, वितरण वा व्यापार गर्न कानून बमोजिम अनुमतिपत्र प्राप्त व्यक्ति वा संगठित संस्था, विद्युत क्षेत्रको विकाससँग सम्बन्धित पैरवी, पक्षपोषण वा पृष्ठपोषण गर्ने गैर-सरकारी संस्थाहरु, विज्ञ संस्थाहरु, नागरिक समाज, सन्चार जगत् र, सबभन्दा महत्त्वपूर्ण, उपभोक्ताहरु) को आलोचना र प्रतिक्रिया सुन्ने, सुभाव लिने, उनीहरूलाई आवश्यकतानुसार निर्देशन दिने, नियमन गर्ने, सहजीकरण गर्ने र सेवा-सुविधा प्रदान गर्ने अभिभासा वहन गर्नुपर्दछ । उनीहरूको विश्वास र सहयोग आर्जन नगरी आयोग सफल हुन सक्दैन । यसनिमित आयोगले आफ्नो कार्यक्षेत्रसँग सम्बन्धित सार्वजनिक सुनुवाइ, अन्तरक्रिया, सम्वाद, गोष्ठी जस्ता सार्वजनिक पहुंच (Public Outreach) का कार्यक्रमहरु नियमित रूपमा संचालन गरिरहनुपर्छ ।

ड. आचरणमा सदाचार

जस्तो कि माथि भनिसकियो, नियामक निकाय भएकाले यसका पदाधिकारी तथा कर्मचारीको आचरण सदाचारयुक्त रहनुपर्छ । यसनिमित कानुनले त पर्याप्त व्यवस्था गरेको छ, तर तिनको पालना र कार्यान्वयन भएन भने ती निर्जीव प्रावधानको कुनै अर्थ रहेदैन । त्यसैले आयोग यो कुरामा बढी नै सचेत, सचेष्ट, गम्भीर प्रतिबद्ध रहनुपर्छ । यसका निमित राज्य पक्षबाट वेला-वेलामा आवश्यक र उचित सुभाव, अनुरोध, आग्रह, दबाब र चेतावनी समेत पनि आवश्यक

पर्छै नै, तर मूल आवश्यकता भनेको आयोगको आफै स्व-नियन्त्रण, स्व-अनुशासन र स्व-नियमनको हो । यस कार्यमा बाहिरबाट नागरिक समाज, प्रबुद्ध समुदाय, सन्चार जगत् र विज्ञहरूले पनि सघाउनुपर्छ भन्ने मलाई लाग्छ । यदि यसो हुन सक्यो भने मात्र, अर्थात् आयोगले आफ्नो कार्यसम्पादन स्वच्छ, कुशल र निर्विवाद ढंगबाट गर्न सक्यो भने, आफ्नो आचरणलाई स्व-नियमनका माध्यमबाट सदाचारी राख्न सक्यो भने र सेवाग्राही तथा सरोकारवालाहरूको विश्वास आजीन गर्न सक्यो भने मात्र, आयोगको नियमन “सुनियमन” मा परिणत हुन सक्नेछ ।

पाजी बजार र ऊर्जा क्षेत्रमा नियमन

गणेश कार्की १

नेपालमा जलविद्युत् उत्पादनको इतिहास ११४ वर्ष पुरानो भएपनि ऊर्जा आयोजनाको निर्माणमा निजी क्षेत्रको प्रवेश भई उत्पादन सुरु गरेको साढे दई दशक मात्र भयो ।

सरकारले ११४ वर्षसम्म पाएको सफलताभन्दा निजी क्षेत्रले २५ वर्षमा पाएको सफलता धेरै छ । २५ वर्षअघि नेपालको विद्युत् उत्पादन २५२ मेगावाट मात्र थियो भने अहिले करिब ३५ सय मेगावाट पुगेको छ । यसमा निजी क्षेत्रको मात्र साढे २७ सय मेगावाट छ । तर, अधिकतम उपयोग गर्दा नेपालको जलविद्युत् र सौर्य लगायत ऊर्जा उत्पादनको सम्भावना ५ लाखभन्दा बढी छ । उत्पादन क्षमताको तुलनामा विद्यमान जलऊर्जा सफलता कम हो । तर, २५ वर्षमा भन्दै ३२ सय मेगावाट उत्पादन थपिनु देशकै गैरवको विषय हो । यसमा निजी क्षेत्रको योगदान महत्वपूर्ण छ ।

पहिलो विद्युत् आयोजना फर्पिङ्गबाट विद्युत् उत्पादन गरेको ८० वर्षसम्म सरकारले यो क्षेत्रमा निजी क्षेत्रलाई प्रवेश गराएको थिएन तर २०४६ सालको राजनीतिक परिवर्तनपछि मुलुक खुला अर्थतन्त्रमा प्रवेश गयो । त्यसपछि मात्रै ऊर्जा उत्पादनमा निजी क्षेत्रलाई ल्याउनुपर्छ भने सोच सरकारका नेतृत्वमा आयो । २०४९ मा विद्युत् ऐन आएपछि सरकारले निजी क्षेत्रलाई स्वागत गयो । २०५१ सालदेखि जलविद्युत् आयोजनाको अनुमतिपत्र निजी क्षेत्रलाई दिन सुरु गरियो । तर, सरकारले निजी क्षेत्रले उत्पादन गरेको विद्युत्को मूल्य निर्धारण गर्न नसकदा अर्को २/३ वर्ष समय खेर गयो ।

निजी क्षेत्रको प्रवेश र सफलता

विद्युत् ऐन, २०४९ आउनुअघि २०३८ सालमा एक मेगावाटको तिनाउ जलविद्युत् परियोजना निजी क्षेत्रबाट निर्माण गरिए पनि त्यातिबेला निजी क्षेत्रले सञ्चालन गर्न नपाइने व्यवस्था हुँदा सरकारीकरण गरी प्राधिकरणलाई हस्तान्तरण गरिएको थियो । बुटवल पावर कम्पनी (बीपीसी) ले २०४१ सालमा १२.५ मेगावाटको फिमरुक परियोजना र २०४८ सालमा ९.४ मेगावाटको आँधीखोला परियोजना निर्माण गरेको थियो । त्यतिखेर बीपीसीले परियोजना वरिपरि विद्युतीकरण गरी विद्युत् बिक्री गरेको थियो ।

निजी जलविद्युत् प्रवर्द्धकका लागि बिस्तै नहुने दिन हो-२०५५ सालको असार १४ गते अर्थात् २८ जुन १९९८ । यो दिन नेपालकै इतिहासमा पहिलो पटक पिपिएको दर तोकिएको थियो । यसको श्रेय तत्कालीन उपप्रधान एवं जलस्रोत मन्त्री शैलजा आचार्यलाई जान्छ ।

विद्युत् ऐन, २०४९ ले निजी क्षेत्रको प्रवेशलाई खुल्ला गरे पनि सरकारले बिजुली किन्ने सुनिश्चितता नहिएको कारण

१ लेखक स्वतन्त्र ऊर्जा उत्पादकहरूको संस्था, नेपाल (इप्पान)को अध्यक्ष हुनुहुन्छ -- सम्पादक

जलविद्युत परियोजना अगाडि बद्न सकेका थिएन् । त्यतिबेलासम्म ६० मेगावाटको खिम्ती, ४५ मेगावाटको अपर भोटेकोशी ८.५ मेगावाटको इन्द्रावती तेस्रोको विद्युत खरिद सम्भौता(पिपिए) पहिल्यै भए पनि पिपिएको दर तोकिएको थिएन । निजी क्षेत्रको मागप्रति सकारात्मक तत्कालीन ऊर्जामन्त्री आचार्यले पहिलोपटक निजी क्षेत्रलाई १ देखि १० मेगावाटसम्म क्यू ९० मा बनाउने गरी पहिलोपटक वर्षामा प्रतियुनिट २.७६ रुपैयाँ र हिउँदमा प्रतियुनिट ४.०३ रुपैयाँ कायम गर्ने गरी पिपिए दर तोक्न प्राधिकरण सञ्चालक समितिलाई निर्देशन दिएपछि २०५५ साल असार १४ गते विद्युत प्राधिकरण बोर्ड बैठकले यही दर तोक्यो ।

क्यू ९० मा बनाउन नसक्ने निजी क्षेत्रको गुनासोपछि फेरि आचार्यले यसलाई क्यू ६५ मा भारेर पिपिए दर पनि हिउँदमा ४.२५ र वर्षामा ३ रुपैयाँ प्रतियुनिट कायम गर्नुभयो । यही निर्णय जलविद्युतमा निजी क्षेत्रको प्रवेशका लागि थप महत्वपूर्ण जग बन्यो ।

यो निर्णयपछि सबैभन्दा पहिला लमजुङको ०.१८३ मेगावाटको स्याड्गे खोलाले २०५८ माघ ३ गते प्राधिकरणसँग पहिलो पिपिए गरेको थियो । सरकारले अपनाएको खुल्ला नीति नै निजी प्रवर्द्धकका लागि जलविद्युतमा लगानी गर्ने सबैभन्दा ठूलो अवसर बन्यो । सुरुमा निजी क्षेत्रले बढीमा १० मेगावाटसम्म मात्र बनाउन सक्छ भन्ने मान्यता थियो । तर, समयक्रममा सरकारले निजी क्षेत्रलाई जतिसुकै ठूला परियोजना बनाउन पनि अवसर दियो ।

नेपालमा स्वदेशी निजी क्षेत्रले पहिलोपटक बिजुली उत्पादन गरेको स्याड्गे खोला साना जलविद्युत आयोजनाको क्षमता १८३ किलोवाट थियो । सामान्य भाषामा भन्दा १ मेगावाटलाई ५ भाग लगाउँदा १ भागभन्दा पनि कम विद्युत उत्पादन भएको थियो । तर, अहिले निजी क्षेत्रको नेतृत्वमा विकास गरिरहेको आयोजनाको क्षमता २८५ मेगावाट पुगेको छ ।

विद्युत उत्पादन नै शुरु गरिसकेको आयोजनाको क्षमता ८६ मेगावाट छ । यति मात्र होइन, निजी क्षेत्रको लगानी मोडलमै बनेको ४५६ मेगावाटको आयोजना निर्माण हुनुमा पनि नेपाल विद्युत प्राधिकरणले सरकारी लगानीभन्दा निजी क्षेत्रको लगानी आकर्षण गर्ने गरी अपनाएको निजी मोडलको ढाँचा पनि कारक हो । अहिले निजी क्षेत्र ५ सय मेगावाटसम्मका आयोजना निर्माणका लागि सक्षम भएको छ ।

निजी क्षेत्रले हाल निर्माण गरिरहेका १०० मेगावाट भन्दा ठूला आयोजनाहरू

कम्पनीको नाम	आयोजनाको नाम र क्षमता
तमोर सानिमा इनर्जी	माथिल्लो तामेर २८५ मेगावाट
नेपाल वाटर एण्ड इनर्जी (विदेशी लगानी	माथिल्लो त्रिशुली-१, २१६ मेगावाट
नासा हाइड्रोपावर	लाप्चेखोला १६० मेगावाट
मनाडमस्ट्याडदी हाइड्रोपावर	मनाडमस्ट्याडदी १३५ मेगावाट
लाडटाड भोटेकोशी	रसुवा भोटेकोशी १२० मेगावाट

पीपीए भएर वित्तिय व्यवस्थापन हुन बाँकी निजी क्षेत्रका १०० मेगावाट भन्दा ठूला आयोजनाहरु

कम्पनीको नाम	आयोजनाको नाम र क्षमता
टाइम्स इनर्जी	बुढीगण्डकी ३४१ मेगावाट
एससी पावर कम्पनी	तिला १, २९८ मेगावाट
एससी पावर कम्पनी	तिला २, २९६ मेगावाट
नौलो नेपाल हाइड्रोइलेक्ट्रिक	बुढीगण्डकी ख, २२६ मेगावाट
समृद्धि इनर्जी	बझाड माथिल्लो सेती २१६ मेगावा
कालिगण्डकी गर्ज	कालिगण्डकी गर्ज १८० मेगावाट
किष्टल पावर	सुपर तमोर १६६ मेगावाट
बुटवल पावर	तल्लो मनाड १३९ मेगावाट
स्पार्क हाइड्रो	तमोर मेवा १२८ मेगावाट
नौलो नेपाल हाइड्रोइलेक्ट्रिक	बुढीगण्डकी क, १०३ मेगावाट

ऊर्जा आयोजनाहरुको बढ्दो विकासक्रमसँगै यस क्षेत्रको नियमनको आवश्यकता महशुस गरियो । पहिला विद्युत महसुल निर्धारण आयोग गठन गरिएको थियो, जसले विद्युतको महसुल निर्धारणमा केन्द्रित थियो । ऊर्जा आयोजन(हरुको निर्माण बढेसँगै छुट्टै नियमन आयोगको परिकल्पना गरिएको थियो ।

विद्युत नियमन आयोग र दायित्व

विद्युत नियमन आयोग ऐन, २०७४ ले आयोगलाई दिएको कार्यदिशा अनुसार मुलुकको विद्युत उत्पादन, प्रसारण, वितरण तथा व्यापारलाई सरल, सहज र नियमित, व्यवस्थित र पारदर्शी बनाउनु विद्युत नियमन आयोगको मुख्य कार्य हो । विद्युत व्यापारलाई सहज बनाउने, विद्युत महसुल नियमन गर्ने र बजारलाई प्रतिस्पर्धी बनाउनको लागि विद्युत उत्पादन गर्ने निजी क्षेत्र, विद्युत खपत गर्ने उपभोक्ता र राज्यलाई हेरेर आयोगले नीतिगत कामहरु गर्नुपर्ने हुन्छ ।

आयोग ऊर्जा क्षेत्रको सर्वोच्च नियामकीय निकाय हो । निजी क्षेत्रका ऊर्जा उत्पादकहरूले आफ्ना दुःख बिसाउने एउटा चौतारी पनि हो । समस्या सुनाउने र समाधान मान्ने ऊर्जा क्षेत्रको सर्वोच्च निकाय हो । आयोगले ऊर्जा क्षेत्र विकासको उचित वातावरण निर्माणका लागि पहल गरिदिने हो भने यस क्षेत्रमा संलग्न निजी क्षेत्रको मनोबल उच्च भई सरकारले अधि सारेको २८,५०० मेगावाट विद्युत उत्पादनको लक्ष्य पुरा गर्न सक्रिय सहभागीता रहने पक्का छ ।

२०७६ फागुनमा विद्युत नियमन आयोगले गरेको एउटा निर्णयले यो क्षेत्रका सर्वै जलविद्युत आयोजनाले राहत पाइरहेका छन् । जलवायुजन्य प्रभावले खोलामा पानीको सतह घट्दा विद्युत प्राधिकरणले त्यस्ता आयोजनालाई पेना(लटी लगाउँदै आएको थियो । विद्युत बेचेर आउने पैसा भन्दा पेनालटी तर्ने पैसा बढी हुन थालेपछि ऊर्जा उत्पादकहरु आन्दोलनमा गएका थिए । त्यसपछि प्रवर्द्धकहरूले गोजीबाट पैसा हालेर आयोजना जोगाइरहेको र त्यस्तो अवस्थाको

दीर्घकालिन समाधान नखोज्दा धेरै जना प्रवर्द्धकहरू रोडमा आउने अवस्थाको अन्त्य आयोगको सोही निर्णयले मात्र सम्भव भएको हो ।

त्यसपछि आयोगकै निर्णयमा टेकेर आयोजनाबारे अध्ययन गर्न ऊर्जा मन्त्रालय तयार भयो र सोही अध्ययनका आधारमा त्यस्ता रूण आयोजनालाई पुनर्कर्जा दिन नेपाल राष्ट्र बैंक तयार भयो । यो सुविधाले ४ दर्जन जलविद्युत आयोजना बन्द हुनबाट मात्र जोगिएनन्, निजी क्षेत्रको समस्यामा राज्यले साथ दिन्छ भन्ने विश्वास पनि बढ्यो ।

नेपालको जडित क्षमता करीब ३५०० मेगावाट पुग्दा निजी क्षेत्रका १९० बढी आयोजनाहरूबाट मात्रै करिब २८०० मेगावाट विद्युत उत्पादन भइसकेको छ । ४१०० मेगावाट क्षमताका आयोजनाहरू निर्माणाधीन अवस्थामा छन् भने ४३०० मेगावाट क्षमताका आयोजनाहरू वित्तीय व्यवस्थापनको पर्खाइमा छन् । १० हजार मेगावाट क्षमताका आयोजनाहरू अध्ययन सकेर पीपीएको पर्खाइमा छन् । अध्ययनको चरणमा रहेका आयोजनासहित निजी क्षेत्रसँग ३० हजार मेगावाट क्षमता बराबरका आयोजनाको अनुमतिपत्र रहेको छ । यी आयोजनामा हालसम्म १५ खर्ब रुपैयाँभन्दा बढी लगानी भइसकेको विभिन्न अध्ययनहरूले नै देखाएका छन् । यसकारण यो क्षेत्रको दीगोपनाका लागि समग्र ऊर्जा क्षेत्रको नियमनमा त्रुटी हुनु हुँदैन । त्यसका लागि विद्युत नियमन आयोगलाई सुविधासम्पन्न र दक्ष जनशक्तिले भरिपूर्ण बनाउनुपर्ने आवश्यकता छ । निजी क्षेत्रको उत्साह र लगानीलाई प्रवर्द्धन गर्दै उपलब्धमूलक बनाउने वातावरण आयोगजस्ता निकायहरूले बनाउनुपर्छ ।

सहजीकरण र सुशासनमा आयोग

नियामकहरूको भूमिका ऊर्जा क्षेत्रलाई नियन्त्रण र नियमन गर्ने मात्र होइन, सुशासनसहितको सहजीकरण पनि गर्ने हो । विश्वव्यापी प्रचलनमा रहेका असल अभ्यासहरू कार्यान्वयन गर्दै यस क्षेत्रलाई व्यवस्थित बनाउन आयोग लाग्नु आवश्यक छ । विशेष गरी निजी क्षेत्रको हौसला बढाउने काम पनि गर्नुपर्छ । नियमनको नाममा निजी क्षेत्रलाई प्रकृय(गत भन्भट बेहोर्ने गरी थप जानुपर्ने निकायको रूपमा आयोग बन्नु हुन्न) ।

अहिले पनि सेयर निष्काशनको क्रममा एउटा कामका लागि दुई निकाय धाउनुपर्ने अवस्था छ । एउटै कामका लागि दुईवटा निकायमा खर्च गर्नुपर्ने अवस्था छ । आयोग र धितोपत्र बोर्डबीच समन्वय गरी एउटा कामका लागि दुई निकायबाट प्रकृया पूरा गर्नुपर्ने व्यवस्था अन्त्य गर्नुपर्छ । अहिले एकपटक रेटिङ गराएपछि सरकारले अनुमति दिन ढिलाइ भएमा पनि सोही रेटिङलाई मान्यता दिनुपर्छ या फेरि खर्च गर्नुपर्ने अवस्थाको अन्त्य गर्नुपर्छ । तर आयोगले विविध कारणले संकटमा परेका जलविद्युत आयोजनालाई वित्तीय स्रोत जुटाउन सक्ने गरी हकप्रद सेयर जारी गर्ने पाउने व्यवस्था त गच्छो, त्यस्ता आयोजनाका फाइल धितोपत्र बोर्डमा गएर अडिकएर बसेको छ । धितोपत्र बोर्डबाट पनि आयोगको सिफारिसपछि यसलाई द्रुतगतिमा अघि बढाउने गरी काम गर्ने वातावरण हुनुपर्छ । हाल धितोपत्र बोर्डमा ४४ वटा जलविद्युत आयोजनाको आइपीओ अनुमतिको फाइल रोकिएको छ । १० वटा हकप्रद निष्काशनको फाइल रोकिएको छ । सबै गरेर जलविद्युत क्षेत्रको मात्रै २५ अर्ब रुपैयाँ बराबरको सार्वजनिक निष्काशनको काम रोकिएको छ ।

विद्युत नियमन आयोगले ऊर्जा उत्पादक कम्पनीहरूलाई प्राथमिक तथा हकप्रद सेयर निष्काशनको पूर्वस्वीकृति दिने नभई अन्तिम स्वीकृति दिने व्यवस्था हुनुपर्छ । ऊर्जा उत्पादक कम्पनी र बीमा व्यवसाय सञ्चालन गर्ने कम्पनीको आइपीओ निष्काशनको लागि एउटै नियम र मापदण्ड बनाएर हुँदैन । ऊर्जा कम्पनीको लागि छुटै नियम हुनुपर्छ ।

आइपीओ जारी गर्ने हो भने त्यसै अनुसार नियम बनाएर सहजीकरण गर्नुपर्छ । लामो समयसम्म भुलाउँदा यसले ऊर्जा विकासमा ठूलो असर पर्छ । एकातिर सर्वसाधारणले आफूले चाहेको ऊर्जा आयोगमा लगानी गर्न पाउँदैनन, अर्कोतिर जलविद्युत कम्पनीहरूले आयोजना अघि बढाउन पनि सक्दैनन । सरकारले कि आईपीओ जारी गर्ने कानूनी व्यवस्था नै खारेज गर्नुपर्छ, नत्र भने आयोजनाहरूलाई बन्धक बनाउने गरी आईपीओ रोक्न पाइँदैन ।

निजी क्षेत्रका सवाल र आयोगको भूमिका

विद्युत व्यापारमा खुला पहुँच: पछिल्लो समय विद्युत व्यापारमा निजी क्षेत्रको चासो पनि बलियो रूपमा देखिएको छ । आधा दर्जन हाराहारी पावर ट्रेडिङ कम्पनीहरू स्थापना भएका छन् । भारतको निजी क्षेत्र र नेपालको निजी क्षेत्र मिलेर विद्युत खरिद-बिक्री गर्न सहज पनि हुन्छ । विद्युत नियमन आयोगले नेपालको निजी क्षेत्रलाई विद्युत व्यापारमा अनुमति दिनुपर्छ भनेर सरकारलाई विभिन्न फोरममा सुझाव दिइरहेपनि विद्युत विधेयक पास नभएसम्म निजी क्षेत्रले व्यापारको अनुमति पाउने सम्भावना देखिँदैन ।

निजी क्षेत्रलाई अध्यादेशबाटै भए पनि विद्युत निर्यातको अनुमति दिने व्यवस्था गरेको भए निजी क्षेत्रले पूर्वतयारीका काम गर्न पाउँथे । नयाँ विद्युत ऐन पारित भएर आइपुदा हामीले नयाँ स्वीकृत कम्पनीले कारोबार शुरु गरेको अवस्थामा पुगेका हुने थियैँ ।

नेपालले अहिले भारत र बंगलादेशमा विद्युत निर्यात गर्न थालीसकेको छ । ४० मेगावाटबाट सुरु भएको भारतीय बजारमा विद्युत निर्यात हाल १ हजार मेगावाट पुगेको छ । यसै आर्थिक वर्षबाट नेपालले बंगलादेशमा पनि ४० मेगावाट बाटै विद्युत निर्यात शुरु गरेको छ । सन २०४० सम्म ९ हजार मेगावाट विद्युत लैजाने बंगलादेशको योजना छ । भारतमा १० हजार मेगावाट निर्यात गर्ने गरी दुई देशबीच सम्झौता नै भएको छ । तर पनि निजी क्षेत्रले यो व्यापारलाई हेरेर मात्रै बसेको छ । विद्युत उत्पादनमा ३ दशकको अनुभव भइसकेको निजी क्षेत्रलाई व्यापारमा ल्या(उन ढिलो भइसकेकोले आयोगले यस सम्बन्धी आवश्यक व्यवस्थाको लागि पहलकदमी लिनुपर्छ । विद्युतमा खुला पहुँचको व्यवस्था नभएसम्म ऊर्जा क्षेत्रको विकास हुन सक्दैन । यसका लागि आयोग सक्रिय हुनु आवश्यक छ ।

विद्युत सम्बन्धी कम्पनीको सेयर सार्वजनिक निष्काशनको पूर्वस्वीकृति तथा नियमनसम्बन्धी निर्देशिका, २०७८: निर्देशिकामा विद्युत उत्पादनको अनुमतिपत्र भन्दा कम अवधिको लागि विद्युत खरीद बिक्री सम्झौता (पीपीए) भएका आयोजनाको विद्युत आयोजना अवधिभरका लागि पीपीएको सम्झौता अवधि स्वतः थप हुने व्यवस्था उल्लेख गर्नु उपयुक्त हुने देखिन्छ । त्यस्तै, जलविद्युत आयोजनाको अनुमतिपत्रको अवधि १० वर्ष भन्दा कम भएका कम्पनीह(रुलाई सेबोनले आइपीओमा जान रोक लगाएको छ । तर, अनुमतिपत्रको अवधि १० वर्ष भएका आयोजनाको हकमा पीपीए थप हुने वा नयाँ पीपीए हुने अवस्था रहेको हुँदा सेबोनले पनि आइपीओको अनुमति रोक्न नहुनेवारे आयोग स्पष्ट हुनुपर्ने आवश्यकता देखिन्छ । त्यसैगरी, आयोजना निर्माणको लागि हकप्रद शेयरको सार्वजनिक निष्काशनका सम्बन्धमा मुख्य कम्पनीले ५० प्रतिशत भन्दा बढी लगानी गर्ने गरी सहायक कम्पनी मार्फत नयाँ परियोजना निर्माण गर्न हकप्रद शेयरको सार्वजनिक निष्काशन गर्ने अवस्थाको लागि अनुसूची थप गर्न उपयुक्त हुने देखिन्छ । किनभने भौतिक प्रगतिको विवरण ५० प्रतिशत भन्दा कम लगानी भएको अवस्थाको कम्पनीलाई आवश्यक पर्ने तर, ५० प्रतिशत भन्दा बढी लगानी भई सहायक कम्पनी मार्फत लगानी गर्न मुख्य कम्पनीले हकप्रद शेयरको सार्वजनिक निष्काशन गर्दा उपदफा ६ अनुसार कागजात आवश्यक पर्ने भएता पनि आवेदनको अनुसूचीहरू भौतिक प्रगति विवरण आवश्यक पर्ने

देखिएकाले ५० प्रतिशत भन्दा बढी लगानी भई सहायक कम्पनी मार्फत लगानी गर्ने अवस्थाको अनुसूची थप गर्दा सहज हुने देखिन्छ ।

विद्युत नियमन आयोग अनुमति प्राप्त व्यक्ति आपसमा वा अन्य संगठित संस्थासँग गाभिन, आपसमा मिल्न, शेयर खरिद संरचनाको खरिद-बिक्री वा हस्तान्तरण प्राप्ति वा ग्रहणसम्बन्धी निर्देशिका, २०७७: आयोगको निर्देशिकामा “संगठित संस्थासँग गाभिन, आपसमा मिल्न” भनिएको छ भने, कम्पनी ऐनमा “कम्पनी गाभने गाभिने” भनिएको छ । त्यस्तै धितोपत्र बोर्डको निर्देशिकामा “गाभने, गाभिने, प्राप्ति” भन्ने शब्दावलीहरू प्रयोग भएको देखिन्छ । एउटै विषयका लागि विभिन्न शब्दावलीको प्रयोग भएकोले यसमा एकरूपता हुनुपर्छ । त्यस्तै एक आपसमा लगानी भएका (Cross Holding) जलविद्युत आयोजना प्रवर्द्धक कम्पनीहरू एक आपसमा गाभ्दा वा गभिंदा उक्त लगानी के हुने सो सम्बन्धमा आयोगले स्पष्ट व्यवस्था उल्लेख गर्नुपर्ने देखिन्छ भने कम्पनी गाभने, गाभिने वा प्राप्ति सम्बन्धी प्रक्रियाका लागि आयोगको पूर्वस्वीकृति आवश्यक पर्ने वा नपर्ने भन्ने वारेमा पनि स्पष्ट व्यवस्था हुनुपर्ने देखिन्छ । त्यस्तै शेयर अदलबदल अनुपात (Share Swap Ratio) अधिकतम कर्ति प्रतिशतसम्म कम वा बेशी भएको अवस्थामा एउटै अनुपातमा कायम गर्न सकिने हो सो सम्बन्धमा उल्लेख गर्नुपर्ने देखिन्छ ।

त्यस्तै सूचीकृत जलविद्युत कम्पनीहरूका लागि धितोपत्र सम्बन्धी कानुन, कम्पनी कानुन र विद्युत नियमन आयोग सम्बन्धी कानुन आकर्षित हुने भएकोले कम्पनी गाभने/गाभिने सम्बन्धी व्यवस्थाहरूमा एकआपसमा तादम्यता हुनुपर्ने पनि हाम्रो सुभाव रहि आएको छ ।

विद्युत खरिद-बिक्री तथा अनुमति प्राप्त व्यक्तिले पालना गर्नुपर्ने सर्तसम्बन्धी विनियमावली, २०७६: यस विनियम(वालीमा स्वपूँजीमा प्रतिफल (Return on Equity – ROE) सत्र प्रतिशत नबद्दने गरी विद्युत खरिद दर तय गर्ने र ROE सत्र प्रतिशत भन्दा बढी हुने देखिएमा विद्युत खरिद दर घट्ने गरी परिमार्जन गरिने व्यवस्थाले नेपाल सरकारले लिएको २८,५०० मेगावाटको लक्ष्य पूरा गर्न लगानी नजुट्ने, विद्यमान व्यवस्था अनुसार लागत बढेको अवस्थामा खरीद दर त्यही कायम हुने र लागत कम भएको अवस्थामा खरीद दर घटाउने व्यवस्थाले एकातिर ऋणदाताह(रुले जोखिमको मूल्यांकन गर्दा अधिक जोखिम देखिने र लगानीकर्ताहरू जोखिम अनुसार प्रतिफल नपाउने तथा परियोजनालाई उचित लागतमा निर्माण गरी बैंक तथा लगानीकर्तालाई कम जोखिम र बढी प्रतिफल दिई धैरै भन्दा धैरै लगानीकर्तालाई आकर्षित गर्न यो व्यवस्था हटाई विद्यमान परियोजनाको आधारमा दिने पोस्टेड दर कायम गर्नुपर्ने देखिन्छ । ऊर्जा विकास मार्ग चित्र कार्यान्वयन कार्ययोजनामा वित्तिय व्यवस्थापन हुन बाँकी रहेका १०० मेगावाट भन्दा ठूला आयोजनाको ROE को बन्देज हटाउने व्यवस्था गरिएकोले आयोगले पनि सोही अनुसार यो व्यवस्था हटाउनुपर्ने देखिन्छ ।

त्यस्तै माथिल्लो तटीय आयोजनासँग सम्बन्ध र सहकार्य गरी पिक आवरमा विद्युत उत्पादनलाई बढाउन नदीको माथिल्लो तटमा रहेको अर्द्ध जलाशययुक्त (PROR) वा जलाशययुक्त (STORAGE) आयोजनाको तल्लो तटमा रहेको क्यास्केड (CASCADE) रन अफ द रिभर (ROR) आयोजनाले सो PROR वा STORAGE आयोजनाको पानी प्रयोग गरी उत्पादन गर्ने समय तालिका अनुसार नै उत्पादन गर्न चाहेमा त्यस्ता आयोजनालाई PROR वा Storage को बर्गीकरणमा समावेश गरी PROR वा Storage को विद्युत खरीद दर सरह हुने गरी आयोग समझ बिद्युत खरीद सम्झौताको स्वीकृतिको लागि पेश गर्न सक्ने व्यवस्था गर्नुपर्ने आवश्यकता छ । किनभने परियोजनाको संरचना

विद्युत क्षेत्रको नियमन: संस्थागत र कानूनी परिदृश्य

तोयानाथ अधिकारी १

सारसंक्षेप

प्रम्परागत रूपमा धेरै देशहरूमा विद्युत क्षेत्र सरकारी स्वामित्व र एकीकृत प्रणाली अन्तर्गत सञ्चालन हुने अभ्यास थियो । विद्युत सेवा सार्वजनिक उपयोगको वस्तु भएकोले राज्यको एकाधिकारमा राखिएको थियो र यसको विकास, स्वामित्व र सञ्चालनमा सरकार वा सरकारी निकायहरू मात्र संलग्न हुने बन्दोबस्त मिलाइएको थियो । विद्युत उत्पादन, प्रसारण र वितरण क्षेत्र सबै सरकारको एकाधिकारमा थिए । एउटै संस्थाले विद्युतको उत्पादन, प्रसारण र वितरणको जिम्मेवारी निर्वाह गर्दा कार्यक्षमता कमजोर हुनुका साथै महसुल निर्धारणमा राजनीतिक हस्तक्षेप, लगानीको अभाव, सेवा प्रदायकबीच असमान व्यवहार, प्रतिस्पर्धाको अभाव, उपभोक्ताको लागि गुणस्तरीय सेवा अभाव जस्ता समस्याहरूको सम्बोधन गर्ने प्रभावकारी नियमन आवश्यक भयो ।

नेपालको सन्दर्भमा विद्युत क्षेत्रको नियमनका लागि दुई प्रकार नियामक निकाय- सामान्य र विशिष्टीकृत-को व्यवस्था गरिएको छ । सामान्य नियामक निकाय अन्तर्गत ऊर्जा, जलस्रोत तथा सिंचाइ मन्त्रालय, विद्युत विकास विभाग र लगानी बोर्डको कार्यालयलाई लिन सकिन्छ भने विशिष्टीकृत र स्वतन्त्र नियामक निकायको रूपमा- विद्युत नियमन आयोगको स्थापना गरिएको छ । विद्युत नियमन आयोगको मुख्य उद्देश्य विद्युतको उत्पादन, प्रसारण, वितरण वा व्यापारको क्षेत्रमा निष्पक्ष र स्वतन्त्र नियमन सुनिश्चित गर्नु हो ।

नेपालको विद्युत क्षेत्रलाई दिगो, आधुनिक र कार्बन न्यूनीकरण उन्मुख बनाउन आयोगले नीति निर्माणदेखि प्राविधि व्यवस्थापनसम्म महत्वपूर्ण योगदान पुऱ्याउन सक्छ । विद्युत नियमन आयोग एक नियामक निकाय मात्र नभएर देशको ऊर्जाको भविष्य निर्माण गर्ने रणनीतिक संस्था पनि हो । त्यही मान्यताका आधारमा आयोगलाई प्रभावकारी नियमन हेतु सबल र अधिकार सम्पन्न बनाउनु समयको माग हो । यसको लागि विद्युत क्षेत्रको नियमन सम्बन्धी अन्तर्राष्ट्रीय उत्तम अभ्यासलाई समेत दृष्टिगत गरी विद्युत नियमन सम्बन्धी कानूनमा सुधार र संस्थागत सुदृढीकरण आजको आवश्यकता भएको छ ।

१. पृष्ठभूमि

विद्युत क्षेत्रको विकासमा प्रतिस्पर्धा र सुशासन कायम गरी यो क्षेत्रलाई पारदर्शी र जवाफदेही बनाउन नियमन आवश्यक छ । सामान्यतः विद्युत क्षेत्र सुधारसँग सम्बन्धित राष्ट्रीय कानूनद्वारा नियमन सम्बन्धी व्यवस्थाहरू जस्तै अनुमतिपत्रको व्यवस्था, अनुगमन र निरीक्षण, विद्युत महसुल निर्धारण, राष्ट्रीय प्रसारण ग्रिडमा खुला पहुँच, प्रसारण शुल्क (हिललिङ्ग चार्ज), उपभोक्ताको हित र सरोकार संरक्षण जस्ता पक्षहरूको सबल कार्यान्वयनका लागि नियमन

^१ लेखक नेपाल सरकारको पूर्वसचिव हुनुहुन्छ । -सम्पादक

आवश्यक हुन्छ । वास्तवमा यी व्यवस्थाहरूले सेवा प्रदायक संस्थाहरू बीच स्वच्छ प्रतिस्पर्धा कायम गरी असमानता र एकाधिकार जस्ता समस्यालाई सम्बोधन गर्न मजबूत सहयोग पुनेछ ।

विगतमा धेरै देशहरूमा विद्युत क्षेत्र सरकारी स्वामित्व र एकीकृत प्रणालीमा सञ्चालन गर्ने अभ्यास थियो । विद्युत सेवा सार्वजनिक उपयोगको वस्तु भएकोले राज्यको एकाधिकारमा राखिएको थियो र त्यसको विकास, स्वामित्व र सञ्चालनमा सरकार वा सरकारी निकायहरू मात्र संलग्न हुने आम प्रचलन थियो । विद्युत उत्पादन, प्रसारण र वितरण सबै सरकारी एकाधिकारमा रहन्थ्यो । एउटै संस्थाले विद्युतको उत्पादन, प्रसारण र वितरणको जिम्मेवारी निर्वाह गर्ने परिपाटीको कारण कार्यक्षमता कमजोर हुनुका साथै महसुल निर्धारणमा राजनीतिक हस्तक्षेप, लगानीको अभाव, सेवा प्रदायक बीच असमान व्यवहार, प्रतिस्पर्धाको अभाव, उपभोक्ताले गुणस्तरीय सेवा नपाउने लगायतका समस्याहरूको सम्बोधन गर्ने प्रभावकारी नियमन आवश्यक भएको महसुस गरियो । र, विद्युत क्षेत्रलाई प्रतिस्पर्धात्मक बनाउन संरचन(गत र कानूनी सुधारका उपायहरू अवलम्बन गरियो ।

तर सन् १९८० र १९९० को दशकमा धेरै देशहरूले आफ्नो विद्युत क्षेत्रको पुनर्संरचना कार्यक्रमहरू लागू गरेका थिए । पुनर्संरचना कार्यक्रमहरूको मुख्य उद्देश्य- प्रतिस्पर्धाको माध्यमबाट निजी क्षेत्रको सहभागिता बढाउने, सेवाको गुणस्तर सुधार गर्ने, ऊर्जा सुरक्षा हासिल गर्ने र आर्थिक दक्षता अभिवृद्धि गर्ने आदि रहेका थिए । पुनर्संरचना कार्यक्रमको उद्देश्य प्राप्त गर्ने एउटा महत्वपूर्ण संयन्त्रको रूपमा स्वतन्त्र नियमक निकायको परिकल्पना गरिएको थियो ।

२. विद्युत क्षेत्रको विकासमा नियमनको आवश्यकता र महत्व

विद्युत भनेको आधुनिक सभ्यताको मेरुदण्ड हो । धेरैले उपभोगदेखि औद्योगिक उत्पादन र कृषि क्षेत्रमा सिँचाइदेखि डिजिटल प्रविधिसम्म विद्युत आधारभूत आवश्यकताको साधन बनिसकेको छ । मानवको जीवन र सभ्यतासँग अन्योन्याश्रित र घनिष्ठ सम्बन्ध भएका यी क्षेत्रहरूको विकास, विस्तार र दिगो व्यवस्थापनका लागि विद्युत क्षेत्रको नियमन अपरिहार्य भएको हो । साथै निष्पक्ष र स्वतन्त्र नियमन बिना विद्युत क्षेत्रको सन्तुलित, दिगो र न्यायपूर्ण विकास सम्भव हुँदैन ।

विद्युत क्षेत्रमा नियमनको आवश्यकता किन ? विद्युत क्षेत्रको दिगो, न्यायपूर्ण, सार्वजनिक तथा निजी क्षेत्रको समान सहभागिताको लागि नियमन आवश्यक छ । खासगरी, देहायको उद्देश्य प्राप्तिका लागि नियमन आवश्यक भएको अनुभूत गरिएको छ-

सेवाको गुणस्तर सुनिश्चित गर्न: सबै वर्गका उपभोक्तालाई गुणस्तरीय, सुरक्षित र नियमित विद्युत सेवा उपलब्ध हुनुपर्छ । तर सेवा प्रदायक कम्पनीहरूले स्वेच्छाचारी ढंगले सेवा प्रवाह गरेमा उपभोक्ता प्रभावित हुन सक्छन् । त्यसैले नियमक निकायले विधि र मापदण्ड निर्धारण गरी सेवा प्रदायकलाई उत्तरदायी बनाउँछ ।

पारदर्शी मूल्य निर्धारण पद्धति: विद्युत महसुल दर निर्धारण गर्न स्पष्ट, वस्तुनिष्ठ र पारदर्शी प्रक्रिया आवश्यक हुन्छ । नियमन मार्फत उपभोक्तालाई न्यायोचित दरमा विद्युत सेवा प्रदान गर्ने र सेवा प्रदायकको लगानी बापत न्यायोचित लाभ प्राप्त गर्ने सन्तुलित र व्यावहारिक पद्धति विकास गर्न सकिनेछ ।

एकाधिकारको अन्त्य: विद्युत प्रसारण र वितरणको क्षेत्रमा सामान्यतः एकल सेवा प्रदायक रहने व्यवस्था लागू गरिएको दखिन्छ । यस्तो व्यवस्थामा प्रतिस्पर्धाको अभावले लगानी प्रभावित हुने र उपभोक्तालाई समेत हानी पुऱ्याउन सक्छ ।

नियमनले यस्ता एकाधिकार प्रवृत्तिमा अङ्कुश लगाएर निष्पक्ष र प्रतिस्पर्धात्मक वातावरण कायम राख्नेछ ।

नवीकरणीय ऊर्जा प्रवर्द्धनः विश्वव्यापी जलवायु परिवर्तनको सन्दर्भमा स्वच्छ ऊर्जाका स्रोतको प्रयोग अपरिहार्य भएको छ । नियामक निकायले नवीकरणीय ऊर्जा योजनाहरूलाई प्राथमिकता दिने नीति तथा प्रोत्साहन सम्बन्धी योजना तयार गरी कार्यान्वयनका लागि समुचित सिफारिस गर्नेछ ।

लगानीको संरक्षण र प्रवर्द्धनः विद्युत क्षेत्रमा दीर्घकालीन र दूलो लगानी आवश्यक पर्छ । नियमनले स्थायित्व, पारदर्शिता र विश्वसनीयता सुनिश्चित गरी निजी क्षेत्रलाई लगानी गर्न प्रोत्साहित गर्छ, जसले पूर्वाधार विकास र विस्तारमा सहयोग पुग्नेछ ।

विद्युत क्षेत्रको नियमनको महत्वः विद्युत क्षेत्रको नियमनले विद्युत प्रणालीलाई न्यायपूर्ण, दिगो, भरपर्दो र समावेशी बनाउन सहयोगी हुनेछ । यसले आर्थिक विकास, सामाजिक समानता र वातावरणीय संरक्षणमा हरेक दृष्टिले सहयोग पुऱ्याउँछ ।

उपभोक्ताको हित संरक्षणः नियमनले उपभोक्तालाई महँगो, असमान वा अविश्वसनीय सेवा प्रदान गर्न निषेध गरी उपभोक्तालाई गुणस्तरीय सेवाको प्रदान मार्फत उभभोक्ताको हित संरक्षण सुनिश्चित गर्नेछ । यस प्रकारको नियमनले-उपभोक्तालाई अनुचित मूल्य, कमजोर सेवा वा मनपरी विद्युत कटौतीबाट संरक्षण गर्नेछ । नियामक निकायले विद्युत महसुल दर निर्धारण गर्छ, जसले सेवा प्रदायक र उपभोक्ता दुवैको हितको प्रवर्द्धन र संरक्षण गर्न दिगो योगदान गर्नेछ ।

दीर्घकालीन योजना निर्माणः ऊर्जा सुरक्षाका लागि दीर्घकालीन रणनीतिक योजना आवश्यक हुन्छ, जुन नियामक संस्था मार्फत कार्यान्वयन गरिनेछ ।

ऊर्जा न्याय र दिगो विकासः सबै वर्ग, क्षेत्र र समुदायमा समान रूपमा विद्युतको पहुँच विस्तार गर्न नियामक निकायले मार्गदर्शन गर्नेछ र नियमनले विद्युत प्रणालीलाई वातावरण मैत्री, दक्ष र दिगो बनाउने दिशामा काम गर्नेछ ।

विद्युत क्षेत्रको नीतिमा सुधारः नियामक निकायमार्फत विद्युत क्षेत्रको नीति, नियम र कार्यान्वयन प्रक्रियामा सुधार ल्याउन सकिन्छ ।

विद्युत क्षेत्रको सन्तुलित विकासः उपभोक्ता हितको रक्षा र दीर्घकालीन ऊर्जा सुरक्षाका लागि नियमन अनिवार्य छ । कुनै पनि देशको आर्थिक तथा सामाजिक प्रगतिको गति विद्युत क्षेत्रको विकाससँग गाँसिएको हुन्छ र त्यसको सफल सञ्चालनको मेरुदण्ड भनेको सक्षम, पारदर्शी र उत्तरदायी नियामक व्यवस्था हो । त्यसैले विद्युत क्षेत्रमा नियमन केवल वैधानिक आवश्यकता मात्र होइन, यो दिगो विकासको अनिवार्य आधारशिला पनि हो ।

नियमनका संयन्त्रः विद्युत क्षेत्रको नियमन एउटा काल्पनिक विषय होइन । यो एउटा कार्यक्रम हो र यसको कार्यान्वयनका लागि विभिन्न संयन्त्रहरू आवश्यक हुन्छन् ।

कानून र आदेशः सरकारद्वारा निर्मित औपचारिक कानूनीहरू जस्तै ऐन, नियम, आदेश र नियामक निकायहरूद्वारा जारी विस्तृत विनियमहरू जस्तै प्राविधिक मापदण्ड, निर्देशिका आदिलाई यो वर्गमा राख्न सकिन्छ ।यी संयन्त्रहरूले नियमनको कानूनी आधार तयार गर्नेछन् ।

नियामक निकायहरूः नियमन सम्बन्धी कानून, आदेश र प्राविधिक मापदण्ड लागू गर्न जिम्मेवार सरकारी वा स्वतन्त्र

निकायको स्थापना आवश्यक हुन्छ । वित्तीय बजारको लागि धितोपत्र बोर्ड, औषधीको लागि औषधी व्यवस्था विभ(ग), विमान र वायुयान सञ्चालकको लागि नेपाल नागरिक उहुयन प्राधिकरण, विद्युत क्षेत्रको नियमनका लागि विद्युत नियमन आयोग आदिलाई दृष्टान्तका रूपमा लिन सकिन्छ ।

अनुपालन संयन्त्र: सेवा प्रदायकहरूले कानून र नियमहरूको पालना गर्न अपनाउनु पर्ने प्रक्रियाहरू जस्तै रिपोर्टिङ पद्धति, खुलासा, लेखापरीक्षण, निगमित सुशासन (कर्पोरेट गर्भनेन्स), सार्वजनिक सूचना प्रवाह आदिले नियमन सम्बन्धी कानूनको कार्यान्वयनको मापन र मूल्याङ्कन गर्नेछन् । यसका अतिरिक्त निरीक्षण, अनुगमन, मूल्याङ्कन, जरिबाना पद्धतिले नियमन सम्बन्धी कानूनको कार्यान्वयनमा महत्वपूर्ण भूमिका निर्वाह गर्नेछ ।

३. विद्युत क्षेत्रको नियमन सम्बन्धी अन्तर्राष्ट्रिय अभ्यास: यो खण्डमा विद्युत क्षेत्रको नियमनका लागि अन्य देशहरू-भारत, बङ्गलादेश, श्रीलङ्का, सिङ्गापुर, संयुक्त अधिराज्य बेलायत र संयुक्त राज्य अमेरिकाको नियमन निकायको अर्थात्कारका विषयमा संक्षिप्त रूपमा उल्लेख गरिएको छ । खासगरी प्रसारण, वितरण र व्यापारको सन्दर्भमा अनुमति प्रदान गर्ने अधिकारलाई उद्धरण गर्ने प्रयास गरिएको छ । यसले आगामी समयमा नेपालको नियमन आयोगलाई के कस्ता अधिकार थप गर्न आवश्यक छ भन्ने सबालमा वहस गर्न मद्दत गर्नसक्छ ।

भारत: भारतमा विद्युत क्षेत्रको नियमनका लागि केन्द्रीय विद्युत नियमन आयोग (Central Electricity Regulatory Commission) को स्थापना गरिएको छ र राज्यस्तरमा राज्य विद्युत नियमन आयोग स्थापना गरिएको छ । राज्य राज्य बीचको प्रसारण तथा व्यापार अनुमति- केन्द्रीय नियमन आयोग र वितरण अनुमति-राज्य नियमन आयोगले दिने व्यवस्था छ ।

बङ्गलादेश: विद्युत क्षेत्रको नियमनका लागि बङ्गलादेश ऊर्जा नियमन आयोग (Bangladesh Energy Regulatory Commission) स्थापना गरिएको छ । प्रसारण र वितरण अनुमति दिने अधिकार यो आयोगलाई दिइएको छ । विद्युत व्यापार Bangladesh Power Development Board ले गर्नेछ ।

श्रीलङ्का: श्रीलङ्काको विद्युत क्षेत्रको नियमनका लागि Public Utilities Commission of Sri Lanka को स्थापना गरिएको छ । यो आयोगबाट अनुमति लिएर विद्युत प्रसारण र वितरणको दुवै कार्य Ceylon Electricity Board ले गर्छ ।

सिङ्गापुर: ऊर्जा बजार प्राधिकरण (Energy Market Authority) सिंगापुरको विद्युत र ग्याँस प्रसारण प्रणाली नियमन गर्ने निकाय हो । विद्युतको प्रसारण, वितरण र व्यापारको अनुमति प्रदान गर्ने अधिकार यो प्राधिकरणमा निहित रहेको छ ।

संयुक्त अधिराज्य (बेलायत): विद्युत तथा ग्याँस बजारको नियमनका लागि संयुक्त अधिराज्यमा ग्याँस तथा विद्युत बजार कार्यालय (Office of Gas and Electricity Markets) को स्थापना गरिएको छ र यही कर्यालयले नै विद्युत प्रसारण, वितरण, व्यापार, आपूर्तिको अनुमति दिन्छ ।

संयुक्त राज्य अमेरिका: संयुक्त राज्य अमेरिकामा विद्युत तथा ग्याँस लगायत ऊर्जा क्षेत्रको नियमनको लागि सङ्घीय

ऊर्जा नियमन आयोग (Federal Energy Regulatory Commission) को स्थापना गरिएको छ । अन्तर राज्य प्रसारण स्वीकृति वा अनुमति दिने अधिकार सङ्गीय ऊर्जा नियमन आयोगमा रहेको छ । राज्यस्तरको हकमा State Public Utility Commissions स्थापना गरिएको छ र राज्यस्तरको प्रसारण र वितरणको अनुमति दिने अधिकार State Public Utility Commissions मा निहित रहेको छ । साथै विद्युत बजारमा सहभागी हुन जस्तै whole-sale trading स्वीकृति दिने अधिकार सङ्गीय आयोगमा निहित छ ।

४. विद्युत क्षेत्रको नियमन: कानूनी र संस्थागत व्यवस्था

नेपालको विद्युत क्षेत्रको नियमनका लागि संस्थागत र कानूनी प्रबन्ध गरिएको छ । २०४९ अगाडिसम्म नेपालको विद्युतको क्षेत्रमा नेपाल विद्युत प्राधिकरणको एकाधिकार रहेको थियो । नेपाल विद्युत प्राधिकरण ऐन, २०४९ (प्राधिकरण ऐन) ले विद्युतको उत्पादन, प्रसारण, वितरण लगायतका सबै कार्यको एकाधिकार प्राधिकरणको मात्र रहने प्रबन्ध गरेको थियो । विद्युतको उत्पादन, प्रसारण र वितरणलाई सक्षम भरपर्दो सर्वसुलभ गरी विद्युत आपूर्तिको समुचित व्यवस्था गर्नका लागि नेपाल विद्युत प्राधिकरणको स्थापना गरिएको थियो । विद्युतको उत्पादन, प्रसारण वा वितरण गरी विद्युत आपूर्ति गर्ने तथा विद्युत उत्पादन, प्रसारण, वितरण प्रणाली तथा तत्सम्बन्धी अन्य कार्यको योजना तर्जुमा गर्ने र तर्जुमा भएका योजनाको कार्यान्वयन गर्न आवश्यक विद्युत उत्पादन केन्द्र, रूपान्तर केन्द्र (सबस्टेसन), वितरण केन्द्र, प्रसारण र वितरण लाइन तथा तत्सम्बन्धी सुविधाहरूको निर्माण, सञ्चालन, संरक्षण र सम्बद्धन गर्ने काम र कर्तव्य प्राधिकरणको हुने व्यवस्था थियो । यस किसिमको एकाधिकार व्यवस्थाले नेपालको विद्युत क्षेत्रको विकास सम्भव नहुने भएकाले विद्युत ऐन, २०४९ (विद्युत ऐन) मार्फत यो अवधारणामा व्यापक परिवर्तन गरिएको थियो ।

विद्युत ऐन, २०४९: एउटा संस्थाको एकाधिकारले मात्र नेपालको विद्युत क्षेत्रको सन्तुलित र दिगो विकास सम्भव नहुने तथ्यलाई मनन गरी यो क्षेत्रको विकासमा निजी क्षेत्रको संलग्नता सुनिश्चित गर्न विद्युत महसुल निर्धारणका लागि स्वतन्त्र निकायको स्थापना गर्ने लगायतका प्रबन्ध विद्युत ऐनमा रहेका छन् । विद्युत क्षेत्रको नियमनका लागि विद्युत ऐनले गरेका मुख्य व्यवस्थाहरू यस प्रकार छन्: (क) विद्युतको उत्पादन, प्रसारण वा वितरणको लागि प्राधिकरण लगायत सबैले अनुमतिपत्र लिनुपर्ने, (ख) विद्युतको महसुल निर्धारणका लागि अलग निकाय- विद्युत महसुल निर्धारण आयोगको स्थापना गरियो (पछि यो भन्दा पनि सक्षम र स्वतन्त्र निकाय आवश्यक भएकोले अलग ऐनद्वारा निव्युत नियमन आयोग स्थापना गरिएको छ), (ग) विद्युत आयोजनाको विकास गर्नु अघि सामाजिक तथा वातावरणीय अध्ययन गर्नुपर्ने, (घ) ऐन तथा अनुमतिपत्रका शर्तहरूको उल्लङ्घन गरेमा दण्ड सजायको व्यवस्था, (ड) विद्युत आयोजनाको अनुगमन तथा मूल्याङ्कनको प्रबन्ध, (च) विद्युतको सुरक्षा सुनिश्चित गर्न विद्युत निरीक्षकको व्यवस्था ।

विद्युत नियमन आयोग ऐन, २०७४ (नियमन आयोग ऐन): विद्युत क्षेत्रको नियमनको लागि पहिलो चरणमा विद्युत ऐन लागू गरिएको थियो । यो ऐनले विद्युतको उत्पादन प्रसारण वा वितरणमा प्राधिकरणको एकाधिकार अन्त्य गरेको थियो । तर पनि विद्युत प्रसारण, उपभोक्ता हित संरक्षण, महसुल सम्बन्धी विवाद समाधान विद्युत व्यापारको नियमन विद्युत महसुल दरको निर्धारण आदि विषयलाई थप व्यवस्थित गर्न आवश्यक भएको थियो । मौजुदा विद्युत महसुल निर्धारण आयोगको संरचना र कानूनी प्रबन्ध अपूर्ण थियो । नेपाल सरकारको स्वामित्व भएको निकाय “प्राधिकरण” नै विद्युतको उत्पादन, प्रसारण र वितरणमा संलग्न रहेको अवस्थामा सरकारी निकायको नियमन निष्पक्ष, प्रभावकारी र स्वतन्त्र नहुने तथ्यलाई ध्यानमा राखी विद्युत क्षेत्रको नियमनलाई चुस्त, स्वतन्त्र र व्यावसायिक बनाउने प्रावधानहरू

अन्तर्भावित भएको विद्युत नियमन आयोग ऐन, २०७४ लागू गरिएको छ ।

सार्वजनिक निजी साभेदारी तथा लगानी ऐन, २०७५: ६ अर्ब रुपैयाँ भन्दा बढी लागत अनुमान भएका जलविद्युत लगायतका ऊर्जा परियोजना बाहेकको अन्य परियोजना र दुई सय मेगावाट क्षमताभन्दा बढीको जलविद्युत लगायतका ऊर्जा परियोजनाको लगानी स्वीकृत गर्ने तथा त्यस्ता परियोजना कार्यान्वयन गर्ने व्यवस्था छ । तर, यो व्यवस्थाले ऊर्जा, जलस्रोत तथा सिंचाइ मन्त्रालयको कार्यक्षेत्रमा हस्तक्षेप गरेको जस्तो देखिन्छ ।

विद्युत चोरी नियन्त्रण ऐन, २०५८ (विद्युत चोरी नियन्त्रण ऐन): यो ऐनले कुनै पनि व्यक्तिले विद्युतको चोरी गर्न नहुने व्यवस्था गरेको छ । विद्युतको चोरी भए नभएको नियमन, अनुसन्धान र तहकिकातको दायित्व र जिम्मेवारी विद्युत वितरकको हुनेछ । उपभोक्ताले प्रयोग गरेको विद्युत र विद्युतको अनधिकृत प्रयोगको अनुगमन गर्ने दायित्व पनि विद्युत वितरकको हुनेछ ।

नियमन सम्बन्धी संस्थागत प्रबन्ध: विद्युत क्षेत्रको नियमनका लागि दुई प्रकार नियामक निकाय- सामान्य र विशिष्टीकृत- को व्यवस्था गरिएको छ । सामान्य नियामक निकाय अन्तर्गत ऊर्जा, जलस्रोत तथा सिंचाइ मन्त्रालय, विद्युत विकास विभाग र लगानी बोर्डको कार्यालयलाई लिन सकिन्छ भने विशिष्टीकृत र स्वतन्त्र नियामक निकाय- विद्युत नियमन आयोग हो ।

सामान्य नियामक निकाय:

ऊर्जा, जलस्रोत तथा सिंचाइ मन्त्रालय: यो मन्त्रालयको दुई प्रकारको जिम्मेवारी छ- पहिलो, नीतिगत व्यवस्था गर्ने र दोस्रो, नियामक भूमिका निर्वाह गर्ने । नियामक भूमिका अन्तर्गत विद्युत ऐन र विद्युत नियमावलीबमोजिम विद्युत उत्पादन, प्रसारण, वितरण वा विद्युत व्यापारको लागि अनुमतिपत्र प्रदान गर्ने, अनुमतिपत्र खारेज गर्ने, विद्युत ऐनको उल्लङ्घन गरेकामा सजाय गर्ने, विद्युत निरीषकको नियुक्ति गर्ने लगायतका अधिकारको प्रयोग र कर्तव्य निर्वाह गर्नुपर्ने प्रबन्ध गरिएको छ । विद्युत सम्बन्धी कानून र नीतिको कार्यान्वयनमा यो मन्त्रालयको अहम भूमिका छ ।

विद्युत विकास विभाग: यो विभागको भूमिका तीन प्रकारको छ- (क) विद्युतको विकासमा संलग्न निजी क्षेत्रको काम कारबाहीमा सहयोग र सहजीकरण गर्ने, (ख) विद्युत आयोजनाको सम्भाव्यता अध्ययन गर्ने र सामान्य नियामक भूमिका निर्वाह गर्ने । नियामक भूमिका अन्तर्गत अनुमतिपत्र प्राप्त संस्थाहरूको काम कारबाहीको अनुगमन र निरीषण गर्ने, विद्युतको निरीषकको नियुक्ति गर्ने, विद्युत ऐन तथा अनुमतिपत्रका सर्तहरूको उल्लङ्घन भएमा सजायको कारबाही प्रक्रिया अगाडि बढाउने आदि रहेका छन् । विद्युत उत्पादन, प्रसारण वा वितरणको अनुमतिपत्र प्राप्त कम्पनीको सेयर संरचनामा परिवर्तन गर्न विभागको स्वीकृति लिनुपर्नेछ ।

लगानी बोर्डको कार्यालय: लगानी बोर्डले स्वीकृत गरेका परियोजनाको कार्यान्वयनको अनुगमन गर्ने र समय तालिका बमोजिम परियोजना कार्यान्वयन नभएको अवस्थामा अनुमतिपत्र वा इजाजतपत्र आदि रद्द गर्न सिफारिस गर्ने अधिकार लगानी बोर्डलाई दिइएको छ ।

विशिष्टीकृत नियामक निकाय:

विद्युत नियमन आयोग: विद्युतको माग र आपूर्ति बीच सन्तुलन कायम राख्न, विद्युत महसुल नियमन गर्न, विद्युत उपभोक्ताको हक र हित संरक्षण गर्न, विद्युतको बजारलाई प्रतिस्पर्धात्मक बनाउने उद्देश्य प्राप्तिका लागि विद्युत नियमन आयोग ऐन, २०७४ को दफा ३ बमोजिम विद्युत नियमन आयोगको स्थापना गरिएको छ । विद्युत नियमन आयोगको संरचना स्वतन्त्र र पारदर्शी ढंगले गठन गरिन्छ, ताकि यसको निर्णय प्रक्रिया कुनै बाह्य हस्तक्षेपबाट प्रभावित नहोस् । सामान्यतया आयोगका सदस्यहरू कानून, इन्जिनियरिङ, अर्थशास्त्र वा वातावरणीय विज्ञानमा विशेषज्ञ हुनेछन् र उनीहरूको नियुक्ति एक निश्चित प्रक्रियाका आधारमा गरिन्छ, जसले उनीहरूको कार्यकाललाई सुरक्षित बनाउँछ । आयोगका निर्णयहरू तथ्यमा आधारित र सार्वजनिक परामर्श प्रक्रियामा आधारित हुनेछन्, यसले पारदर्शिता र जवाफदेहिताको प्रवर्द्धन गर्नेछ ।

विद्युत नियमन आयोगको मुख्य उद्देश्य विद्युतको उत्पादन, प्रसारण, वितरण वा व्यापारको क्षेत्रमा निष्पक्ष र स्वतन्त्र नियमन सुनिश्चित गर्नु हो । नियमन आयोगको प्रमुख कार्य र जिम्मेवारी देहायबमोजिम उल्लेख गर्न सकिन्छ-

१. **विद्युत प्रणालीको गुणस्तर, सुरक्षा आदि कायम राख्ने:** यो कार्यका लागि आयोगले प्रसारण तथा वितरण ग्रिड संहिता तयार गरी लागू गर्ने, विद्युत सेवाको सञ्चालन तथा मर्मत सम्भारको स्तर र प्रक्रिया निर्धारण गर्ने, राष्ट्रिय विद्युत प्रणालीको गुणस्तर तथा सुरक्षा कायम राख्न मापदण्ड लागू गर्ने, विद्युत प्रणाली सञ्चालकको दायित्व निर्धारण गर्ने र त्यसको अनुगमन गर्नेछ । विद्युत सेवाको आन्तरिक माग तथा आपूर्तिको लागि न्यूनतम लागत विस्तार कार्ययोजना तयार गर्ने जिम्मेवारी पनि आयोगको हुने व्यवस्था गरिएको छ । न्यूनतम लागत विस्तार योजना विद्युत उत्पादनसँग सम्बन्धित भएकोले यसको कार्यान्वयनका लागि नेपाल सरकार र निजी क्षेत्रका बीच सहयोग र समन्वय महत्वपूर्ण हुनेछ । हुनत आयोगले हालसम्म यस्तो कार्ययोजना तयार गरेको अवस्था छैन् ।

२. **विद्युत महसुल निर्धारण:** विद्युत महसुलको निर्धारण आयोगको सबैभन्दा महत्वपूर्ण कार्य हो । विद्युत सेवामा अतिरिक्त शुल्क (सरचार्ज) लगाउन आवश्यक भएमा त्यस विषयमा समेत आयोगले नै त्यस्तो सरचार्जको निर्धारण गर्नेछ ।

३. **प्रसारण तथा वितरण दस्तुर (व्हिलिड चार्ज) निर्धारण:** विद्युत प्रसारण तथा वितरण प्रणालीको निर्माण र सञ्चालन सहज रूपमा सम्भव छैन । यसको लागि टुलो धनराशी र प्राविधिक क्षमता आवश्यक पर्छ । यस्तो प्रणालीको सञ्चालन निष्पक्षरूपमा गर्न आवश्यक हुनेछ । विद्युत प्रसारण तथा वितरण प्रणालीको लागत पूर्ति गर्न र निष्पक्षता सुनिश्चित गर्न व्हिलिड चार्ज आवश्यक हुन्छ । निजी उत्पादनलाई बजारसम्म पुऱ्याउने माध्यम निजी ऊर्जा उत्पादकको आफ्नो लाइन नभएकाले ग्रिड प्रयोग गरेर बिजुली बेच्न चाहन्छन् । त्यस्तो अवस्थामा उनीहरूले प्रसारण ग्रिड प्रयोग गरे बापत तिर्नुपर्ने शुल्क नै व्हिलिड चार्ज हो, जसले उनीहरूलाई बजारसम्म पुन मद्दत गर्छ । छिमेकी देशहरूबीच विद्युतको व्यापार वा कारोबार गर्दा पनि प्रसारण लाइनको प्रयोग हुन्छ । जस्तै भारत-नेपाल बीच विद्युत आयात-निर्यात गर्दा, लाइन प्रयोग बापत शुल्क तिर्नुपर्छ । प्रणालीको दिगो विकासको लागि स्रोत सङ्कलन, प्रणालीको दीर्घकालीन सुधार र विस्तार गर्नका लागि आम्दानी स्रोत आवश्यक पर्छ । व्हिलिड चार्जले त्यो आम्दानी जुटाउने माध्यमको रूपमा काम गर्छ ।

४. **प्रतिस्पर्धा कायम तथा उपभोक्ताको हित संरक्षण:** यस अन्तर्गत उपभोक्ताको हित संरक्षणको लागि आवश्यक उपाय परिचान गरी कार्यान्वयन गर्ने वा गराउने, विद्युत खरिद बिक्रीको दरमा प्रतिस्पर्धाको वातावरण कायम गराउने, अनुमतिपत्र प्राप्त व्यक्तिहरूबीच विद्युत महसुल दरमा प्रतिस्पर्धा गराउन आवश्यक उपायको परिचान गरी लागू गराउने,

विद्युत महसुल दरमा एकाधिकार हुन नपाउने व्यवस्था गर्ने, विद्युतको थोक बजार स्थापना, सञ्चालन तथा खरिद बिक्री प्रक्रिया निर्धारण गर्ने, अनुमतिपत्र प्राप्त व्यक्तिहरू आपसमा गाभिन (मर्जर), आपसमा मिल्न, एकलै वा आफ्नो सहायक कम्पनीसँग मिली त्यस्तो व्यक्ति रहेको कम्पनीको पचास प्रतिशत वा त्यसभन्दा बढी सेयर खरिद गर्न, संरचनाको खरिद बिक्री (सेल अफ प्लान्ट), प्राप्ति (एक्विजिसन) वा ग्रहण (टेक ओभर) गर्नको लागि आवश्यक मापदण्ड बनाई कार्यान्वयन गर्ने वा गराउने, अनुमतिपत्र प्राप्त व्यक्तिहरू आपसमा गाभिन, संरचनाको खरिद बिक्री (सेल अफ प्लान्ट) तथा प्राप्ति (एक्वीजिशन) वा ग्रहण (टेक ओभर) गर्न सहमति दिने, विद्युतको व्यापार गर्दा पालना गर्नुपर्ने सर्तहरू तोक्ने तथा त्यसको नियमित रूपमा अनुगमन गर्ने, प्रसारण लाईनमा बहिरहेको विद्युतको गुणस्तर कायम गराउन समय समयमा जाँच परीक्षण गर्ने वा गराउने, विद्युत प्रणालीमा खुल्ला पहुँचको व्यवस्था गर्नेछ ।

५. **सङ्गठनात्मक क्षमता र संस्थागत सुशासन अभिवृद्धि:** अनुमतिपत्र प्राप्त संस्थाको कार्यक्षमता मूल्याङ्कनको स्तर तथा आधार निर्धारण गर्ने, त्यस्ता संस्थाहरूको काम कारबाहीलाई मर्यादित बनाउन आचार संहिता तयार गरी लागू गर्ने, विद्युतको बजार प्रबद्धन, विस्तार तथा विविधीकरण गर्न सहयोग गर्ने, आन्तरिक नियन्त्रण, लेखा प्रणाली, लेखापरीक्षण विधिमा एकरूपता कायम गर्न मापदण्ड बनाई लागू गर्नेछ ।

६. **जाँच तथा निरीक्षण:** आयोगले कुनै पनि विद्युत आयोजना स्थल, प्रसारण लाइन, वितरण केन्द्र वा अन्य विद्युत संरचनाको निरीक्षण गर्न सक्नेछ । निरीक्षणको क्रममा कुनै त्रुटि, अनियमिता वा नियम विपरीत काम भएको पाइएमा आयोगले सुधार गर्न निर्देशन दिन सक्नेछ र आवश्यक भएमा आयोगले स्वतन्त्र विशेषज्ञ वा प्राविधिक टोली खटाएर पनि विद्युत आयोजनाको जाँच गराउन सक्नेछ ।

७. विवादको समाधान:

- (क) अनुमतिपत्र प्राप्त व्यक्तिहरूबीच उत्पन्न विद्युत सम्बन्धी विवाद,
- (ख) अनुमतिपत्र प्राप्त व्यक्तिले गरेको कुनै निर्णयमा चित नबुझेको वा निजले गरेको कार्यबाट आपूलाई मर्का परेको कुरा उल्लेख गरी त्यस बापतको क्षतिपूर्ति दाबी गरेको विषयको विवाद समाधान गर्ने विषय आयोडको क्षेत्राधिकारमा पर्दछ र यो कार्य गर्दा आयोगले अदालतलाई भए सरहको अधिकार प्रयोग गर्दछ ।

८. **जरिबाना:** आयोगले आफूले दिएको आदेश वा निर्देशन पालना नगर्ने वा ऐनको उल्लङ्घन गर्ने वा पूर्व सूचना नदिई विद्युत सेवा अवरुद्ध गर्ने वा गराउने अनुमतिपत्र प्राप्त संस्थालाई पाँच लाख रुपैयाँसम्म जरिबाना गर्न सक्नेछ । आयोगको नियमनबाट विद्युत प्रसारण वा वितरण सञ्जालमा निजी क्षेत्रको समेत समान र भेदभावरहित पहुँच सुनिश्चित गरी प्रतिस्पर्धा प्रवर्द्धन गर्न सकारात्मक सहयोग पुनेछ ।

विद्युत नियमन आयोगले नेपाल सरकार, विकास साफेदार र निजी क्षेत्रका संस्थाहरूसँग सहकार्य गर्दै दीर्घकालीन योजनाहरू कार्यान्वयन गर्न महत्वपूर्ण भूमिका खेलेछ । उदाहरणका लागि विद्युत पहुँच विस्तार, नवीकरणीय ऊर्जा प्रवर्द्धन, ऊर्जा दक्षतामा सुधार र स्मार्ट ग्रिड प्रविधिको विकासमा आयोगले अग्रसर भूमिका निर्वाह गर्नसक्नेछ । आयोगले उपभोक्ता र सेवा प्रदायक बीच उत्पन्न विवाद समाधानको संयन्त्रका रूपमा पनि कार्य गर्नेछ- जसले उपभोक्ता र सेवा प्रदायक बीच उत्पन्न समस्या समाधान गर्न सहयोग पुऱ्याउँछ ।

आजको जलवायु परिवर्तनको सन्दर्भमा आयोगको भूमिका थप विस्तारित भएको छ । ऊर्जा प्रणालीलाई दिगो,

आधुनिक र कार्बन न्यूनीकरण उन्मुख बनाउन आयोगले नीति निर्माणदेखि प्रविधि व्यवस्थापनसम्म महत्वपूर्ण योगदान पुऱ्याउन सक्छ। विद्युत नियमन आयोग केबल एक नियामक निकाय मात्र नभएर देशको ऊर्जाको भविष्य निर्माण गर्ने एक रणनीतिक संस्था पनि हो। त्यही रूपमा यसलाई सबल बनाउनु पर्नेछ।

५. विद्युत नियमन आयोग: समस्या र चुनौती

नेपालको ऊर्जा क्षेत्रमा महत्वपूर्ण सुधारका उद्देश्य सहित स्थापना गरिएको आयोगले पछिल्ला वर्षहरूमा उल्लेखनीय कामहरू गर्दै आएको भएतापनि यसको कार्यक्षेत्रमा विभिन्न समस्या र चुनौतीहरू व्याप्त छन्। प्रभावकारी नियमनको अभावमा ऊर्जा क्षेत्रमा लगानी विस्तार, सेवाको गुणस्तरमा वृद्धि, उपभोक्ताको हित संरक्षण तथा प्रतिस्पर्धात्मक बजारको विकासमा बाधा उत्पन्न भएको छ। आयोगले सामना गरिरहेको मुख्य समस्या र चुनौतीहरू निम्नअनुसार छन्:

संस्थागत कमजोरी: आयोगको संस्थागत संरचना अझै पूर्ण रूपमा विकसित हुनसकेको छैन। कर्मचारीहरूको संख्या सीमित छ, दक्ष र प्राविधिक जनशक्तिको अभाव छ, जसका कारण आयोगको क्षमता र प्रभावकारिता प्रभावित भएको छ। मानव संसाधन र भौतिक संसाधनको अपर्याप्तताकै कारण आयोगले निर्माण गर्नुपर्ने धेरै नियाकमीय उपकरणहरू र कानूनी दस्तावेजहरू तयार हुन सकेका छैनन्।

राजनीतिक हस्तक्षेप: यद्यपि आयोग एक स्वतन्त्र नियामक निकाय हो। तर व्यवहारमा राजनीतिक दबाव, पहुँच र प्रभाव परिरहेको आरोप लाग्ने गरेका छन्। पदाधिकारीहरूको नियुक्ति विद्युत, महसुल दर समायोजन, विद्युत खरिद बिक्रीको सहमति, विवाद वा गुनासो समाधान जस्ता विषयहरूमा निर्णय लिँदा कानून र नीति भन्दा पनि राजनीतिक वा बाह्य प्रभावले काम गरेको भन्ने आशङ्का रहेका छन्। यस्ता क्रियाकलापहरूले आयोगप्रतिको विश्वासमा आँच पुग्ने र लक्ष्य प्राप्तिको मार्गमा अवरोध पुग्नसक्नेछ।

कानूनी अस्पष्टता, सीमित अधिकार र अधिकारमा दोहोरोपन: हालको विद्युत नियमन आयोग ऐन, २०७४ ले आयोगलाई आवश्यक अधिकार प्रदान गरे तापनि कतिपय अवस्थामा कानूनी व्यवस्था र अधिकारको सीमा स्पष्ट छैन। यसलाई स्पष्ट रूपमा भन्नु पर्दा आयोगलाई नियायक निकायको रूपमा कानूनले स्वीकार गरेको भएतापनि नियामक निकायको रूपमा प्राप्त हुनुपर्ने अधिकारहरू प्राप्त भएको छैन। जस्तै अन्य क्षेत्रका नियामक निकायहरूलाई अनुमति वा इजाजत प्रदान गर्ने अधिकार प्रदान गरिएको छ, तर आयोगलाई अनुमतिपत्र प्रदान गर्ने अधिकार छैन। यो एउटा गम्भीर समस्या हो। विद्युत महसुल दर निर्धारण गर्ने अधिकार आयोगको हो भनिन्छ। तर यो अवधारणालाई पुरानो कानूनले अझुशा लगाएको छ। उदाहरणार्थ: आयोगले निर्धारण गरेको विद्युत महसुलका सम्बन्धमा घुमाउरो तरिकाले पुनरावलोकन गर्ने अधिकार नेपाल विद्युत प्राधिकरणलाई दिइएको छ। यस्तो व्यवस्था कसरी रहन गयो? विचार गर्न आवश्यक भएको छ। पुनरावलोकनको अधिकार विद्युत प्राधिकरणमा रहने हो भन्ने आयोगको मुख्य अधिकार नै खण्डित हुनेछ। विद्युतीय चोरी वा गैरकानुनी वितरण प्रणालीलाई बन्द गर्ने सन्दर्भमा पनि आयोगको अधिकार सीमित र सङ्ख्याचित छ।

उपभोक्ता सचेतना र सहभागिताको अभाव: नेपालमा अझै पनि धेरै उपभोक्ताहरू आयोगको भूमिका, अधिकार र सेवा प्रणाली बारे अनभिज्ञ छन्। उपभोक्ता गुनासो सुन्ने प्रणाली कमजोर छ, र आयोगको वेब साइट तथा सूचना प्रणाली अध्यावधिक र जनमैत्री हुनसकेका छैनन्। जनसहभागिता बिनाको नियमन प्रणाली दिग्गो र प्रभावकारी हुन सक्दैन।

प्रतिस्पर्धाको न्यूनस्तर: नेपालको विद्युत बजारमा एकाधिकार प्रवृत्ति अझै बलियो छ । नेपाल विद्युत प्राधिकरण उत्प(दानदेखि वितरणसम्म मुख्य भूमिकामा नै रहेको छ । निजी क्षेत्रको सहभागिता कमजोर छ । प्रतिस्पर्धात्मक वातावरण बनाउन सक्ने संरचना विकास गर्न आयोग सफल भएको छैन । उदाहरणका लागि राष्ट्रिय ग्रिडको सञ्चालन र व्यवस्थ(अपनको जिम्मेवारी पनि नेपाल विद्युत प्राधिकारणमा नै निहित छ । यसले प्रतिस्पर्धालाई कमजोर बनाउँछ । यो सबालमा आयोगले हस्तक्षेपकारी भूमिका निर्वाह गर्न सकेको छैन भन्ने निजी क्षेत्रको गुनासो छ ।

अन्तर निकाय समन्वयको अभाव: विद्युत उत्पादन, प्रसारण, तथा नवीनकरणीय ऊर्जा प्रवर्द्धन सम्बन्धी काम अन्य सरकारी निकायहरूसँग जोडिएको हुँदा आयोगले नीति कार्यान्वयनमा समन्वयको समस्या भोग्नुपर्दछ । उदाहरणका लागि, ऊर्जा, जलस्रोत तथा सिंचाइ मन्त्रालय, नेपाल विद्युत प्राधिकरण, वैकल्पिक ऊर्जा प्रवर्द्धन केन्द्र जस्ता निकायस(ग प्रभावकारी सहकार्य र समन्वयको अभाव देखिएको छ । समन्वयन गर्ने प्रभावकारी सयन्त्र पनि निर्माण भएको छैन ।

प्रविधिमा पिछडिएको अवस्था: बिश्वव्यापी रूपमा स्मार्ट ग्रिड, डिजिटल मिटरिङ तथा स्वचालित प्रणाली जस्ता प्रविधि(धहरू प्रयोगमा आइरहेका छन् । तर नेपालमा भने प्रविधिमैत्री नियमन प्रणाली विकास हुनसकेको छैन । डेटा सङ्कलन, विश्लेषण र रिपोर्टिङ प्रणाली अझै पनि परम्परागत शैलीमा निर्भर छ । यसले आयोगको कार्य सम्पादनमा असर परेको छ ।

वातावरणीय र सामाजिक संवेदनशीलता: नयाँ विद्युत परियोजनाहरूले वातावरणीय र सामाजिक असर पार्ने सम्भावना रहन्छ । आयोगले यी पक्षमा निगरानी गर्ने प्रणाली विकास गर्न सकेको छैन । स्थानीय समुदायको सहमति, वातावरण(यी मूल्याङ्कन र प्रसारण लाइनको जग्गाको मुआज्जा व्यवस्थापनमा आयोगको भूमिका रहेको छैन । खासगरी प्रसारण लाइनको राइट अफ बे बापत दिइने क्षतिपूर्ति निर्धारणको विषय संवेदनशील छ र यो विषयमा कानूनको स्पष्ट अभाव देखिएको छ । यसले एकातिर प्रसारण लाइनको निर्माण कार्य प्रभावित भएको छ अर्को तर्फ स्थानीय जनतालाई गम्भीर मर्का परेको छ ।

६. उपसंहार र आगामी दिशाबोध

उपसंहार: नेपालको ऊर्जा क्षेत्र राष्ट्रको आर्थिक समृद्धि, औद्योगिक विकास, र सामाजिक उत्थानसँग गहिरो रूपमा जोडिएको छ । विद्युत क्षेत्रमा उत्पादन वृद्धि, पहुँच विस्तार र नवीकरणीय स्रोतहरूको प्रवर्द्धन जस्ता महत्वपूर्ण कार्यहरू भएको भएतापनि यो क्षेत्रको नियमनका लागि विभिन्न निकायहरू स्थापना गरिएका छन् र ती निकायहरू बीच समन(वयको अभाव र अधिकार विभाजनको विषय दुविधाग्रस्त छ । विद्युत क्षेत्रको विकास र प्रवर्द्धनमा मात्र सीमित हुनुपर्ने निकायलाई नियमनको पनि अधिकार रहेको छ । यसको दृष्टान्त लगानी बोर्डलाई नै लिन सकिन्छ । यसका अतिरिक्त विद्युत क्षेत्रको विकास सम्बन्धी नीति, कार्यक्रम, योजना बनाउने र आवश्यक सहजीकरणको भूमिका भएका निक(यहरूमा अझै पनि नियमन सम्बन्धी अधिकार र दायित्व रहेको छ । त्यस्तै विद्युत महसुल दर निर्धारणको अधिकार आयोगमा भएपनि सेवा प्रदायकले नै अप्रत्यक्षरूपमा महसुल दरका विषयमा पुनरावलोकन गर्न पाउने अधिकारले आयोगको स्वायत्तता र मूल अधिकारलाई सङ्कुचन गरेको छ । यी सबै सबालहरूलाई दिगो र न्यायोचित रूपमा सम्बोधन गर्न विद्युत नियमन आयोगलाई सबल र अधिकार सम्पन्न बनाउन आवश्यक छ । आयोगको स्थापनाको उद्देश्य-आधुनिक प्रविधिमा आधारित, प्रतिस्पर्धात्मक र उपभोक्तामैत्री विद्युत प्रणालीको सञ्चालन र निष्पक्ष नियमन हो ।

आयोगले विद्युतको महसुल दर समायोजन, सेवा मापदण्ड, गुनासो व्यवस्थापन र प्रणालीको सुधार जस्ता विषयमा केही सकारात्मक पहलहरू गरेको पनि छ । तर अझै पनि संस्थागत कमजोरी, नियमन सम्बन्धी कानूनी द्विविधा, राजनीतिक हस्तक्षेप, उपभोक्ता सहभागिताको अभाव तथा प्रविधिको न्यून प्रयोग जस्ता चुनौतीहरूको समाधान गर्न बाँकी नै छन् ।

आगामी दिशाबोध

विद्युत नियमन आयोग एक नियामक निकाय मात्र नभएर देशको ऊर्जाको भविष्य निर्माण गर्ने रणनीतिक संस्था पनि हो । त्यसैले नियमनको पक्षलाई ध्यानमा राखी आयोगलाई सबल, प्रभावकारी र अधिकार सम्पन्न निकाय बनाउन आवश्यक छ । आयोगलाई प्रभावकारी र सक्षम बनाउने सन्दर्भमा निम्नलिखित उपायहरू अपनाउन समीचीन हुनेछः

- (१) **संस्थागत सुदृढीकरण गर्ने:** आयोगको आन्तरिक संरचना, जनशक्ति र प्रविधिलाई सुदृढ गरेर निर्णय क्षमता अभिवृद्धि गर्नुपर्छ । डिजिटल प्रविधिको प्रयोग र प्रणालीको विकास र प्रयोग हुनसकेको छैन । ई-गर्भनेस, स्मार्ट मिटरिङ, अनलाइन अनुगमन र मूल्याङ्कन, जस्ता विषयलाई कानूनमा समेट्नु पर्नेछ । आयोगको नियमन क्षमतामा वृद्धि गर्ने प्रविधिक मैत्री व्यवस्था, प्रसारण तथा वितरण कोड, गुणस्तर मापनका सूचक निर्धारण र कार्यान्वयन अर्को महत्वपूर्ण क्षेत्र हो । यसलाई आयोगको कार्य प्रणालीमा आवद्ध गर्न जरुरी भएको छ । स्मार्ट मिटरिङ, डेटा विश्लेषण प्रणाली र डिजिटल गुनासो प्रणाली लागू गर्न सकिनेछ, जसले पारदर्शिता र विश्वसनीयता अभिवृद्धि गर्नेछ ।
- (२) **समन्वय र सहकार्यलाई सबल बनाउने:** ऊर्जा, जलस्रोत तथा सिंचाइ मन्त्रालय, नेपाल विद्युत प्राधिकरण लग(यत सम्बन्धित निकायहरूसँग सहकार्य गर्दै एकीकृत ऊर्जा नीति कार्यान्वयन गर्नुपर्नेछ । छिमेकी देशका नियमन निकायसँग सहकार्य गर्ने संयन्त्रको विकास गर्न आवश्यक छ ।
- (३) **उपभोक्ता संरक्षण र गुनासो समाधान प्रक्रियालाई सबलीकृत गर्ने:** उपभोक्ताले उजुरी गर्ने, छानबिन गराउने र निष्कर्ष प्राप्त गर्ने प्रक्रियामा ढिलासुस्ती हुने गरेको गुनासो छ । आयोगलाई अर्द्धन्यायिक अधिकार दिई गुनासो छिटो समाधान गर्ने क्षमतामा वृद्धि आवश्यक छ । उपभोक्तालाई आयोगको काम, अधिकार र सेवा प्रणालीबारे जानकारी दिने, उनीहरूको गुनासोहरूलाई सम्बोधन गर्ने सहज र प्रभावी प्रणाली विकास गर्नुपर्ने हुन्छ ।
- (४) **विद्युत महसुल निर्धारण प्रक्रियाको पारदर्शिता र जनसहभागिता:** हालको महसुल निर्धारण प्रक्रिया र विधिमा व्यापार सुधारको खाँचो छ । विद्युत व्यापारको ढोका खोल्नका लागि पनि विभिन्न विधिबाट विद्युत महसुल निर्धारण गर्ने आधार तय गर्न आवश्यक छ । साथै यसको लागि उपभोक्ता समूहको प्रतिनिधित्व गर्ने लगायतका कानूनी व्यवस्था राख्न सकिनेछ ।
- (५) **आयोगलाई सञ्चाय संसदप्रति उत्तरदायी बनाउने:** आयोगलाई सञ्चाय संसदप्रति उत्तरदायी बनाउन आयोगको प्रतिवेदनलाई विभागीय मन्त्री मार्फत संसदमा पेस गर्ने र त्यस उपर छलफल गर्ने कानूनी व्यवस्था गर्न सकिनेछ । यो व्यवस्थाले आयोगलाई थप जिम्मेवार बनाउँछ भने यसको स्वतन्त्र हैसियत कायम राख्न संसदबाट थप सहयोग मिल्नेछ ।
- (६) **नियमन सम्बन्धी कानूनमा व्यापक सुधार:** बुँदा नं १ देखि ५ सम्मका सुभावहरूलाई कायान्वयन गर्न र अन्तर प्रिष्ठ्य उत्तम अभ्यास समेतलाई ध्यानमा राखी विद्युत प्रसारण, वितरण र व्यापार नियमनका विषयमा अनुमतिपत्र

नियामक निकायको रूपमा विद्युत नियमन आयोगको भूमिका

डा. दामोदर रेग्मी १

नियामक निकाय (Regulatory Body) भनेको यस्तो स्वतन्त्र संस्था वा निकाय हो जुन कुनै विशेष क्षेत्र, सेवा, व्यवसाय वा क्रियाकलापलाई नियम, मापदण्ड र कानुनी रूपमै नियमन (Regulate) गर्ने काम गर्छ । यसको मुख्य उद्देश्य भनेको सार्वजनिक हितको संरक्षण, न्यायसंगत प्रतिस्पर्धा सुनिश्चित गर्नु, गुणस्तर कायम गर्नु, र अनियमितता वा दुरुपयोग रोक्नु हो । नियामक निकायको नियन्त्रणात्मक भूमिका “संरक्षण (Protection), प्रवर्तन (Enforcement) र सुधार (Reform) मा आधारित हुनुपर्छ । यसको मूल उद्देश्य भनेको सार्वजनिक हित, गुणस्तरीय सेवा, तथा समुचित व्यवस्थापन सुनिश्चित गर्नु हो ।” नियामक निकाय सरकारबाट स्वतन्त्र हुनुपर्छ, तर सरकारबाट टाढा होइन । “सशक्त शासनका लागि यी दुईबीच सन्तुलन (Balance), समन्वय (Coordination), र विश्वास (Mutual Trust) अपरिहार्य हुन्छ ।

नियामक निकायका विशेषताहरू:

- कानुनी आधारमा स्थापना ।
- स्वायत्तता: सरकारअन्तर्गत भएपनि संचालनमा स्वतन्त्र हुन्छन्
- नियम बनाउने, अनुगमन गर्ने, र कार्यान्वयन गराउने अधिकार हुन्छ
- सम्बन्धित क्षेत्रभित्रको अनुपालन सुनिश्चित गर्ने काम गर्छ

नियामक निकायको भूमिका अत्यन्तै महत्वपूर्ण, जिम्मेवारपूर्ण र सन्तुलित रहनु पर्दछ । यसका प्रमुख भूमिका र विशेष(ताहरू यस प्रकार छन्:

१. स्वतन्त्रता र निष्पक्षता

क) नियामक निकायले सरकार, निजी क्षेत्र वा कुनै पनि प्रभावशाली समूहबाट स्वतन्त्र भएर कार्य गर्नुपर्छ ।
ख) यसले निष्पक्ष निर्णय, पारदर्शी प्रक्रिया र समावेशीता सुनिश्चित गर्छ ।

२. कानुनको परिपालना

क) सम्बन्धित क्षेत्रको कानुनी र नीतिगत व्यवस्था अनुसार कार्य गरिनुपर्छ ।
ख) नियामक निकायले नियम नमान्ते निकाय/व्यक्तिमाथि कारबाही गर्न सक्ने अधिकार राख्नुपर्छ ।

^१ लेखक प्रशासनविद तथा गीतकार हुनुहुन्छ ।

३. निगरानी र मूल्यांकन

क) नियामित संस्थाहरू (चभनगाबितभम भलतषाष्पक) को गतिविधि निरन्तर अनुगमन गर्ने,
ख) प्रदर्शन मूल्यांकन गर्ने, र आवश्यक सुधारको सिफारिस गर्ने ।

४. पारदर्शिता र जवाफदेहिता

क) सबै निर्णयहरू तथ्यमा आधारित र खुला रूपमा प्रस्तुत गरिनुपर्छ ।
ख) सार्वजनिक जवाफदेहिता सुनिश्चित गरिनुपर्छ ।

५. सेवाग्राही केन्द्रितता

क) उपभोक्ता/सेवाग्राहीको हित संरक्षण प्रमुख लक्ष्य हुनुपर्छ ।
ख) उपभोक्ता उजुरी समाधान, मूल्य नियन्त्रण, गुणस्तर मापदण्ड निर्धारण जस्ता कार्यमा संलग्न रहनुपर्छ ।

६. नीति निर्माणमा सधाउने

क) सरकारलाई नीतिगत सल्लाह दिनु,
ख) नियामित क्षेत्रमा सुधार र नवप्रवर्तन (innovation) प्रोत्साहन गर्नु ।

७. क्षमता विकास

क) सम्बन्धित क्षेत्रका निकायहरूलाई दक्ष बनाउने तालिम, मार्गनिर्देशन, प्राविधिक सहयोग प्रदान गर्ने ।

८. समन्वय

क) अन्य सरोकारवाला निकायहरूसँग समन्वय सहकार्य र सूचना आदानप्रदान गर्ने ।

सहजीकरणको भूमिकामा नियामक निकाय

नियामक निकायले केवल 'नियन्त्रण' मात्र होइन, 'सहजीकरण' (facilitation) को भूमिकामा पनि रहनुपर्छ । यसले नीति, प्रक्रिया, तथा व्यवहारिक पक्षमा सुधार ल्याउँछ र सेवा प्रवाह तथा विकासलाई गति दिन्छ । नियामक निकायले सुधारका मार्ग देखाउने, सरोकारवालाबीच पुलको भूमिका खेल्ने र सेवा प्रवाहलाई सहज बनाउने माध्यम बन्नुपर्छ । नियामक निकायले सहजीकरण गर्ने क्षेत्रहरू :

- अत्यधिक जटिल, अस्पष्ट वा दोहोरो नियमहरू हटाएर सरल, बुझन सकिने र कार्यान्वयन गर्ने मिल्ने नियम बनाउने ।
- नयाँ नीति ल्याउँदा सरोकारवालासँग परामर्श गर्ने ।
- सेवा प्रवाह डिजिटल प्रणालीमार्फत एकीकृत गर्ने (जस्तै: One Window Policy, e-Governance, On-line Licensing Portal) । यसले सेवा समय घटाउँछ, प्रक्रियागत भन्नक्ट हटाउँछ ।

- ग्रिफ्टन मार्गी, एवं मुग्धलहरु त्रिभुवनी (Third Quadrant) ईरउसेयोगमहोत्तमस्थिरमतीत, असर्वात्मकतावाल्मीकीयाबोगोत्तमज्ञेयार्थिर्विमान जनियेसनाथासुसम्मेगावार्ष्ण्यत्रांश्चात्मात्माप्रियावकार्यशास्त्रतत्त्वसम्बन्धिताकाय बनाउन भौजुदा कानूनमा व्यापक संशोधन र अस्तित्वान्तर्गत उद्योगशक्तिमा, सेवा प्रदायक वा उपभोक्तालाई क्षमता विकासमा सहकार्य गर्ने ।
- प्राविधिक मार्गदर्शन, SOP (Standard Operating Procedure) निर्माण, अनुगमन मापदण्ड निर्माणमा सहयोग पुऱ्याउने ।
- निजी क्षेत्र, उपभोक्ता, संघसंस्था तथा अन्य सरोकारवालासँग नियमित संवाद/संवाद मंच (Stakeholder Consultation) आयोजना गर्ने तथा नीति संवाद गर्ने ।
- सेवाग्राही तथा नियमन अन्तर्गतका संस्थाहरूको गुनासोको सुनुवाइ गर्ने, समाधान खोज्ने र त्यसको पृष्ठपोषण प्रणाली निर्माण गर्ने ।
- ‘दण्डात्मक’ अनुगमन मात्र होइन, ‘सुधारमैत्री’ अनुगमन गर्ने ।
- समस्याको पहिचान र समाधान सुझाउने, सुधारात्मक कार्ययोजना सँगै अगाडि बढाउने ।
- नयाँ प्रविधि, डिजिटल अभ्यास, स्टार्टअप वा उद्यमशीलतामा सहज वातावरण बनाउने ।

नियन्त्रणको भमिकामा नियामक निकाय

नियामक निकायले नियन्त्रण गर्नु पर्ने क्षेत्रहरू सम्बन्धित निकायको कार्यक्षेत्र अनुसार फरक-फरक हुन्छन्, तर सामान्यता(या कूनै पनि नियामक निकायका लागि निम्न प्रमुख क्षेत्रहरूमा नियन्त्रण आवश्यक हुन्छः

- सेवाको गुणस्तरको नियमित अनुगमन गर्नु ।
- सेवा प्रदायकले तोकिएको मापदण्ड अनुसार सेवा दिइरहेका छन् कि छैनन् भनेर सुनिश्चित गर्नु ।
- मूल्य निर्धारण र शुल्क संरचनाको नियमित अनुगमन गर्नु ।
- सेवा वा वस्तुको मूल्य उपभोक्तामैत्री, पारदर्शी र नियमन अनुरूप छ कि छैन भनेर निगरानी गर्नु ।
- लाइसेन्स र अनुमतिपत्र व्यवस्थापन को नियमित अनुगमन गर्नु ।
- सेवा/व्यवसाय संचालन गर्न चाहनेले कानुनी मापदण्ड पूरा गरे/नगरेको मूल्यांकन गरी लाइसेन्स दिने वा ना(वकरण गर्ने ।
- कानुन र मापदण्डको पालनाको नियमित अनुगमन गर्नु ।
- नियम उल्लंघन भए/नभएको अनुगमन गर्ने,
- उल्लंघन गर्ने संस्था वा व्यक्तिलाई कारबाही गर्ने ।
- वित्तीय पारदर्शिता र उत्तरदायित्वको सुनिश्चितता गर्नु । वित्तीय कारोबारको पारदर्शिता, कर तिर्ने प्रक्रिया, आर्थिक नियमितता नियन्त्रण ।
- उपभोक्ता अधिकार संरक्षण गर्ने (Consumer Protection),

- उपभोक्तालाई ठगिने, कमजोर सेवा दिइने वा भ्रामक विज्ञापनबाट जोगाउने ।
- उपभोक्ता गुनासो सुनुवाइ र समाधान सुनिश्चित गर्नु ।
- प्रविधि र नवप्रवर्तनमा सन्तुलन गराउनु ।
- नयाँ प्रविधि/प्रवृत्तिको नियमन - नकारात्मक प्रभाव नपार्ने गरी सन्तुलन कायम गर्नु ।
- संवेदनशील सूचना सुरक्षा र गोपनीयता कायम गर्नु गराउनु ।
- नियम उल्लंघनमा दण्ड दिने मात्र होइन, सुधारको अवसर दिने,
- बजारमा अस्वस्थ प्रतिस्पर्धा, एकाधिकार, मिलेमतो (collusion) जस्ता व्यवहार रोक्न नियमन गर्नु ।

नियामक निकाय र सरकारको सम्बन्ध

नियामक निकाय र सरकार बीचको सम्बन्धले शासन प्रणालीको गुणस्तर, पारदर्शिता, र जनउत्तरदायिता निर्धारण गर्छ । यी दुईबीचको सम्बन्ध सन्तुलित, स्पष्ट र सम्मानजनक हुन अत्यावश्यक छ ।

१. संस्थागत स्वतन्त्रता

- नियामक निकायले आफ्नो कार्यक्षेत्रमा स्वतन्त्र निर्णय लिन सक्ने हुनुपर्छ ।
- सरकारको हस्तक्षेपविना कार्य सम्पादन गर्ने पाउने वातावरण हुनुपर्छ ।

२. नीतिगत समन्वय

- सरकार नीति बनाउने निकाय हो भने नियामक निकाय त्यस नीतिको कार्यान्वयन र निगरानीमा सहायक बन्नुपर्छ ।
- दुवैबीच नीति संवाद, नियमित बैठक र जानकारीको आदानप्रदान आवश्यक हुन्छ ।

३. पारदर्शिता र जवाफदेहिता

- नियामक निकाय सरकारलाई नियमित रूपमा प्रतिवेदन दिनुपर्ने हुन्छ ।
- बजेट खर्च, अनुगमन नतिजा, गुनासो व्यवस्थापन आदि बारेमा संसद वा सम्बन्धित मन्त्रालयमा रिपोर्टिङ ।

४. सार्वजनिक हितमा साभेदारी

- दुबै निकायले जनहित, सेवा गुणस्तर र सामाजिक न्याय सुनिश्चित गर्न सहकार्य गर्नुपर्छ ।
- प्रतिस्पर्धा, नवप्रवर्तन र उपभोक्ता अधिकारलाई संरक्षण गर्न सँगसँगै काम गर्नु पर्छ ।

५. सन्तुलन र सीमांकन (Balance and Boundary):

- सरकार र नियामक निकायबीचको अधिकार स्पष्ट हुनुपर्छ ।
- सरकारले नीति बनाउँछ, नियामकले त्यसको कार्यान्वयन गर्छ भन्ने सैद्धान्तिक आधारमा भूमिका छुट्याइनुपर्छ ।

विद्युत नियमन आयोगको भूमिका

विद्युत उत्पादन, प्रशारण, वितरण वा व्यापारलाई सरल, नियमित, व्यवस्थित तथा पारदर्शी बनाई विद्युतको माग र आपुर्तिमा सन्तुलन कायम राख्न, विद्युत महसुल नियमन गर्न, विद्युत उपभोक्ताको हक र हित संरक्षण गर्न, विद्युतको बजारलाई प्रतिष्पर्धात्मक बनाउन तथा विद्युत सेवालाई भरपर्दो, सर्वसुलभ, गुणस्तरयुक्त तथा सुरक्षित बनाउन स्वतन्त्र नियामक निकायको आवश्यकता महसुस गरी विद्युत नियमन आयोग ऐन, २०७४ तथा विद्युत नियमन आयोग नियम(वाली, २०७५ अन्तर्गत नेपाल सरकार, मन्त्रिपरिषद्को मिति २०७६ । २३ को निर्णयानुसार विद्युत नियमन आयोगको स्थापना भएको हो । प्रचलित ऐन, नियमले निर्दिष्ट गरेका प्राविधिक व्यवस्थापन गर्ने, महसुल निर्धारण गर्ने तथा विद्युत खरिद बिक्रीको नियमन गर्ने, प्रतिष्पर्धा कायम गर्ने तथा उपभोक्ताको हित संरक्षण गर्ने, सङ्घठनात्मक क्षमता अभिवृद्धि गर्ने, नीतिगत सुभाव दिने तथा सिफारिस गर्ने, जाँचबुझ तथा निरीक्षण गर्ने, विवाद समाधान गर्ने लगायतका कामहरु सम्पादन गर्ने ।

यसले आवश्यकता र प्राथमिकताको आधारमा नियामकीय उपकरणहरूको तर्जुमा गरी लागु गर्ने, सरोकारवालाह(रूबाट प्राप्त निवेदन उपर प्रचलित कानून बमोजिम पुर्व स्वीकृति, सहमति तथा कारबाहीसम्बन्धी निर्णय गर्ने एवम् विद्युतको उत्पादन, प्रसारण, वितरण वा व्यापार सम्बन्धी व्यवस्थालाई भरपर्दो र प्रभावकारी बनाउन गर्नु पर्ने नीतिगत सुधारका सम्बन्धमा नेपाल सरकारलाई आवश्यक सल्लाह र सुभाव दिने लगायतका जिम्मेवारी यस आयोगले बहन गर्दै आईरहेको छ । विद्युत नियमन आयोग (Electricity Regulatory Commission – ERC) को भूमिका अत्यन्त महत्वपूर्ण, संवेदनशील र समन्वयात्मक हुनु आवश्यक छ । यो आयोग स्वतन्त्र, पारदर्शी, प्राविधिक, उत्तरदायी र उपभोक्तामैत्री नियामक निकायको रूपमा निम्न कार्य गर्ने पर्ने हुन्छ ।

मूल्य निर्धारण

- न्यायसंगत, पारदर्शी र वैज्ञानिक विधिबाट मूल्य निर्धारण गर्नु ।
- उत्पादक, प्रशासक र वितरणकर्ता सबै पक्षको लागत, लगानी र जोखिमको मूल्यांकन गरी विद्युत दर निर्धारण गर्ने ।
- उपभोक्ताको बहन क्षमतासँग मेल खाने दरको सन्तुलन खोज्ने ।

अनुमतिपत्र व्यवस्थापन

- विद्युत उत्पादन, प्रशारण, वितरण तथा व्यापार गर्ने कम्पनीहरूलाई लाइसेन्स दिनु, नवीकरण वा खारेज गर्नु ।
- नयाँ प्रविधि वा साना उत्पादकहरू (renewables, microgrids) लाई प्रोत्साहन गर्ने किसिमको लाइसेन्स संरचना बनाउने ।

नियम, मापदण्ड र निर्देशिका निर्माणः

- सेवा गुणस्तर, सुरक्षा, वातावरणीय मापदण्ड, ग्राहक सेवा आदिका लागि स्पष्ट निर्देशिका बनाउने ।
- विद्युत सेवा प्रदायक कम्पनीहरूको कार्यसम्पादन मापन गर्न कार्यसञ्चालन निर्देशिका तयार गर्ने ।

उपभोक्ता अधिकार संरक्षण

- उपभोक्ताको गुनासो व्यवस्थापन, विद्युत कटौती, बिलिङ त्रुटि, गुणस्तरहीन सेवा लगायत समस्यामा हस्तक्षेप गर्ने ।

- ग्राहक सेवा केन्द्रहरूको अनुगमन र सुधारमा निर्देशन दिने ।

प्रतिस्पर्धा प्रवर्द्धन

- निजी क्षेत्रलाई उत्पादन तथा वितरणमा प्रवेश गर्न सक्ने वातावरण बनाउने ।
- जलविद्युत क्षेत्रमा निष्पक्ष, पारदर्शी प्रतिस्पर्धा प्रवर्द्धन गर्ने ।

नवप्रवर्तन र नवीकरणीय ऊर्जा प्रोत्साहन

- सोलार, बायोमास, पवन ऊर्जा जस्ता स्रोतहरूलाई प्रवर्द्धन गर्ने नीति र अनुकूल नियम ल्याउने ।
- ऊर्जा विविधिकरणमा ध्यान दिने ।

सरकार र अन्य सरोकारवालासँग समन्वय

- ऊर्जा मन्त्रालय, विद्युत प्राधिकरण, निजी उत्पादक, लगानीकर्ता, उपभोक्ता मञ्च आदि निकायहरूसँग नीति संवाद र सहकार्य गर्ने ।
- सरकारको ऊर्जा रणनीतिलाई प्राविधिक तथा नियामक सहयोग दिने ।

पारदर्शिता र जवाफदेहिता

- निर्णयहरू सार्वजनिक गर्ने, दर निर्धारणमा जनसुनुवाइ प्रक्रिया अपनाउने,
- वार्षिक प्रतिवेदन प्रकाशित गर्ने ।

नेपालको विद्युत नियमन आयोगको भूमिकाका-चार 'स'

सन्तुलन: उपभोक्ता र उत्पादकबीच

समन्वय: सरकार, निजी क्षेत्र र जनताको बीचमा

सरलीकरण: प्रक्रिया तथा मापदण्ड

सशक्तीकरण: स्वच्छ ऊर्जा र सेवामा गुणस्तर

नेपाल विद्युत नियमन आयोगको SWOT analysis:

Strengths

१. कानूनी मान्यता प्राप्त स्वतन्त्र निकाय: विद्युत ऐन, २०७४ अनुसार स्थापना भएको संस्थागत रूपमा स्वायत्त र नियामक शक्ति भएको निकाय ।
२. दर निर्धारण अधिकार: विद्युतीय शुल्क निर्धारणको पूर्ण अधिकार, जसले सार्वजनिक हितमा हस्तक्षेप गर्न सक्ने सामर्थ्य दिन्छ ।
३. प्राविधिक दक्षता: नियमनमा संलग्न प्राविधिक विशेषज्ञ र ऊर्जा क्षेत्रमा अनुभवी जनशक्ति ।
४. सेवा गुणस्तर मापदण्ड विकास: ग्राहक हितका लागि सेवा गुणस्तर मापदण्ड (Performance Stan-

dards) तय गर्ने कार्य सम्पन्न ।

५. **पारदर्शिता अभ्यास:** सार्वजनिक सुनुवाइ प्रक्रियाको सुरुआत र दस्तावेजहरू वेबसाइटमार्फत सार्वजनिक गर्ने प्रचलन ।

Weaknesses

१. जनशक्ति तथा स्रोतको अभाव: पर्याप्त संख्या र गुणस्तरीय प्राविधिक जनशक्ति तथा वित्तीय स्रोतको अभाव ।
२. नयाँ नियामक प्रणाली: विद्युत नियमन संस्कारको अल्प अनुभव र कार्यान्वयन चुनौतीहरू ।
३. कम सार्वजनिक पहुँच: उपभोक्तामा आयोगबारे जानकारीको अभाव, गुनासो व्यवस्थापन प्रणाली पूर्ण रूपमा प्रभावकारी छैन ।
४. निजी क्षेत्रसँग समन्वय चुनौतीपूर्ण: निजी उत्पादक र वितरणकर्ता सँग निष्पक्षता र विश्वासको अभाव देखिनु ।
५. ICT प्रणाली कमजोर: डिजिटल प्रविधिमा आधारित नियामक सूचना व्यवस्थापन प्रणाली अभै अपुग ।

Opportunities

१. ऊर्जा मागको तीव्र बढ्दि: घेरेलु तथा औद्योगिक क्षेत्रमा ऊर्जा खपत बढ्दो छ, नियमनको क्षेत्र पनि विस्तार हुँदैछ ।
२. नवीकरणीय ऊर्जा प्रवर्द्धन: जलविद्युत बाहेक सौर्य, पवन, बायोमास आदिको विकाससँगै विविधीकरणमा नियामकको भूमिका बढ्दो ।
३. क्षेत्रीय ऊर्जा व्यापार (Cross-border Trade): भारत र बङ्गलादेशसँग विद्युत व्यापारले नियमनलाई अन्तर रीष्ट्रिय स्तरमा लैजाने अवसर ।
४. डिजिटाइजेशन र स्मार्ट ग्रिड प्रणाली: स्मार्ट मीटरिङ, नेट मीटरिङ, अनलाइन बिलिङ आदिको विकाससँग नयाँ नियमन आवश्यक ।
५. नीतिगत सुधार र सरकारको प्राथमिकता: ऊर्जा क्षेत्रलाई राष्ट्रिय प्राथमिकतामा राखिएकाले आयोगलाई सशक्त तुल्याउने वातावरण ।

Threats

१. राजनीतिक हस्तक्षेपको जोखिम: आयोगको निर्णयहरूमा सरकार वा दूला उद्योग समूहबाट प्रभाव पार्ने प्रयास हुन सक्ने ।
२. उपभोक्ता दबाव र असन्तुष्टि: मूल्य वृद्धिमा उपभोक्ताबाट आलोचना तथा जनदबाब आउने सम्भावना ।
३. बिजुली चोरी, प्राविधिक क्षति र प्रणालीगत कमजोरी: वितरण प्रणालीमा व्यापक प्राविधिक हानिको कारण दर निर्धारणमा कठिनाइ ।

४. निजी क्षेत्रको प्रभाव र स्वार्थ टकराव: उत्पादन, वितरण कम्पनीहरूबाट नियामक स्वतन्त्रतालाई चुनौती दिन सक्ने प्रयासहरू ।
५. प्राकृतिक प्रकोप र जलवायु परिवर्तन: जलविद्युतमा निर्भरता भएकोले वातावरणीय जोखिमका कारण नियमित सेवा सुनिश्चित गर्न चुनौती ।

आयोगले नियन्त्रण गर्नुपर्ने क्षेत्रहरू

विद्युत उत्पादन:

- उत्पादन अनुमतिपत्र प्रदान गर्ने प्रक्रिया नियमन ।
- उत्पादनको क्षमता, स्रोत (जलविद्युत, सौर्य आदि) अनुसार विनियमन ।
- लोड सन्तुलनको लागि उत्पादन प्रणालीको निरीक्षण ।

विद्युत प्रशारण

- प्रशारण लाइन निर्माण, मर्मत र सञ्चालनका मापदण्ड निर्धारण ।
- राष्ट्रिय प्रशारण ग्रिडको सन्तुलित तथा निष्पक्ष प्रयोग सुनिश्चित गर्नु ।

विद्युत वितरण

- वितरण कम्पनीहरूद्वारा सेवा गुणस्तर मापदण्ड पालना गराइराख्ने ।
- विद्युत चोरी, प्राविधिक हानि कम गर्ने उपायहरू निगरानी गर्नु ।
- Smart Meter, Billing प्रणालीमा नियमन सुनिश्चित गर्नु ।

विद्युत व्यापार

- Cross-border व्यापार तथा निजी क्षेत्रको व्यापार अनुमतिमा नियमन ।
- Power Purchase Agreement (PPA) को मूल्य र सर्तहरूमाथि निरीक्षण ।
- व्यापारीहरूबीच निष्पक्ष प्रतिष्पर्धाको प्रवर्द्धन ।

विद्युत महसुल

- उत्पादन, प्रशारण, वितरणका सबै तहमा महसुल निर्धारण ।
- दरमा पारदर्शिता र उपभोक्ता क्षमता अनुसार सन्तुलन ।
- मूल्यवृद्धि वा समायोजनमा सार्वजनिक सुनुवाइ प्रक्रिया सुनिश्चित ।

उपभोक्ता अधिकार र विवाद समाधान:

- उपभोक्ताको गुनासोको सुनुवाइ, समाधान र सेवा गुणस्तर मापन ।

- कानूनी विवाद समाधानको लागि वैकल्पिक व्यवस्था (Alternative Dispute Resolution) को प्रयोग ।

जाँचबुम्फ, निरीक्षण र प्रतिवेदन

- उत्पादन, वितरण तथा प्रशारण कम्पनीहरूको नियमित निरीक्षण ।
- कार्य पारदर्शिता र सेवा गुणस्तरको अनुगमन ।

सहजीकरणका क्षेत्रहरू

- निजी क्षेत्र प्रवर्द्धन र लगानी प्रोत्साहन
- सहज अनुमतिपत्र प्रक्रिया ।
- स्पष्ट नियम र मापदण्डको व्यवस्था ।
- लगानीकर्तालाई उचित र समयमै निर्णय प्रदान गरेर आकर्षण बढाउने ।

प्रतिस्पर्धात्मक विद्युत बजारको निर्माण

- Multiple buyer-seller system को प्रवर्द्धन ।
- Market Operator / System Operator का भूमिकाहरू परिभाषित गर्दै स्वतन्त्रता दिनु ।
- साना उत्पादकहरूको प्रवेशमा सहजीकरण ।

नीति निर्माणमा सल्लाह र सुझाव:

- नेपाल सरकारलाई ऊर्जा नीतिमा सुधार गर्न सुझाव प्रदान गर्नु ।
- Green Energy, Smart Grid जस्ता नविन प्रविधि अनुकूल बनाउने नीति सिफारिस ।

सरोकारवालासँग समन्वय:

- उत्पादक, वितरक, उपभोक्ता, व्यापारी, सरकारी निकाय आदि सबैसँग संवादको प्लेटफर्म तयार गर्नु ।
- सार्वजनिक सुनुवाइ तथा छलफल कार्यक्रम सञ्चालन ।

जनचेतना, क्षमता विकास र तालिम:

- उपभोक्तालाई विद्युत प्रयोग, महसुल, गुनासो व्यवस्थापनबारे जानकारी दिने ।
- प्राविधिक जनशक्ति र उद्योग व्यवसायीलाई तालिम कार्यक्रम सञ्चालन ।

नेपाल विद्युत नियमन आयोगको प्रमुख उद्देश्य सन्तुलित नियन्त्रण र प्रभावकारी सहजीकरण हो । यसले उत्पादनदेखि उपभोगसम्मका सबै तहमा नियमितता, पारदर्शिता, सुरक्षा र सेवा गुणस्तर कायम राख्नुपर्नेछ, र निजी तथा सरकारी दुवै पक्षबीच विश्वास र लगानी मैत्री वातावरण सिर्जना गर्न महत्वपूर्ण भूमिका खेल्नुपर्छ ।

नेपाल विद्युत नियमन आयोगको आन्तरिक सुशासन व्यवस्थापन

नेपाल विद्युत नियमन आयोग को आन्तरिक सुशासन व्यवस्थापन अत्यन्त महत्त्वपूर्ण विषय हो, किनकि आयोगको विश्वसनीयता, पारदर्शिता, जवाफदेहिता र दक्षता यसैमा आधारित हुन्छ । आन्तरिक सुशासन व्यवस्थापनका लागि निम्न उपायहरू सार्थक हुन सक्छन्:

संस्थागत संरचना र स्पष्ट भूमिका बाँडफाँड

- कार्य विभाजन स्पष्ट गर्नु: अध्यक्ष, सदस्य, सचिवालय, प्राविधिक शाखा, प्रशासन शाखा आदि सबै तहमा कर्तव्य र अधिकार स्पष्ट निर्धारण गर्नु ।
- कार्यशर्त (Terms of Reference) को विकास: हरेक पदाधिकारी र कर्मचारीका लागि स्पष्ट कार्यशर्त तयार गर्नु ।
- निर्णय प्रक्रियामा स्पष्टता: निर्णय लिने प्रक्रिया (कसले प्रस्ताव गर्ने, मूल्याङ्कन गर्ने, निर्णय गर्ने) पारदर्शी ढंगले तय गर्नु ।

पारदर्शिता र सूचना व्यवस्थापन

- आयोगको वार्षिक गतिविधि, आर्थिक विवरण, निरीक्षण रिपोर्टहरू सार्वजनिक गर्नु ।
- Website मा सार्वजनिक सूचना राख्ने: अनुमतिपत्र, दर निर्धारण, सार्वजनिक सुनुवाइका मिति, नीतिगत दस्त(वेजहरू राख्ने ।
- सूचना माग गर्ने प्रक्रियालाई सहज बनाउने ।

आन्तरिक लेखा परीक्षण र अनुगमन

- नियमित आन्तरिक लेखा परीक्षण गर्नु र तदनुरूप सुधार गर्नु ।
- लेखा प्रणालीमा डिजिटल प्रणालीको प्रयोग ।
- कार्यसम्पादन मूल्याङ्कनका लागि Performance Indicators (KPIs) को विकास ।
- आन्तरिक नियन्त्रण प्रणाली बनाउनु ।

आचारसंहिता र नैतिक मूल्यको प्रवर्द्धन

- सबै कर्मचारी र पदाधिकारीहरूका लागि आचारसंहिता तयार गर्नु ।
- हितको टकराव (Conflict of Interest), उपहार वा भ्रष्टाचारबाटे स्पष्ट नीति बनाउनु ।

जनशक्ति व्यवस्थापन र क्षमता विकास

- खुला प्रतिस्पर्धाबाट आफै योग्य जनशक्ति नियुक्ति ।
- प्राविधिक, प्रशासनिक र नियामकीय दक्षता वृद्धिका लागि तालिम ।
- कार्यसम्पादनका आधारमा प्रशंसा, पुरस्कार वा उत्प्रेरणाको व्यवस्था ।

डिजिटल सुशासन

- Paperless Office System को अभ्यास ।
- अनुमतिपत्र आवेदन, गुनासो व्यवस्थापन, बिलिङ/अनुगमनमा Digital Dashboard प्रयोग ।
- Cybersecurity नीति तथा डाटा गोपनीयताको सुनिश्चितता ।

गुनासो व्यवस्थापन प्रणाली

- कर्मचारी तथा सेवाग्राहीबाट आउने गुनासो सुन्ने, रेकर्ड राख्ने र समाधान गर्ने अनलाइन र अफलाइन व्यवस्था गर्ने ।

नीति तथा रणनीति निर्माणमा सरोकारवालाको सहभागिता

- Stakeholder Consultation प्रक्रिया राख्नु ।
- उपभोक्ता, उत्पादक, नीति निर्माता, उद्योगपति आदिसँग छलफलको व्यवस्था ।
- सार्वजनिक सुनुवाइको निष्कर्षको कार्यान्वयन गर्नु ।

पदाधिकारी र कर्मचारीहरूको आचारसंहिता

- पारदर्शिता र जवाफदेहिता
- सबै निर्णय प्रक्रिया स्पष्ट र अभिलेख योग्य हुनुपर्छ ।
- सार्वजनिक जानकारी प्रदान गर्न तत्पर रह्नु ।
- कुनै पनि निर्णयमा व्यक्तिगत लाभको आधार नराख्ने ।

निष्पक्षता र तटस्थता

- सबै सरोकारवालालाई समान व्यवहार गर्नुपर्ने ।
- राजनीतिक वा अन्य व्यक्तिगत पूर्वाग्रह नराख्ने ।

गोपनीयता र सूचना सुरक्षाको सम्मान

- आयोगको कामसँग सम्बन्धित संवेदनशील सूचना लीक नगर्ने ।
- डाटा सुरक्षा मापदण्ड पालना गर्ने ।

हितको टकराव व्यवस्थापन

- आफै वा आफन्तको प्रत्यक्ष/परोक्ष लाभ हुने निर्णयहरूबाट अलग बस्ने ।
- सार्वजनिक रूपमा त्यस्ता सम्भावित टकराव घोषणा गर्ने ।

सम्पत्ति विवरण र पारदर्शी जीवनशैली

- वार्षिक सम्पत्ति विवरण अनिवार्य रूपमा बुझाउने ।
- अनावश्यक विलासीपन वा जीवनशैलीबाट टाढा रहने ।

सार्वजनिक सम्पत्तिको उचित प्रयोग

- सरकारी/आयोगको स्रोत व्यक्तिगत प्रयोजनमा प्रयोग नगर्ने ।
- आयोगका साधनहरूको दुरुपयोग नगर्ने ।

नैतिक मूल्य प्रवर्द्धन गर्ने उपायहरू:

- आचारसंहिता प्रशिक्षण
- पदस्थापनको बेलामा अनिवार्य “Ethics Orientation Training” दिने ।
- प्रत्येक वर्ष “Ethics Refresher Training” आयोजना गर्ने ।

नैतिक मूल्य प्रणाली विकास

- “Ethics Champion” वा “Integrity Officer” संयन्त्र बनाउने ।
- हरेक शाखामा नैतिक मूल्य प्रवर्द्धनका लागि शाखा गठन गर्ने ।

पुरस्कार र मान्यता प्रणाली

- आचारसंहिता पालना गर्ने उत्कृष्ट कर्मचारीलाई पुरस्कार दिने ।
- Integrity-based Recognition Program संचालन गर्ने ।

गुनासो संयन्त्र

- गुनासो बुझ्ने प्रणालीको विकास गर्ने ।
- छानबिन प्रक्रिया निष्पक्ष, छिटो र गोपनीय बनाउने ।

नेतृत्वको नैतिक उदाहरण

- उच्चपदस्थ व्यक्तिले नैतिक व्यवहारको उदाहरण प्रस्तुत गर्नु ।
- “Tone from the Top” को सिद्धान्त लागू गर्नु ।

नीति तथा निर्णयमा नैतिक पक्षको समावेश

- कुनै पनि नीति वा निर्णय बनाउँदा नैतिक प्रभाव मूल्याङ्कन (Ethical Impact Assessment) गर्ने ।

निष्कर्ष

नियामक निकायको रूपमा विद्युत नियमन आयोग आफ्नो स्वतन्त्र संस्था वा निकायको भूमिकामा रहदै सार्वजनिक हितको संरक्षण, न्यायसंगत प्रतिस्पर्धा सुनिश्चित गर्ने, गुणस्तर कायम गर्ने, र अनियमितता वा दुरुपयोग रोक्ने भूमिकामा

सबल हुनु आवश्यक छ । यस आयोगको नियन्त्रणात्मक भूमिकामा संरक्षण, प्रवर्तन र सुधार मा आधारित हुनुनै पर्दछ यसको अतिरिक्त सार्वजनिक हित, गुणस्तरीय सेवा, तथा समुचित व्यवस्थापन सुनिश्चितता यसको नियमित दायित्व भित्र पनु पर्दछ । नियामक निकायको रूपमा सरकारबाट स्वतन्त्र त हुनुपर्छ, तर मूल लक्ष्य प्राप्ति र समन्वयका लागि सरकारबाट टाढा हुनु हुदैन । यसको साथै नेपाल विद्युत नियमन आयोगको प्रभावकारी नियमन र विश्वसनीयता कायम राख्न पदाधिकारी तथा कर्मचारीहरूको आचारसंहिता सजग, पारदर्शी, निष्पक्ष, उत्तरदायी र नैतिक हुनुपर्दछ । नैतिक मूल्य प्रवर्द्धन भनेको केवल कागजी अभ्यास होइन, संस्थाको संस्कृति निर्माण हो जुन सशक्त नेतृत्व, निरन्तर प्रशिक्षण, पारदर्शी प्रणाली र प्रेरणादायी कार्यसम्पादन मूल्याङ्कनमार्फत सम्भव हुन्छ ।

सन्दर्भ सामग्री:

- Brundtland, Gro Harlern (१९९१) , Sustainable Development M The Challenges Ahead, Olac Stokked Sustainable Development , Frank Class, London
- Gore, Al (१९९३), From Red Tape To Results, Washington D C US, Government Printing Office
- OECD Best Practice Principles for Regulatory Policy
- The Governance of Regulators
- Roles and Responsibilities of the Regulatory authority
- The Role of Regulatory Agencies in Public Policy-Making Issues, Author: André Meister, Washington

DC, २०१)

- Functions and Roles of Regulatory Agency, <https://fctemis.org/notes/१४०३९>) Functions and Roles of Regulatory Agencies .pdf
- Mahima Bankar (२०२०), Roles of regulatory bodies, professional organizations and union self defence
- Electricity Regulatory Commission Rules, २०१८
- Electricity Regulation Commission Act, २०१७
- विद्युत उपभोक्ता हित संरक्षण सम्बन्धी निर्देशिका, २०८०
- विद्युत नियमन आयोग सार्वजनिक सुनुवाई सञ्चालन निर्देशिका, २०७६
- विद्युत नियमन आयोगको आ.व. २०८०/८१ को वार्षिक प्रतिवेदन
- रेमी, डा. दामोदर (सन् २०२२), शासकीय प्रबन्धका नवीनतम आयामहरू, अक्षरांक प्रकाशन प्रा.लि., काठमाण्डौ

Regulating a Messy Sector: a clumsy but stable versus neat but rigidly unstable approach¹[▼]

– Dipak Gyawali²[⊗]

Regulator's role

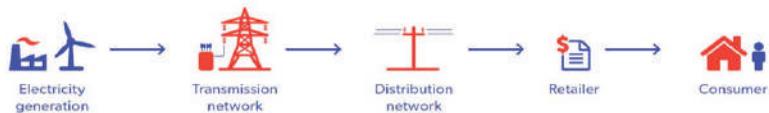
Well-functioning markets for goods and services are supposed to be efficient (maximum quality and reliability at minimal cost), which is assured by sufficient players in the market as well as perfect information for both producers and consumers to make well-informed decisions regarding production and purchase. That ideal scenario does not materialize for some critical products such as grid electricity or highways that have a tendency towards being a monopoly, either through high costs of sunk investments in infrastructure or difficulties of entry (high entry barriers) for potential competitors (Joskow, 2007). They are called “natural monopolies”, examples being local electricity distribution where consumers cannot simply say they will take their electricity from another supplier or travel on another railway line.

The need for a regulator arose in such situations to prevent the natural monopoly from unfair extortion pricing or passing on the cost of their inefficiencies to the hapless customer. Its job becomes tricky when it has to balance the interests of the customer with the genuine supply costs (or investment needs) of the supplying firm. This is especially true in a developing economy where infrastructure expansion to areas that have not received supplies and their maintenance have to be paid for by the state, which it often cannot do so fully due to budget and revenue limitations, or partly by consumers who have been privileged to have received supplies before unserved hapless regions. What is a fair price – to both the consumer and the supplier – becomes a tricky issue that can transcend pure economic considerations requiring political consensus and intervention.

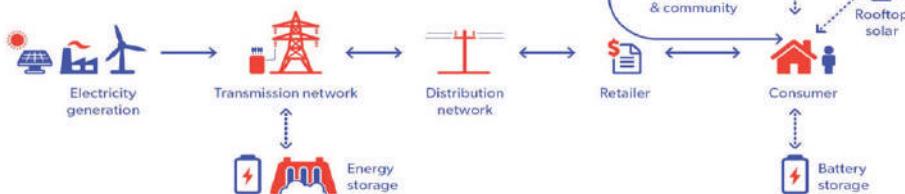
The job of a regulator has become more complicated in recent years with technological progress that challenges the very basic concept of a natural monopoly. In telecommunications, the advent of the internet and smart phones has meant that the monopoly landline network can now be bypassed altogether. In the power sector, decentralized production and distribution of electricity with new forms of renewable energy such as solar PV has turned a one-way grid into a two-way reality (see figure below, Gyawali & Sharma (2025)). It changes the very essence of what a regulator was traditionally envisaged to regulate, thus requiring of that task some very creative rethinking of its approach.

With the entry of the private sector, electricity stops being only a public good with full public ownership but also acquires characteristics of a private good. When communities take over distribution of electricity – and when it is seen as an element of human rights as well (as happened during Covid lockdown with schools running online) – it also becomes a common pool good that transcends private and public decision makers to include concerns of the currently voiceless and future generations and the environment as well (Gyawali, 2019).

In such a “messy” arrangement – also called “clumsy” or “unruly”, see Verweij and Thompson (2006) and Ney (2009) – where contending societal voices have very differing perspectives on


1 [▼] Reflection paper prepared for the national Electricity Regulatory Commission (ERC), April 2025.

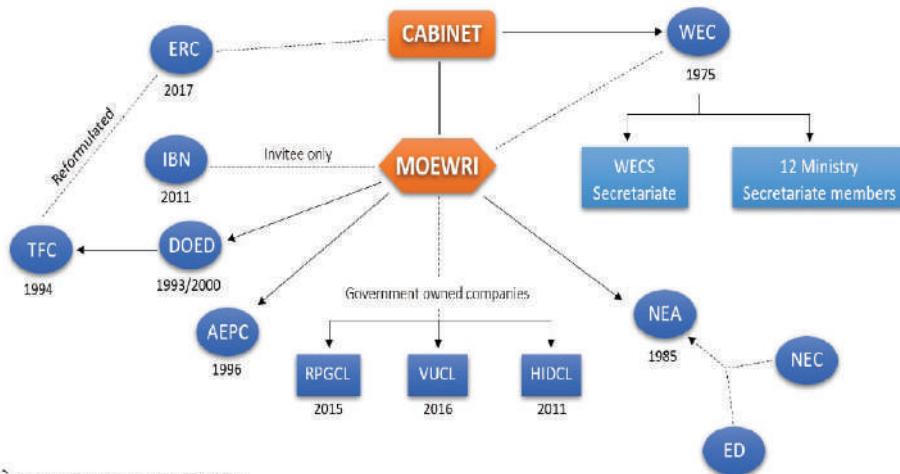
2 [⊗] *Pragya* (Academician), Nepal Academy of Science and Technology (NAST); Chair, Inter Disciplinary Analysts (IDA); and former Minister of Water & Energy Resources.


“what the problem is”, one can be assured that there will be even more differing ideas of what the right solutions might be . If government agencies think a solution is balanced within existing procedures and rules, market players will argue that there are better and more efficient solutions waiting in the wings, if only entry rules were not so restrictive . To add to the discord, social and environmental activist – who see things from the perspective not of efficiency (markets) or harmony with rules (government agencies) but of what is morally fair especially to the underprivileged – will propose levelling the field to assure equality of outcome . Overall, it is an “unruly” political process with outcome other than what technical optimum might desire as a neat one .

Under such circumstances, the role of a regulator becomes not the imposition of a technically optimum, “neat” solution but the search for a “clumsy” compromise between contending views to arrive at a minimum that all can agree on . Exploring this reality, especially for developing economies, Kim and Horn (1999) argue that regulation is a continually evolving process that must take account of the ground conditions in a country . Old-fashioned natural monopoly regulation becomes as irrelevant as wholesale privatization at the other extreme without understanding its sequencing and coordination with regulatory reforms . Depending upon the configuration of electricity-related institutions – governmental, private and civic (which includes academic and sometimes specialized media) – countries need to introduce some degree of the right type of competitive privatization balanced with areas where government subsidies are required, and where upfront, precise regulation need spelling out . It requires the regulatory agencies to be in constant, meaningful constructive engagement with civic voices, private players and government agencies in a platform where not only are all voices heard but also meaningfully responded to .

Traditional linear energy system

Modern flexible energy system



History of Nepal's Energy Unruliness

It is said that institutions are a product of history, and that the historical context when particular decisions were made need to be taken into account so as to avoid repeating earlier mistakes . Nepal has an over 120-year history of electricity managing institutions with ingrained objectives behind their functioning . During the Rana years, while lighting (“Chandra Jyoti”) was the primary objective managed through the Bijuli Adda, the power from Nepal’s first hydro plant Pharping in 1911AD was, a decade later, utilized to power both Halchowk-Lainchaur and Bhimpedhi-Than-

kot ropeways to transport food grains and construction materials cheaply . With democracy in 1951 and the building of highways, fossil-fuel based transport took over, and hydroelectricity was seen only in lighting terms and not for industrialization, a legacy that continues till today . Electricity for industrialization – as with Lenin’s Plan GOELRO or Mao’s electrification of communes for production – has not been a government priority which remains hydro electricity for export to India and Bangladesh . Indeed, in recent years a third of Nepal’s electricity consumption, which was by industries, was slashed and household lighting was prioritized to declare an “end to load-shedding” .

With the advent of democracy, striving to meet popular aspirations, the Bijuli Adda was expanded into three entities: a government Electricity Department (ED) focusing mostly on construction of new projects and a government parastatal Nepal Electricity Corporation (NEC) to handle distribution . In 1985, under donor pressure to create a vertically integrated electricity monopoly to facilitate project loans and repayment, the two were merged to create Nepal Electricity Authority (NEA) . This move was immediately undercut by the government itself when it transferred some 100 senior officials to the Ministry, effectively resurrecting the ED, which happened formally in 1993 by the creation of Department of Electricity Development (DoED) .

श्रोत- www.ida.com.np/publication

In the years that followed, after the demise of the single-focused (and outrageously expensive, see Gyawali, 2013) Arun-3 led by the World Bank, the spirit of the NEA Act 1984 of a single, vertically integrated electricity authority was further undercut by the entry of first foreign and later Nepali private sector in generation . The latter today generates more MWs than the NEA and is slated to produce (from under-construction projects) three times more than the NEA in a few years’ time (see Table 1 in Gyawali, Sharma and Shrestha, 2024) . In 2003, an “internal unbundling” of the NEA was attempted (which was subsequently reversed) and community distribution of electricity was established wherein electricity was sold to community groups at bulk rate and distribution managed by the villages themselves . Currently some 300+ such groups community electricity groups (“samudayik bidyut”) in 55 districts manage electricity services to five and a half lakh households (see NACEUN, as well as Gyawali, 2019) .

Around the time of the demise of Arun-3, a Tariff Fixation Commission (TFC) was created under the DoED as per the electricity act that realized the natural monopoly nature of NEA and thus

withdrew its power to set tariffs . It was also to shield democratically elected governments against a natural populist backlash that would they would automatically face even when the price of electricity was justifiably raised . Moreover, an Alternative Energy Promotion Center (AEPC) was also created to promote other energy types than large and medium hydro such as solar, biogas, micro-hydro and mini-grids as well as more efficient use of firewood .

After a failed attempt by the parliament to craft a new electricity act to replace the old 1992 one in 2008 (a failure that continues as of the writing of this essay), in the second decade of the 21st Century a hundred years after the advent of electricity in Nepal, more electricity related institutions were created . The have overlapping mandates, not just with NEA but also with DoED and the Water and Energy Commission (WECS), thus resulting in what might even be called “institutional anarchy” by some . In 2011, the Hydroelectricity Investment and Development Company Limited (HIDCL) as well as the Investment Board Nepal (IBN) were created, both to promote investment in hydroelectricity . A few years later, the Rashtriya Prasharan Grid Company Limited (HIDCL) for transmission as well as Vidyut Utpadan Company Limited (VUCL) for generation too were created, initially under the auspices of the Finance Ministry and later put under the Ministry of Energy, Water Resources and Irrigation (MoEWRI) .

This institutional mapping of the current “unruliness” of the energy sector is important to keep in mind since this is the overall terrain that ERC – which has a wider mandate than the TFC and is answerable to not the energy ministry but the cabinet – is expected to regulate . The electricity field is no longer just a “natural monopoly” but a mix of institutions championing electricity variously as public, private and common pool goods, to say nothing of other forms of energy (e.g . sustainably harvested firewood and bio-briquettes, biogas etc .), that compete with electricity in terms of both price and useful ubiquitousness .

They require oversight, regulation as well as continuous constructive engagement, that would also allow feedback to the cabinet and parliament as to the nature of an overarching new electricity act . It might perhaps even be a more comprehensive “energy act” that balances the “energy stacking” needs of diverse Nepali consumers and varied nature of suppliers and technologies available . The role of the ERC would thus be broader requiring the harmonization and streamlining of the entire energy sector, promoting private investments and public participation, as well as defending the interests of a broader range of consumers from village households to hi-tech industries .

Changing Energy Terrain

In the last two decades, the energy terrain has shifted dramatically globally, not leaving Nepal untouched . First and foremost, the cost of solar PV has fallen dramatically, making its electricity pricewise on average cheaper than hydro worldwide with the added benefit of having none of the social and environmental issues nor the conflict with other water users associated with hydro . It is estimated by India’s energy think-tank TERI that its price will fall further by 2030 to almost half of what it is today (see ET EnergyWorld, 2019) . This is a ground reality driver that is impossible for policy makers to ignore and indeed even foolish to do so .

Besides the over-riding driver of price, the other advantages of solar PV lie in its in-situ availability at consumption points thus avoiding transmission loss and costs; and also avoiding what is called the inflexibility of “technological locked-in-ness” . Whether it is households or industrial buildings spread over large areas (including “wasted” parking space), roofs are where installing solar PV panel obviates the need for costly land acquisition . It has the added advantage of providing electricity at the site itself, thus avoiding both transmission loss and costs . It also provides

for voltage stabilization to the installing industry or household, a matter of increasing concern for industries in Nepal where poor quality of electricity is a major issue . There are frequent, unscheduled outages as much as 35 times a week in some areas resulting in the loss of production input raw materials to the tune of 10-12%, and significant equipment damage with both low voltage and high voltage spikes (see IDA, 2025) .

One may add here that, although Nepal's electricity coverage has increased from 36% in 2003 to 98% in 2024 (see Gyawali and Thompson, 2016), not only does quality remain poor but Nepal remains one of the lowest per capita electricity consuming countries in the world, almost half of Bangladesh and four times lower than India . This situation can be ameliorated only by increasing use of electrical equipment since, with the advent of highly efficient LED bulbs, lighting alone cannot do the job . However, both household and industry surveys (see IDA, 2025 and Sharma et al, 2024) indicate reluctance of Nepali consumers to buy electricity consuming devices due to a lack of investment atmosphere .

Solar PV is demonstrating the technology's flexibility that avoids what is called "technological locked-in-ness" that comes with big dams and nuclear power: once one embarks on those paths, there is no possibility of turning back, nor any scope for moving the technology to another better site (see Thompson, 1994 and Gyawali, 2006) . Four indicators of technical and four of organizational inflexibilities have been identified . Technical ones are: large scale, long lead time, capital intensity, and major infrastructure needs early on . The organizational ones are: "single mission" outfits, closure to criticism, hype ("Nepal is rich in hydropower"), and hubris ("There is no alternative") . Solar PV avoids all these lockedness inflexibilities and can be removed with little cost to another location if need be .

The decentralized aspect of Solar PV in Nepal is also demonstrating creativity with business models . Solar companies are not just selling products . They are also selling electricity as a service in line with the global trend in transportation where mobility is seen not as product ownership (cars, motor cycle) but as service availability with Uber, Pathao, InDrive etc . (See Yergin, 2021) . Nepali renewable energy entrepreneurship similarly is identifying and approaching potential customers, designing their plan, installing solar panels with smart inverters without the customer having to put up any up-front investment, and charging them only for the electricity produced which is cheaper than the NEA's rates by as much as a rupee or two . After a payback period of a decade or more, the entire setup is handed over to the customer (see IDA, 2025) who in the meanwhile has paid to the NEA only the net difference between its overall demand and its solar generated electricity .

Despite its cost effectiveness, the big drawback with solar PV is its intermittent, only six to eight hours a day availability . It has to be balanced by electricity storage which traditionally has been batteries whose size and capacity have over the years improved significantly but are still not enough for the needs of large industries . The high cost of battery replacement after about two or three years has been a drawback that needs to be addressed by putting in place the necessary technical and social infrastructure for collection of old, used batteries and their recycling, which in Nepal has not been properly initiated .

This leaves Pumped Storage Hydro (PSH) as the current best option for large-scale electricity storage especially in the Nepali context (see Gyawali and Sharma, 2025 op . cit .) . First, PSH is water stored in an uphill pond as energy which is pumped up when electricity price is cheap or there is excess supply from solar PV . That water is converted back to electricity during peak demand period with PSH functioning effectively as a giant electricity storage battery .

PSH has several advantages over conventional storage hydro projects. First, it is height (head) and not water flow that is the real resource; and height is something available in plentitude in Nepal. It means inadequacy of flow is less of an issue than in conventional hydro. It also means, with appropriate policy reform and encouragement, existing run-of-river hydro could be converted to more profitable PSH if appropriate uphill small storage pond sites can be found. Second, there is less water “wastage” from a lower reservoir as in conventional hydro since the water in PSH is recycled back and forth with only some evaporation loss. Third, there is comparatively less land acquisition and resettlement issues with PSH than conventional storage hydro as high hill areas, unlike valley bottom with khet lands, consist of much less valuable for agriculture pasture or dryland farming areas. Fourth, uphill pond water storage, if properly planned, can also serve as drinking water supply and efficient drip irrigation farming as well as fire-fighting resource for marginalized populations living in the high mountains.

The last point above indicates the basic problem with all storage hydro, including PSH, which are essentially multipurpose projects with multiple contending users: how is one to allocate costs to multiple users and actually price the electricity output? Reflecting on the problem with conventional storage hydro such as Budhi Gandaki would help in understanding the nature of this conundrum.

The 1200 MW Budhi Gandaki project, as currently designed as a solely hydroelectric project, produces electricity at a high price and is not deemed feasible. However, as reviews have shown (see Thapa, 2016a and Thapa, 2016b), if the total development cost is not lumped on electricity but is also allocated to other benefits, the project becomes highly attractive. These include a hundred thousand hectares of extra dry season irrigation, especially in Chitwan and Nawalparasi, some flood control, tourism and fisheries benefits, as well as 40 kms of north-south very cheap inland navigation for transport of heavy goods to northern areas of Gorkha and Dhading. These issues of Budhi Gandaki planning, design, costing and operations are equally valid for PSH, and make PSH much more valuable than conventional hydro power development for Nepal’s future.

Reflecting on ERC tasks

In light of all these issues and concerns with a “messy” electricity sector, the tasks before ERC will be less to impose “neat” solutions and more to constructively engage multiple players and their divergent perspectives to allow for the emergence a “clumsy” consensus. Much of this has to be achieved through in-house research and targeted discussions with relevant informants. These tasks can be bulleted as follows:

- In the paper on natural monopolies by Kim and Horn (1999, op. cit.) a range of regulatory models ranging from New Zealand’s model of extreme simplicity to Chile’s sophisticated specificity have been described. It also describes price cap versus cost based, unbundling versus franchise solution etc. It would be desirable to have an ERC in-house team look into these various models, examine their pros and cons, and see which and how much of each would be suitable in Nepal’s context.
- Despite the presence of multiplicity of private and community players in the sector, NEA continues to perform as a “natural monopoly” controlling generation, transmission and distribution, which has resulted in an uneven playing field for the rest. For example, there are serious biases in PPA rates and conditions with NEA-owned companies as against private developers. These need review and revisions.
- Hydro development by both the NEA and the private sector is inexplicably much higher

(\$2500-\$3000/kW) than that of our neighbours or Ethiopia's 6000MW Grand Renaissance Dam (around \$800/kW) . Why this should be so, and how this is justified needs serious examination as it indicates price padding and profit-making during construction and import of equipment, a cost that is unfairly passed on to Nepali consumers .

- In the power pricing structure, the contribution of private developers as well as solar PV installers in providing reactive power, *in-situ* generation and thus line loss reduction as well as voltage stabilization has not been properly accounted for, leaving NEA a free-rider . This should be corrected .
- In the case of community electricity (as with solar PV developers), NEA has been unilaterally undermining the terms of contract in its favour and against these innovative electricity players in distribution . ERC must review the benefits NEA derives from not having to maintain expensive meter reading as well as small-time maintenance and ensure that these benefits are passed on to the community electricity users' groups .
- The closure by the US government of the Millennium Challenge Cooperation (MCC) means that an important section of national grid development for export of electricity is in limbo with already significant expenditures made by Nepal government and not reimbursed by the US side . ERC needs to ensure that in any future rescue effort by other donor players, the transmission needs and bottlenecks removal required by private hydro developers is not harmed . Important also to ask in this context is why the World Bank which helped develop the national transmission master plan in 2016, pulled out after the MCC compact was signed in 2017 . Is the master plan still relevant and how might its resurrection impact future investments in transmission development and electricity pricing?

References:

- ETEnergyWorld (2019) . Solar power cost will fall to Rs . 1 . 9 per unit in India by 2030: TERI study . https://energy_economicstimes.indiatimes.com/news/renewable/solar-power-cost-will-fall-to-rs-1-9-per-unit-in-india-by-2030-teri-study/67972162
- Gyawali, D . and Sharma, S . (2025) . *Pump Water, Store Energy: rethinking future energy development in Nepal by combining solar and hydro energy* . Kathmandu: Nepali Times 08 February . <https://nepalitimes.com/here-now/pump-water-store-energy>
- Gyawali, D . and Sharma, S . and Shrestha, D . (2024, Jan) . *State of Knowledge: challenges of integrating pumped storage hydro into Nepal's energy planning and management*; Nepal Power Sector Country Report . Kathmandu: Inter Disciplinary Analysts (IDA) . <https://www.ida.com.np/verify/download/47>
- Gyawali, D . (2019) . नेपालमा बिद्युत क्षेत्रको सामुदायिककरण किन र कसरी? (in English: How and why the Communitization of Electricity in Nepal) सामुदायिक बिद्युत (पाँचौ शृङ्खला), माघ २०७५, चापागाउँ ललितपुर।
- Gyawali, D . and Thompson, M . (2016) . *Restoring Development Dharma with Toad's Eye Science?* Sussex: IDS Bulletin vol . 47, no . 2A . <https://bulletin.ids.ac.uk/index.php/ids-bo/article/view/2822/ONLINE%20ARTICLE>
- Gyawali, D . (2013) . Viewpoint – *Reflecting on the Chasm between Water Punditry and Water Politics* . Water Alternatives vol . 6 issue 2 . <https://www.water-alternatives.org/index.php/volume6/v6issue2/207-a6-2-4/file>

- Gyawali, D . (2006) . *Hype and Hydro (and, at Last, Some Hope) in the Himalaya* . Chapter in (Verweij and Thompson, 2006) .
- IDA (2025) . *The State of Energy in Industries and Enterprises in Nepal: Survey Report* . Kathmandu: Inter Disciplinary Analysts (IDA), (forthcoming) .
- Joskow, P .L . (2007) . *Regulation of Natural Monopolies* . In Polinsky and Shavell (eds) Handbook of Law and Economics . www.researchgate.net/publication/5170340_Regulation_of_Natural_Monopolies
- Kim, S .R and Horn, A . (1999) . *Regulation policies concerning natural monopolies in developing and transition economies* . United Nations Division for Public Economics and Public Administration, ST/ESA/1999/DP .8, DESA Discussion Paper No . 8 . <https://www.un.org/esa/desa/papers/1999/esa99dp8.pdf>
- NACEUN: National Association of Community Electricity Users – Nepal . <https://naceun.org.np/>
- Ney, S . (2009) . *Resolving Messy Policy Problems: Handling Conflict in Environmental, Transport, Health and Ageing Policy* . London: EARTHSCAN .
- Sharma, S ., K .C, C . and Shrestha, D . (2024, January) . *Household Energy Consumption and Energy Transition in Nepal 2023: a survey report* . Kathmandu: Inter Disciplinary Analysts (IDA) . <https://www.ida.com.np/verify/download/45>
- Thapa, B . (2016a) . बुढीगण्डकी आयोजना खेर जान्छ आधा पानी? (in English: Half the water wasted in Budhi Gandaki project) . अन्नपुर्ण पोस्ट २४ मंसिर २०७३ | <http://www.annapurnapost.com/news/60278>
- Thapa, B . (2016b) . बुढीगण्डकीको बहुपक्षिय लाभ बाँडफाँट आयोजना खेर जान्छ आधा पानी? (in English: Allocation of multipurpose benefits in Budhi Gandaki) . अन्नपुर्ण पोस्ट २३ मंसिर २०७३ | <http://www.annapurnapost.com/news/60365>
- Thompson, M . (1994) . *Huge Dams and Tiny Incomes* . Kathmandu: WATER NEPAL vol . 4 no . 1 pp . 1991-1995 .
- Verweij, M . and Thompson, M . (2006) . *Clumsy Solutions for a Complex World: Governance, Politics and Plural Perceptions* . London: Palgrave Macmillan .
- Yergin, D . (2021) . *The New Map: Energy, Climate, and the Clash of Nations* . Penguin Books, Random House .

विद्युत क्षेत्रको उन्नयनमा विद्युत नियमन आयोगको अभिभावकीय भूमिका

दिल्लीबहादुर सिंह ^१

पृष्ठभूमि :

देशको सर्वाङ्गीण विकास गर्न सक्ने क्षेत्र जलस्रोत नै भएको र यसको समुचित विकास गर्नु पर्ने अपरिहार्यतालाई हृदयांगम गर्दै नेपाल सरकारले ऊर्जा क्षेत्रमा भएका काम कारबाहीलाई नियमन गर्नका लागि एउटा सशक्त, सबल, स्वायत्त तथा स्वशासित संस्थाको आवश्यकता महसुस गरी विं.सं. २०७६ साल बैशाख २३ गतेको मन्त्रपरिषदको निर्णय बमोजिम नियुक्त भएका अध्यक्ष ई. दिल्ली बहादुर सिंह, सदस्यहरू ई. राम प्रसाद धिताल, श्री रामकृष्ण खतिवडा, ई रामेश्वर कलवार तथा श्रीमती भागीरथी भट्टाराई ज्ञावालीद्वारा शपथ ग्रहण गरेपश्चात् विं.सं. २०७६ बैशाख २५ गतेदेखि विद्युत नियमन आयोगको कार्यारम्भ भएको थियो । भखैर स्थापित भएको हुनाले आयोगमा स्रोत/ साधनको न्यूनता त थियो नै तर मन्त्रपरिषद्ले स्वीकृत गरेको दरबन्दी तेरिज अनुसार ३९ जना आवश्यक कर्मचारी भएकोमा ऊर्जा, जलस्रोत तथा सिचाई मन्त्रालयले जम्मा ५ जना राजपत्राङ्कित अधिकृत तथा ४ जना राजपत्र अनाङ्कित कर्मचारीहरूलाई काजमा खटाई दिएको हुनाले त्यही जनशक्तिको भरमा पूरै ५ वर्ष आयोगले काम कार्वाही गर्नु परेको थियो । अभ स्वीकृत दरबन्दीमा अस्थायी वा करारमा कर्मचारी भर्ना गर्नुपरेमा मन्त्रालयको स्वीकृति लिनु पर्ने प्रावधान भएको हुनाले सोको माग गर्दै कैयौं पटक पत्राचार गर्दा पनि स्वीकृति प्राप्त हुन सकेको थिएन । त्यसमार्थि कोभिड १९ ले महिनौ लक-डाउन गर्नु परेको थियो भने तत्कालीन राजनीतिक नेतृत्वको ब्रक्ट्रैटिका कारण ऐनको प्रावधान विपरीत हुने गरी आयोगका अध्यक्ष तथा सबै सदस्यहरूलाई मन्त्रपरिषद्बाट निर्णय गराई बरखास्त गर्ने दुष्कर्म गरियो । त्यसउपरको मुद्दामा सर्वोच्च अदालतले प्रथम पेशीमै “स्टे-अर्डर” जारी गरेकोले मात्र सबै पदाधिकारीहरूले पुनः कार्यारम्भ गर्ने अवसर पाएका थिए । यी कारणहरूले गर्दा आयोगले पूरै ५ वर्ष नभई करिब ४ वर्ष जति मात्र काम कारवाही गर्न पाएको थियो ।

प्रथम आयोगले सम्पादन गरेका उल्लेखनीय कार्यहरू:

यस्तो प्रतिकूल परिस्थिति तथा श्रोत साधनको न्यूनताका बाजुद पनि प्रथम आयोगले निम्नानुसारका कार्यहरू सफलत (पूर्वक सम्पन्न गरेर आयोग एवं ऊर्जा क्षेत्रको जग मजबुत गरेको थियो :

(१) १० मेगावाट भन्दा कम क्षमताका साना जलविद्युत आयोजनाहरूबाट विद्युतको परिमाण पूर्वानुमान (Availability Declaration) एक महिना अघि नै पेश गर्नु पर्ने र सो नीमिलेको खण्डमा ने.वि.प्रा.लाई नपुग विद्युतको १००% जरिवाना तिर्नु पर्ने व्यवस्था भएकोमा आयोगले निर्णय गरी उक्त समयको जलवायु सम्बन्धी तथ्याङ्कको आधारमा एक साता अगाडि मात्र पनि जुनसुकै प्रतिशतको पूर्वानुमान गरी प्राधिकरणमा पेश गर्न सक्ने प्रावधान गरियो । यसबाट नदीमा पानी कम भएको कारणबाट विद्युत उत्पादन कम हुन गएका करिब ४ दर्जन साना तथा

^१ लेखक विद्युत नियमन आयोगको निर्वत्तमान अध्यक्ष हुनुहुन्छ । -सम्पादक

रुण जलविद्युत आयोजनालाई दूलो राहत मिलेको थियो । त्यस्तै समुचित विद्युत प्रणाली व्यवस्थापन (Electricity System Planning) गर्न ने.वि.प्रा. लाई सहयोग पुगेको हुनाले यसलाई आयोगको पहलमा भएको "win-win Approach" को निर्णय भनिएको छ ।

- (२) निर्माणका क्रममा आयोजनाले लिएका सावाँ तथा ब्याज तिर्न नसक्ने अवस्थामा पुगेका रुण ज.वि.आ. हरूल (ई पुनर्कर्जा सुविधाका लागि नेपाल राष्ट्र बैंक तथा मन्त्रालयसँग समन्वय गरी ३ प्रतिशत ब्याजदरमा पुनर्कर्जा उपलब्ध गराउन आयोगले अहम् भूमिका निर्वाह गरी रुण आयोजनाहरूका आर्थिक हैसियतमा दूलो सुधार भै नयाँ आयोजनाहरू समेत निर्माण गर्न लागी परेका छन् ।
- (३) १०० मेगावाट सम्मका आंशिक जलाशययुक्त आयोजना (Pondage Run-of-River (PROR) लाई स्वपूँ(जीमा प्रतिफल (Return on Equity) मा रहेको १७% को सिमा (Cap) लाई हटाएर नदी प्रवाही आयोजना (Run-of-River) सरहको सुविधा प्रदान गरेर अनावश्यक खर्च (Gold Plating) देखाउने प्रवृत्तिलाई आयोगले निरुत्साहित गरेको थियो ।
- (४) ने.वि.प्रा. ले आयोग समक्ष समग्रमा करिब १५ प्रतिशत महसुल वृद्धि गर्नु पर्ने भनी पेश गरेको निवेदनमा आयोगले विस्तृत रूपले अध्ययन गर्दा आ.व. २०७६/७७ का लागि करिब ९% विद्युत महसुल घटाउने निर्णय २०७७ आषाढ १ गते गर्यो । सोही निर्णयद्वारा ट्रॅक लाईन र डेफिकेटेड फिडरको व्यवस्था समेत खारेज गरियो । साथ साथै अति बिपन्नवर्गका उपभोक्ताहरूले ५ एम्पियरको मिटरबाट प्रयोग गरेको विद्युत १० यूनिट सम्म निशुल्क गर्ने निर्णय गरेर समस्त उपभोक्ताको हित संरक्षण गरेको थियो ।
- (५) ने.वि.प्रा. ले आयोग समक्ष आ.व. २०७८/७९ को लागि उपभोक्ता विद्युत महसुल निर्धारण गर्न निवेदन दिएकोमा २०७८ मासिर महिना देखि लागू हुने गरी ५ एम्पियरको मिटरबाट विद्युत प्रयोग गर्ने अति निम्न आय भएका उपभोक्तालाई मासिक २० यूनिट सम्मको विद्युत महसुल नलाग्ने तथा समग्र विद्युत उपभोक्ताको विद्युत महसुल दरमा करिब १.०५ प्रतिशतले घटाउने निर्णय गरेको थियो ।
- (६) राष्ट्रिय सभाको दीगो विकास तथा सुशासन समितिद्वारा माग गरिए अनुसार नेपालमा उत्पादित विद्युतको अत्याधिक उपयोग गरेर आयातित एल. पी. ग्यास तथा जिवाश्म इन्धनको उपयोगलाई न्यूनीकरण गर्ने बारेमा आयोगका अध्यक्षले कार्यपत्र प्रस्तुत गरेका थिए । एवं रीतले विद्युत विधेयकउपर नेपाल सरकारलाई राय सुभाव उपलब्ध गराउने सम्बन्धमा मन्त्रालयले माग गरेकोमा समयमै आयोगले राय सुभाव उपलब्ध गराएको थियो ।
- (७) आयोगले सार्वजनिक सुनुवाई निर्देशिका जारी गरी उपभोक्ता विद्युत महसुल तथा १०० मे.वा. भन्दा बढी आयोजनाहरूको विद्युत खरीद-बिक्री दर निर्धारण गर्नु अघि उपभोक्ताबाट राय, सुभाव एवं प्रतिकृया लिनको लागि राष्ट्रिय दैनिक पत्रिका, अनलाइन पत्रिका, तथा आयोगको वेबसाइटमा सूचना प्रकाशित गर्ने तथा सार्वजनिक गर्ने परिपाटीको विकास गरेको थियो ।
- (८) हकप्रद शेयर निष्कासन सम्बन्धी विषयमा अग्रगामी तथा विकास मैत्री नीति अवलम्बन गर्दै "विद्युत सम्बन्धी कम्पनीको शेयर सार्वजनिक निस्कासनको पूर्व स्वीकृति तथा नियमन सम्बन्धी निर्देशिका, २०७८ जारी गरी बैद्धको ऋण तिरेर कम्पनीको आर्थिक स्थिति मजबूत गर्न तथा नयाँ आयोजना विकास गर्न २००% सम्म हकप्रद

शेयर निष्कासन गर्न अनुमति दिई विद्युत विकासको लागि पूँजी निर्माणमा (Capital formation) आयोगले कान्तिकारी भूमिका निर्वाह गरेको थियो । यस ब्यबस्थाले गर्दा हाल स्वदेशी प्रवर्द्धकहरूले नै ३५० बढी मे.वा क्षमताको एउटै आयोजना निर्माण गर्न उद्यत भै विद्युत खरीद विक्री गर्न ने.वि.प्रा.संग सम्झौता गरेका छन् भने अत्यन्तै धेरै आयोजनाहरू विकासक्रममा आएकाले विद्युत क्षेत्रद्वारा फड्को मारेका (Boom) अनुभूति भएको छ ।

(९) स्थापनाकालदेखि नै पाँच वर्षको अवधिमा हरेक वर्ष आयोगको प्रगति ५०% भन्दा बढि नै भएको दस्तावेज, ऐनको दफा ३८ (१) बमोजिम नै तोकिएको म्याद भित्रै मन्त्रालयमा पेश गरिएका थिए । जुन आयोगको वेबस(ईटमा पनि राखिएका थिए ।

(१०) आयोगको प्रथम कार्यकालमा निम्न बमोजिमको सेवाप्रवाह तथा नियामकीय उपकरणहरू तर्जुमा गरी, जारी गरेको साथै कार्यान्वयन समेत भएका छन् ।

(क) प्राथमिक तथा हकप्रद शेयर निष्कासनको पूर्व स्वीकृति - १२८ वटा

(ख) विद्युत कम्पनीको शेयर संरचना परिवर्तनमा स्वीकृति - १२३ वटा

(ग) विद्युत खरिद बिक्री दरको निर्धारण तथा विद्युत खरिद दर सम्झौतामा सहमति - १६८ वटा

(घ) विद्युत खरिद सम्झौताको संशोधनमा सहमति - ४९४ वटा

(ड) विद्युत कम्पनीको स्वामित्व हस्तान्तरण, प्राप्ति र ग्रहणमा सहमति - २८ वटा

(च) विद्युत कम्पनीको शेयर खरिद बिक्रीको सहमति - ६३ वटा

(छ) नियामकीय उपकरणहरू (Regulatory Instruments) को तर्जुमा तथा कार्यान्वयन - १६ वटा निम्न बमोजिमका रहेका छन् :

(१) विद्युत खरिद-बिक्री तथा अनुमति प्राप्त व्यक्तिले पालना गर्नुपर्ने शर्त सम्बन्धी विनियमावली, २०७६

(२) विद्युत नियमन आयोगको बैठक सम्बन्धी निर्देशिका, २०७६

(३) सार्वजनिक सुनुवाई सञ्चालन सम्बन्धी निर्देशिका, २०७६

(४) विद्युत उपभोक्ता महसुल निर्धारण निर्देशिका, २०७६

(५) विद्युत सम्बन्धी कम्पनीको शेयर सार्वजनिक निष्कासन सम्बन्धी निर्देशिका, २०७६

(६) एक आपसमा गाभिन/मिल/शेयर खरिद-बिक्री वा हस्तान्तरण, प्राप्ति वा ग्रहण सम्बन्धी निर्देशिका, २०७७

(७) विद्युत सम्बन्धी कम्पनीको सेयरको सार्वजनिक निष्कासनको पूर्व-स्वीकृति तथा नियमन सम्बन्धी निर्देशिका - २०७८

(८) कर्मचारी प्रगासन सम्बन्धी विनियमावली, २०७८ : अर्थ मन्त्रालायको स्वीकृतिको लागि ऊर्जा, जलस्रोत तथा सिंचाई मन्त्रालयमा पठाइएको ।

(९) आर्थिक प्रशासन सम्बन्धी विनियमावली, २०७८: अर्थ मन्त्रालयको स्वीकृतिको लागि ऊर्जा, जलस्रोत तथा सिचाई मन्त्रालयमा पठाईएको ।

(१०) आयोगका पदाधिकारीहरुको सेवा, सुविधा तथा शर्त सम्बन्धी निर्देशिका, २०७९

(११) आयोगको भावी कार्यदिशा, २०७८

(१२) विद्युत उपभोका हित संरक्षण सम्बन्धी निर्देशिका, २०८०

(१३) नेपाल विद्युत ग्रिड कोड, २०८०

(१४) South Asia Forum for Infrastructure Regulations द्वारा पठाईएको Common Minimum Grid Code for South Asia Region उपर सम्पूर्ण सरोकारवालाहरूसँग वृहत् छलफल गरी नेपालको हितको सम्बद्धन हुने किसिमले तर्जुमा गरी पठाईएको, २०८०/२०२३

(१५) Key Performance Indicate manual for Monitoring the Performance of Electric Utilities, २०८०/२०२३

(१६) विद्युतीय आवेदन तथा कार्य सञ्चालन सम्बन्धी निर्देशिका, २०८१

यस अलावा आयोगले सम्पादन गरेका अन्य कार्यहरु निम्न बमोजिमका छन्

(अ) बुटवल पावर कम्पनीले सरदरमा १३५% महसुल वृद्धिको प्रस्ताव पेश गरेकोमा २०८० जेष्ठमा महसुल वृद्धि नगरेको बरू खर्च कटौती गर्न आयोगले निर्देशन दिएको ।

(आ) बुटवल पावर कम्पनीले पुनः २०७२ सालदेखि नै कायम रहेको रु. ६/३९ प्रति यूनिट दरले आँधिखोला क्षेत्रमा विद्युत बितरण गर्दा वर्षेनी १० करोड रुपैयाँ घाटा भएको कारण देखाई ६५.५% ले महशुल वृद्धि गरी रु. ४/३० बढाउन निवेदन पेश गरेको । तर, विस्तृत अध्ययन, एवं सार्वजनिक सुनुवाई गरी ३ वटा विकल्प सहितको प्रतिवेदन आयोगका सदस्य संयोजक रहेका कार्य टोलीले पेश गरेको प्रतिवेदन उपर ऊर्जा, जलस्रोत तथा सिचाई मन्त्रालयमा मन्त्री, सचिव, सह-सचिव, आयोगका सम्पूर्ण पदाधिकारीहरू एवं आयोगका सचिव संलग्न बैठकमा वृहत् रूपले विचार विमर्श गरिएको थियो । तत्पश्चात् विकल्प ३ मा प्रस्ताव गरिए अनुसारको सञ्चालन खर्च मात्र उठने (ल्य एचयाष्ट, ल्यीयकक० हुने गरी विद्युत महसुल दर रु. ८/९१ प्रति यूनिट कायम गर्ने, जुन ने.वि.प्रा. को विद्यमान महसुल दर रु.९।२५ प्रति युनिट भन्दा ३४ पैसा सस्तो हुने गरी आयोगले निर्णय गरेको थियो । बुटवल पावर कम्पनीले वितरण गर्ने फिम्रुक क्षेत्रमा भने ने. वि.प्रा. को दर रु.९।२५ नै कायम गरिएको अवस्था थियो ।

(इ) डेडिकेटेड फिडर र ट्रूक लाईन सम्बन्धमा ने. वि. प्रा.ले विद्युत महसुल निर्धारणका लागि आयोगमा निवेदन पेश गरेको थियो । जसमा उद्योगी/व्यवसायी वा अन्य कुनै सरोकारवालाहरूले केही पनि माग नगरेको अवस्थामा पनि आयोगले बुद्धिमत्तापूर्ण ढंगले डेडिकेटेड फिडर र ट्रूकलाईन सम्बन्धी प्रणालीलाई २०७७ आषाढ १ गतेदेखि खारेज गरेको थियो । साथै उद्योगी व्यवसायीहरूले पेश गरेको निवेदन उपर सुनुवाई गर्दै आयोगको २०७८ भाद्र २२ मा बसेको १३३ आँ बैठकका निर्णयानुसार ने. वि. प्रा. लाई तत्कालीन, विद्युत महसुल निर्धारण

आयोगको १०३ औं र १०८ औं बैठकको निर्णय कार्यान्वयन गर्नु/गराउनु भनी आयोगद्वारा निर्देशन दिइएको थियो । डेडिकेटेड फिडर र ट्रंक लाईनका सम्बन्धमा निम्नानुसारका तीन कालखण्डमा विभाजन गरिएको छ :

पहिलो अवधि : २०७२ श्रावणदेखि ने. वि. प्रा. द्वारा गरिएको महसुल वृद्धि विरुद्ध शिवम् सिमेन्टले सर्वोच्च अदालतमा दायर गरेको मुद्दामा २०७५ कार्तिक २० मा तत्कालीन महसुल निर्धारण आयोगको २०७२ पौष २९ र २०७२ माघ १० को निर्णय पश्चात् मात्र वृद्धि भएको महसुल लागु गर्न मिल्ने गरी अदालतले फैसला गरेको थियो । उक्त निर्णयलाई अन्यथा हुने गरी आयोगले अलग निर्णय गर्न कानूनतः नमिल्ने भै सोही निर्णय नै लागु हुने निर्णय आयोगले गरेको थियो ।

दोश्रो अवधि: २०७२ माघदेखि २०७५ बैशाख अर्थात् लोडशेडिङ अन्त्य हुनु अधिको अवधिमा महसुल उठाउनु पर्ने नै हुन्छ । अतः Time of The Day (TOD) मिटर वा अन्य प्राविधिक तथ्यको विश्लेषणबाटै लोड सेडिङ छ घन्टा वा सो भन्दा बढी समय कायम भएको अवस्थामा, २० घन्टा वा सो भन्दा बढी समय छुट्टै टंक लाइनबाट विद्युत उपभोग गरेको ग्राहकको महसुल डेडिकेटेड फिडर सरह दर कायम गर्ने निर्णय आयोगले २०७८ भाद्र २२ मा गरी कार्यान्वयनको लागि ने.वि.प्रा. मा आयोगद्वारा पठाएको थियो ।

तेस्रो अवधि : २०७५ बैशाखमा ने.वि.प्रा. ले लोडसेडिङ अन्त्य भएको घोषणा गरेको थियो । नयाँ आयोगले आफ्नो स्थापना पश्चात् २०७७ आषाढ १ मा विद्युत महसुल निर्धारण गरी औद्योगिक/व्यापारिक ग्राहकहरूबाट लिई आएको अतिरिक्त सरचार्ज (६५%) लिन नपाउने गरी निर्णय गरेको थियो । सो निर्णय उपर ने.वि.प्रा. उद्योगी, व्यवसायीका अन्य उपभोक्ता वर्गबाट पुनराबेदनको माग नगरिएको हुनाले आयोगले थप निर्णय गर्नु परेन । स्मरण रहोस, विद्युत उपभोक्ता महसुल निर्धारण निर्देशिका, २०७६ को दफा ७ (३) बमोजिम विद्युत नियमन आयोगले महसुल दर निर्धारण वा परिवर्तन नगरेसम्म विद्युत महसुल निर्धारण आयोगको पछिल्लो महसुल दर कायम रहनेछ भन्ने उल्लेख भएको हुँदा विद्युत महसुल निर्धारण आयोगको १०३ औं र १०८ औं बैठकद्वारा निर्धारण गरिएको महसुल दर र आधार नै २०७७ जेष्ठ मसान्तसम्म लागू हुने हुन्छ यस विषयमा लोडसेडिङ अन्त्य भएको घोषणा गरिए तापनि धेरै उद्योगहरूमा बत्ती नआउने (अघोषित लोडसेडिङ) समस्या विद्यमान रहेको उद्योगी व्यवसायीहरूले बताएका थिए । यी सबै तथ्यहरूको सूक्ष्म तवरले अध्ययन गरेर तथा सरोकारवालाहरूको प्रतिवेदन/निर्णयहरूलाई आधार मानेर आयोगको २०८० पौष १६ को २९८ औं बैठकबाट त्थ्म मिटरद्वारा छ घन्टा भन्दा बढी लोडसेडिङ भएको र २० घन्टाभन्दा बढी विद्युत उपयोग गरेका प्रमाण जुटाएर विद्युत महसुलको बक्यौता ने.वि.प्रा. ले उठाउनु पर्ने भनी निर्णय गरेर नौ पेजका पूर्णपाठ सहित ऊर्जा, जलस्रोत तथा सिचाई मन्त्रालयमा पत्राचार गरेको थियो । सोही पत्रको प्रतिलिपि (सि.सि.) प्रधानमन्त्री, उपप्रधान तथा रक्षा मन्त्री, अर्थ मन्त्री, ऊर्जा, जलस्रोत तथा सिचाई मन्त्री, उद्योग वाणिज्य तथा आपूर्ति मन्त्री, मुख्य सचिव, तथा ने. वि. प्रा. का कार्यकारी निर्देशकलाई पनि पठाएको थियो । आयोगले पारदर्शितामा विश्वास गर्ने भएकोले आयोगको वेबसाइट धधध भच्च अन्यथा लउ मा समेत राखिएको थियो । त्यस लगतै तत्क(लै २०८० पौष १७ मा माथि उल्लेखित प्रधानमन्त्री ज्यू मन्त्रीज्यूहरूलाई निर्णयको पूर्णपाठ हस्तान्तरण गरेर आयोगका तत्कालीन अध्यक्षले विस्तृत रूपले ब्याख्या पनि गर्नु भएको थियो र सबैले अब बल्ल समाधानको बाटो खुल्यो भनेर सराहना पनि गर्नु भएको थियो ।

केही साता पश्चात् मन्त्रपरिषद्को निर्णयले डेडिकेटेड फिफर र टंकलाईनको बक्यौता उठाउने सम्बन्धी अन्तिम टुङ्गो लगाउन सर्वोच्च अदालतका पूर्व न्यायाधीश श्री गिरिशचन्द्र लालको संयोजकत्वमा एउटा आयोग गठन गरियो । सो आयोगले पनि विद्युत नियमन आयोगले गरेको निर्णय मिल्दो जुल्दो हुने गरी प्रतिवेदन तयार गरेर मन्त्रपरिषद्मा बुझाएकोमा बक्यौता उठाउने निर्णय सहित मन्त्रपरिषद्ले ऊर्जा, जलस्रोत तथा सिंचाई मन्त्रा(लयमा पठाएको थियो ।

यस अलावा पनि संसद्को लेखा समितिले बक्यौता उठाउने सम्बन्धमा गहन अध्ययन गर्न आवश्यक ठानी ने.प्रा(व.प्रा सँग त्वमिटरका प्रिन्टहरू माग गरेकोमा ने.वि.प्रा.ले बुझाई सकेको छ । अबको कार्य भने लेखा समितिमा प्राप्त त्वमिटरका प्रिन्टहरू अध्ययन गरेर कस्ले कति तिर्नु पर्ने वा नपर्ने निक्यौल गर्न एउटा विज्ञहरूको टोली बनाएर यथशीघ्र कार्यारम्भ गरेर यो विवादलाई सदाको लागि अन्त्य गर्नु अपरिहार्य देखिन्छ ।

(ई) आयोगमा दर्ता भएका सम्पूर्ण निवेदन/प्रतिवेदन/फाइल/दरखास्त आदि समेतलाई २०८१ बैशाख २४ मा बसेको अन्तिम बैठकद्वारा फछ्यौट गरी निर्णय दिएको कार्यलाई सम्पूर्ण सेवाग्राहीले मुक्त कण्ठले सराहना गरेका थिए ।

धितोपत्र बोर्डमा दर्जनौं निवेदन फाइलहरू पदाधिकारीहरू नभएका कारणले महिनौं सम्म थन्किंदा विद्युत लग(यत अन्य क्षेत्रका साथै बैंकमा हुने अबौंको कारोबार ठप्प भएको परिस्थिति देखे पश्चात् यस्तो परिस्थितिबाट सेवाग्राहीलाई जोगाउन सम्पूर्ण टेबुल सफा हुने गरी आयोगले कार्य गरेको थियो । यसरी आयोगका प्रथम पद(ाधिकारीहरूको सकृदातामा प्राप्त सबै १०२४ वटा निवेदन उपर निर्णय प्रदान गरेर ऐनले निर्दिष्ट गरेका भूमिकाहरू सक्षमताका साथ निर्वाह गरेको थियो ।

(उ) आयोगले जारी गरेका ग्रिडकोडलाई कार्यान्वयन गराउने सन्दर्भमा अझै २ वर्ष बढी समय पदावधि बाँकी रहेका सदस्यको संयोजकत्वमा २०८० श्रावण १५ गतेको २०१ औं बैठकले ग्रिडकोड व्यवस्थापन समिति (Grid Code Management Committee) गठन गरी कार्यारम्भ गरिएको थियो । त्यसै गरी खुला पहुँच सम्बन्धी निर्धारण निर्देशिका (Open Access Guidelines) तथा प्रसारण दस्तुर (Wheeling Charge) सम्बन्धी निर्देशिका तयार गर्ने एवं Key Performance Indicator Manual for Monitoring the Performance of Electric Utilities मा निर्दिष्ट गरेका सूचकहरू जस्तै: ने.वि.प्रा. ले प्रदान गर्ने सेवा, गुणस्तर आदि बारे तथ्याङ्क संकलन गर्ने कार्यको समेत शुरुवात गरिएको थियो ।

(ऊ) तत्कालीन आयोगको पछिल्लो समयमा जुन दिन बैठक बस्यो त्यसको २/३ घन्टामा माइन्यूट तयार गरेर सही गर्ने र सकेमा त्यसै दिन नभएमा भोलिपल्ट सेवाग्राहीलाई निर्णय सहितको पत्र प्रदान गर्ने परिपाटीको विकास गरी कार्यान्वयनमा ल्याइएको थियो । यसबाट समस्त सेवाग्राहीहरू अत्यन्तै हर्षित भएका थिए किनभने एउटा ९०० मे.वा.को को आयोजना वा २ वटा ५० मे.वा.का आयोजनाहरू वा १० वटा १० मे.वा का आयोजनाहरूले बर्षमा करिब रु ३ देखि रु ४ अर्व बराबरको विद्युत उत्पादन गर्दछन् भने एक महिनामा करिब रु ३ करोडको विद्युत उत्पादन गर्दछन् । त्यसैले आयोगको कारणले वा अन्य कुनै कारणले १ महिना आयोजना बिलम्ब भएमा करिब रु.३ करोडको उत्पादन नहुँदा प्रवर्द्धकलाई त घाटा हुन्छ नै साथै राज्यलाई पनि घाटा हुन जान्छ । यसै तथ्यलाई मनन गर्दै आयोगले शून्य विलम्बको नीति लिएर काम कार्वाही गर्ने गरेको थियो ।

उपसंहार: प्रथम आयोगले भोगेका प्रसव पीडा, राजनैतिक एवं प्रशासनिक क्षेत्रबाट भोग्नु परेका बाधा अद्वितीय, कोभिड-१९ को महामारी एवं लकडाउन, अत्यन्त न्यून श्रोत साधन/जनशक्तिका बाबजुद देशमा विद्यमान अन्य निकायहरूमन्दा अब्बत रूपले छिटो छरितो एवं विवेकपूर्ण तरिकाले निर्णय गर्दै सेवा प्रदान गरेकोले सेवाग्राहीहरूले अभिभावकको संज्ञा दिएका थिए । सकेमा सो वृद्धि गर्ने नसकेमा पनि प्रथम आयोगले गरेका काम कार्वाहीको अनुशरण गर्दै निरन्तरता दिएमा दोस्रो आयोगको उपादेयता भलिक्न्छ । त्यस अलावा आयोगको तेस्रो स्थिरीकरणको चरणमा उल्लेख गरिएका कार्यहरू गरेमा सन् २०३५ सम्ममा २८,५०० मे.वा. विद्युत उत्पादन गर्ने लक्ष्यलाई टेवा मिल्ने छ । यस कार्यमा पूर्व अध्यक्षबाट हुन सक्ने सहयोग सम्पूर्ण रूपले प्रदान गर्ने प्रतिबद्धता व्यक्त गर्दै आयोग कालान्तरमा अन्तरराष्ट्रीय स्तरको बनाउनको लागि शुभकामना व्यक्त गर्दछु ।

सार्वजनिक निरकासन अनुमति प्रकृयामा नेपाल धितोपत्र बोर्ड र विद्युत नियमन आयोगको भूमिका

निरज गिरी^१

धितोपत्र कारोबार ऐन, २०४० को वि.स. २०४९ सालमा भएको संशोधन पश्चात सर्वसाधारण जनताको आर्थिक हित कायम राख्न, देशको आर्थिक विकासमा योगदान पुऱ्याउन, लगानीकर्ताको हक हित संरक्षण गर्न, उद्योग धन्दाको स्वामित्वमा जनसहभागिता बढाउन, संस्थागत सुशासन कायम गर्न र धितोपत्र कारोबारलाई व्यवस्थित र नियमित गर्न नेपाल सरकारबाट वि.स. २०५० साल जेष्ठ २५ गते नेपाल धितोपत्र बोर्डको स्थापना गरियो ।

वि.स. २०६३ सालमा धितोपत्र कारोबार ऐन, २०४० खारेज गरी देशको आर्थिक विकासका लागि पुँजीबजारको विकास गरी धितोपत्रमा लगानी गर्ने लगानीकर्ताको हित संरक्षण गर्न धितोपत्रको निस्कासन, खरिद, विक्री, वितरण तथा बिनिमयलाई व्यवस्थित बनाई धितोपत्र बजार र धितोपत्र व्यवसायमा संलग्न व्यक्तिहरूको काम कारवाहीलाई नियमित तथा व्यवस्थित गर्नको लागि वृहत उद्देश्यसहित धितोपत्र सम्बन्धी ऐन, २०६३ जारी गरियो । तत्पश्चात धितोपत्र सम्बन्धी ऐन, २०६३ बमोजिम नेपाल धितोपत्र बोर्डले स्वशासित र संगठित संस्थाको रूपमा समग्र पुँजीबजारको नियमन र सुपरिवेक्षण गर्दै आईहेको छ ।

बोर्ड स्थापना भएको आर्थिक वर्षमा पुँजीबजारबाट कुल ३४.४४ करोड बराबरको पुँजी परिचालन गरिएको थियो भने आ.ब. ७९/८० मा आइपुग्दा बजारबाट कुल ९६.०४ अर्ब बराबरको पुँजी परिचालन भएको छ । यसरी नेपालको पुँजीबजार मुलुकको आर्थिक विकासका लागि आवश्यक पुँजी परिचालनको प्रमुख श्रोतको रूपमा विकसित भैसकेको छ । पुँजीबजारको प्रारम्भिक अवधिमा पुँजी परिचालनमा बैंक तथा वित्तीय संस्था र विमा क्षेत्रका संगठित संस्थाह(रुको बाहुल्यता रहेकोमा हाल जलविद्युत क्षेत्रका संगठित संस्थाहरूले पुँजीबजारबाट पुँजी परिचालन गर्न शुरुभएकोमा आ.ब. २०७९/८० मा २९ वटा जलविद्युत क्षेत्रका संगठित संस्थाहरूले पुँजी परिचालन गरेका छन् । शुरुवाती अवस्थामा वास्तविक क्षेत्रका कम्पनीहरूले आफ्नो उद्देश्य अनुरूपको कारोबारको शुरुवात गरेपश्चात मात्र सर्वसाधारणबाट पुँजी परिचालन गर्नसक्ने कानुनी व्यवस्था रहेकोमा धितोपत्र बोर्डले आफ्नो कानूनमा सुधार गर्दै पब्लिक कम्पनीको रूपमा आफ्नो उद्देश्य अनुसार कारोबार संचालन गर्नका लागि आवश्यक कार्यहरू अगार्ड बढाई पूरा एक आर्थिक वर्षको अवधि पूरा गरेको हुनुपर्ने व्यवस्था गरे पश्चात वास्तविक क्षेत्रका कम्पनीहरूको संख्या बढाई गइरहेको छ । आ.ब. २०८०/८१ सम्ममा ९१ वटा जलविद्युत क्षेत्रका संगठित संस्थाहरू नेपाल स्टक एक्सचेन्जमा सूचीकृत भैसकेका छन् र अझै ४५ वटा संस्थाले सार्वजनिक निस्काशन अनुमतिका लागि नेपाल धितोपत्र बोर्डमा आवेदन दिएका छन् ।

नेपाल सरकारले जलविद्युत उत्पादन सम्बन्धमा लिएको महत्वाकांक्षी लक्ष्य तथा सो अनुकूलका सरकारी नीतिका कारण विगत पाँच वर्षमा नेप्सेमा सूचीकृत जलविद्युत क्षेत्रका कम्पनीहरूको कूल संख्या र तिनको कूल बजार

^१ लेखक नेपाल धितोपत्र बोर्डको पूर्वकार्यकारी अध्यक्ष हुनुहुन्छ । -सम्पादक

पूँजीकरणमा उल्लेख्य रूपमा बृद्धि भएको तथ्य तलको चित्रबाट हेर्न सकिन्छ ।

नेपाल सरकारले जलविद्युत क्षेत्रलाई प्राथमिकता दिए पश्चात विद्युत क्षेत्रको प्राविधिक व्यवस्थापन गर्ने, महसुल निर्धारण तथा विद्युत खरिद विक्रीको नियमन गर्ने, प्रतिस्पर्धा कायम गर्ने तथा उपभोक्ता हित संरक्षण गर्ने, संगठनात्मक क्षमता अभिवृद्धि गर्ने, जाँचबुझ तथा निरीक्षण गर्ने, नीतिगत सुभाव दिने तथा सिफारिस गर्ने जिम्मेवारी सहित विद्युत नियमन आयोग ऐन, २०७४ जारी गरेको छ । यसरी नेपालको विद्युत क्षेत्रको नियमन निकायको रूपमा विद्युत नियमन आयोगको स्थापना भए पश्चात् यस क्षेत्रको स्थायीत्व र विकासका प्रयासहरूले गति लिन थालेको देखिन्छ ।

जलविद्युत क्षेत्रका संस्थाहरूको सार्वजनिक निस्काशन सम्बन्धी व्यवस्था

पब्लीक कम्पनीले सार्वजनिक निस्काशन गर्ने सम्बन्धी विषयहरू बिभिन्न ऐन, नियम, निर्देशिका तथा निर्देशनहरूबाट व्यवस्थित गरिएको हुन्छ । पूँजीबजारसँग सम्बन्धित विषयमा नेपाल धितोपत्र बोर्ड सर्वोच्च नियामक निकाय भएत(पनि पब्लीक कम्पनीहरूले आफ्नो व्यवसायको प्रकृति अनुसार नेपाल राष्ट्र बैंक, नेपाल बीमा प्राधिकरण, विद्युत नियमन आयोग जस्ता नियामक निकायहरूले जारी गरेका कानूनी र नियामक प्रावधानहरूको पालना गर्नु पर्दछ ।

जलविद्युत क्षेत्रका संस्थाहरूले सार्वजनिक निस्काशनका लागि देहाय बमोजिमका ऐन, नियम तथा निर्देशिकाहरूको पालना गर्नु पर्नेछ ।

- कम्पनी ऐन, २०६३
- धितोपत्र सम्बन्धी ऐन, २०६३
- धितोपत्र दर्ता तथा निस्काशन नियमावली, २०७३
- धितोपत्र निस्काशन तथा बाँडफाँड निर्देशिका, २०७४
- विद्युत नियमन आयोग ऐन, २०७४
- विद्युत नियमन आयोग नियमावली, २०७५
- विद्युत सम्बन्धी कम्पनीको शेयरको सार्वजनिक निस्काशनको पूर्व स्वीकृति तथा नियमन सम्बन्धी निर्देशिका, २०७८

माथि उल्लेख भएका ऐन, नियम तथा निर्देशिकाहरुको प्रमुख प्रावधानहरु देहाय अनुसार पाउन सकिन्छ ।

धितोपत्र सम्बन्धी ऐन, २०६३

धितोपत्र ऐनको परिच्छेद ३ ले धितोपत्रको दर्ता तथा निस्काशन सम्बन्धमा व्यवस्था गरेको छ । यसमा संगठित संस्थाले आफूले निस्काशन गर्ने धितोपत्र निस्काशन गर्नु अघि बोर्डमा दर्ता गराउनु पर्ने, संगठित संस्थाले एक पटकमा पचास जना भन्दा बढी व्यक्तिहरुलाई धितोपत्र बिक्री वितरण गर्ने भएमा त्यस्तो धितोपत्र बिक्री वितरणको निमित सार्वजनिक निस्काशन गर्नु पर्ने, धितोपत्रको सार्वजनिक निस्काशन गर्नका लागि विवरणपत्र बोर्डबाट स्वीकृत गराई सम्बन्धित सबैको जानकारीको लागि सो विवरणपत्र प्रकाशन गर्नु पर्ने जस्ता व्यवस्थाहरु गरेको छ ।

कम्पनी ऐन, २०६३

ऐनको दफा २३ ले पब्लिक कम्पनीले सबै सञ्चालकले हस्ताक्षर गरेको विवरणपत्र सर्वसाधारणमा प्रकाशन गर्नुअघि प्रचलित धितोपत्र कानून बमोजिम स्वीकृतिका लागि धितोपत्र बोर्डमा पेश गर्नुपर्छ । बोर्डबाट स्वीकृति प्राप्त गरी स्वीकृत विवरणपत्र कम्पनी रजिस्ट्रारको कार्यलयमा दर्ता गरेपछि मात्र विवरणपत्र प्रकाशन गर्नुपर्नेछ । कम्पनी ऐनको कुनै प्रावधानको पालना नगरेको देखिएमा पेश भएको विवरणपत्र अस्वीकार गर्न कम्पनी रजिस्ट्रारको कार्यलयलाई अधिकार दिइएको छ । विवरणपत्र प्रकाशन गर्दा पूरा गर्नु पर्ने अन्य कार्यविधि र विवरणपत्रमा खुलाउनु पर्ने कुराहरु धितोपत्र कारोबार सम्बन्धी प्रचलित कानूनमा उल्लेख भए बमोजिम हुनेछ भनी व्यवस्था गरेको छ ।

कम्पनी ऐनले धितोपत्र बजार सम्बन्धी कार्यहरु धितोपत्र बोर्डको क्षेत्राधिकारको रूपमा परिकल्पना गरेको छ ।

धितोपत्र दर्ता तथा निस्काशन नियमावली, २०७३

सम्बन्धित नियामक निकायले अन्यथा तोकेकोमा बाहेक संगठित संस्थाको जारी पूँजीको दश प्रतिशत भन्दा घटी र उनन्चास प्रतिशत भन्दा बढी नहुने गरी शेयरको प्रारम्भिक सार्वजनिक निस्काशन (इनिशियल पब्लिक अफरिड) गर्नु पर्नेछ । बैंकिङ, वित्तीय वा बीमा सम्बन्धी व्यवसाय गर्ने संगठित संस्थाले ऐन तथा नियमावली बमोजिम धितोपत्रको प्रारम्भिक सार्वजनिक निस्काशन गर्ने भएमा त्यस्तो संगठित संस्थाले आफ्नो उद्देश्य अनुरूप कारोबार सञ्चालन गरेको पूरा एक आर्थिक वर्षको लेखापरीक्षण गरिएको वित्तीय विवरण सार्वजनिक रूपमा प्रकाशन गर्नुका साथै साधारणसभा समेत सम्पन्न गरिसकेको हुनु पर्नेछ । तर पूरा आर्थिक वर्षको लेखा परीक्षण गराउँदा नियामक निकायले तोकेको अवधिभित्र सार्वजनिक निस्काशन गर्न नसकिने देखिएमा त्यस्तो संगठित संस्थाको व्यवस्थापनबाट वित्तीय विवरण प्रमाणित गरी सार्वजनिक निस्काशन गर्न बोर्डले स्वीकृति दिन सक्नेछ ।

बैंकिङ, वित्तीय वा बीमा सम्बन्धी व्यवसाय गर्ने संगठित संस्था बाहेकका अन्य संगठित संस्थाले धितोपत्रको सार्वजनिक निस्काशन गर्दा देहायका शर्तहरु पूरा गरेको हुनु पर्नेछ:-

- पब्लिक कम्पनीको रूपमा आफ्नो उद्देश्य अनुसार कारोबार सञ्चालन गर्नका लागि आवश्यक कार्यहरु अगाडि बढाई पूरा एक आर्थिक वर्षको अवधि पूरा गरेको,

तर साविकमा प्राइभेट लिमिटेड कम्पनीको रूपमा दर्ता भई कारोबार सञ्चालन गरेको कमितमा दुई आर्थिक वर्ष पूरा गरी पब्लिक लिमिटेड कम्पनीमा परिणत भएको कम्पनीले यसरी पब्लिक लिमिटेड कम्पनीमा परिणत भए पश्चात साधारण

सभा सम्पन्न गरी अन्तिम आर्थिक वर्षको लेखा परीक्षण प्रतिवेदन साधारण सभाबाट पारित गरेको भए त्यस्तो अवधि पूरा हुन आवश्यक पर्ने छैन ।”

- प्रचलित कानून बमोजिम लेखापरीक्षण तथा साधारणसभा सम्पन्न गरेको र लेखापरीक्षण प्रतिवेदनमा उक्त संस्था भविष्यमा पनि निरन्तर सञ्चालन (गोइङ्ग कन्सर्न) हुने आधारमा कुनै कैफियत नभएको पुष्टि भएको,
- आफ्नो उद्देश्य अनुसार कारोबार सञ्चालन गर्नका लागि प्रचलित कानून बमोजिम कुनै निकायबाट इजाजत, अनुमति वा स्वीकृति लिनुपर्ने भएमा त्यस्तो इजाजत, अनुमति वा स्वीकृति लिइसकेको,
- संगठित संस्थाको लागि आवश्यक पर्ने जग्गा खरीद वा अन्य प्रकारले व्यवस्था गरी कारखाना भवन, कार्यालय भवन, गोदामघर तथा अन्य आवश्यक सुविधाहरूको निर्माण कार्य शुरू गरिसकेको,
- उत्पादनको प्रविधि छनौट गरी उद्योगको लागि आवश्यक पर्ने यान्त्रिक उपकरण तथा त्यसका पार्टपूर्जा आदि खरीद गर्नुपर्ने भएमा टेण्डर आदि गरी खरीद प्रकृया अगाडि बढाई सकेको,
- धितोपत्रको सार्वजनिक निस्काशन सम्बन्धमा निस्काशन तथा बिक्री प्रबन्धकसँग सम्झौता भइसकेको,
- आयोजनाको निर्माण अवधिभर कम्पनीको ऋण र पूँजीको अनुपात निर्देशिकामा तोकिएको अनुपातमा राख्न सहमत भएको,
- संस्थापकहरूले लिन कबुल गरेको धितोपत्रको रकम शत प्रतिशत चुक्ता भैसकेको,
- परियोजना निर्माणका लागि फाइनान्सियल क्लोजर (financial closure) भैसकेको,
- जलविद्युत उत्पादन संस्था भएमा, विद्युत खरीद सम्झौता गरिसकेको,
- सर्वसाधारणका लागि निस्काशन गर्न लागेको शेयरहरू निर्देशिकामा तोकिए बमोजिम प्रत्याभूति गराएको ।
- संगठित संस्थाले धितोपत्रको सार्वजनिक निस्काशन गर्नु पूर्व क्रेडिट रेटिङ संस्थामार्फत सो संगठित संस्थाको रेटिङ गराउनु पर्नेछ ।

संगठित संस्थाले धितोपत्र ऐन र नियमावलीको व्यवस्था बमोजिम धितोपत्रको सार्वजनिक निस्काशन गर्नका लागि नियमावलीको अनुसूची-५ बमोजिमको ढाँचामा विवरणपत्र तयार गर्नु पर्नेछ भने व्यवस्था गरेको छ । विवरणपत्रमा प्रमुख रूपमा संस्थाको पूँजी संरचना, संस्थापकहरू सम्बन्धी विवरण, संस्थाको वित्तीय अवस्था, भविष्यको योजना, सञ्चालकहरूको परिचय, लेखापरीक्षण भएको वित्तीय विवरण जस्ता विवरणहरू समावेश हुनुपर्ने व्यवस्था रहेको छ ।

नियमावलीको नियम १७ ले हकप्रद शेयर निस्काशन सम्बन्धमा व्यवस्थाहरू गरेको छ ।

संगठित संस्थाको सञ्चालक समितिबाट हकप्रद शेयर निस्काशन सम्बन्धी निर्णय भएको बढीमा दुई महिनाभित्र उक्त प्रस्ताव साधारण सभामा पेश गर्नुपर्नेछ । संगठित संस्थाले साधारण सभाबाट हकप्रद शेयर निस्काशन गर्ने निर्णय गरेको दुई महिनाभित्र आवश्यक कागजात तथा विवरण सहित बोर्डमा निवेदन दिनु पर्नेछ । संगठित संस्थाले नियमावली बमोजिम धितोपत्रको हकप्रद निस्काशन गर्नु अगावै हकप्रद शेयर / परिपत्र विधिबाट निस्काशन सम्बन्धी व्यवस्था र विवरणहरू अनुरूपको विवरण तयार गरी त्यस्तो संगठित संस्थाको सञ्चालक समितिको निर्णय सहित स्वीकृतिको लागि बोर्ड समक्ष निवेदन दिनु पर्नेछ । उक्त विवरणको ढाँचामा संस्थाको पूँजी संरचना, संस्थाको वित्तीय अवस्था,

भविष्यको योजना, संचालकहरुको परिचय, लेखापरीक्षण भएको वित्तीय विवरण जस्ता विवरणहरु समावेश हुनुपर्ने व्यवस्था रहेको छ ।

धितोपत्र निस्काशन तथा बाँडफाँड निर्देशिका, २०७४

यस निर्देशिकाले प्राथमिक निस्काशन, थप सार्वजनिक निस्काशन, हकप्रद निस्काशन, अग्राधिकार शेयर निस्काशन लगायतका निस्काशन सम्बन्धी व्यवस्थाहरूलाई थप स्पष्ट बनाएको छ । निर्देशिकामा शेयर जारी गर्ने र बाँडफाँट गर्ने प्रक्रियाहरु बारे विस्तृत जानकारी दिइएको छ ।

विद्युत नियमन आयोग ऐन, २०७४:

राष्ट्र विकासको लागि अत्यावश्यक नेपालको विद्युत क्षेत्रलाई नियमन गर्नुका साथै उपलब्ध स्रोतको अधिकतम सुदूपयोग गर्नको निमित्त विद्युत क्षेत्रलाई थप प्रभावकारी एवम् सुदृढ बनाउन आवश्यक रहेकोले एउटा स्वशासित र सञ्चारित नियमनकारी संस्थाको रूपमा ऐन तथा नियमावलीले निर्दिष्ट गरे बमोजिम विद्युत उत्पादन, प्रसारण, वितरण वा व्यापारलाई सरल, नियमित, व्यवस्थित तथा पारदर्शी बनाई विद्युतको माग र आपूर्तीबीच सन्तुलन कायम राख्न, विद्युत महसुल नियमन गर्न, विद्युत उपभोक्ताको हकहित संरक्षण गर्न, विद्युतको बजारलाई प्रतिस्पर्धात्मक बनाउन, विद्युत सेवालाई भरपर्दो, सर्वसुलभ, गुणस्तरयुक्त तथा सुरक्षित बनाउन आयोगको स्थापना भएको देखिन्छ । ऐन अनुरूप आयोगको देहाय बमोजिम मुख्य काम, कर्तव्य र अधिकार रहेका छन्:

- विद्युत सेवा सम्बन्धी ग्रिड संहिता र वितरण संहिता बनाई कार्यान्वयन तथा त्यसको अनुगमन गर्ने, यसको सञ्चालन तथा मर्मत सम्भारको स्तर तथा कार्यविधि निर्धारण गरी कार्यान्वयन गर्ने र राष्ट्रिय विद्युत प्रणालीको गुणस्तर तथा सुरक्षास्तर कायम राख्न आवश्यक मापदण्ड बनाई लागू गर्ने इत्यादि,
- महसुल निर्धारण गर्ने तथा विद्युत खरिद बिक्रीको नियमन गर्ने,
- आयोगले विद्युत बजारमा प्रतिस्पर्धा कायम गर्न तथा उपभोक्ताको हित संरक्षणको लागि आवश्यक उपाय पहिचान गरी कार्यान्वयन गर्ने वा गराउने, विद्युत खरिद बिक्रीको दरमा प्रतिस्पर्धाको वातावरण कायम गराउने, विद्युत महसुल दरमा एकाधिकार (सिण्डिकेट) हुन नपाउने व्यवस्था गर्ने, अनुमतिपत्र प्राप्त व्यक्तिहरू आपसमा गाभिन (मर्जर), आपसमा मिल्न, एकलै वा आफ्नो सहायक कम्पनीसँग मिली त्यस्तो व्यक्ति रहेको कम्पनीको पचास प्रतिशत वा त्यसभन्दा बढी शेयर खरिद गर्ने, संरचनाको खरिद बिक्री (सेल अफ प्लान्ट), प्राप्ति (एक्वीजिशन) वा ग्रहण (टेक ओभर) गर्नको लागि आवश्यक मापदण्ड बनाई कार्यान्वयन गर्ने वा गराउने एवं विद्युतीय प्रणालीमा खुल्ला पहुँचको व्यवस्था गर्ने,
- विद्युतको उत्पादन, प्रसारण, वितरण वा व्यापार सम्बन्धी व्यवस्थालाई भरपर्दो र प्रभावकारी बनाउन गर्नु पर्ने नीरी(तगत सुधारका सम्बन्धमा आयोगले नेपाल सरकारलाई आवश्यक सल्लाह र सुझाव दिने,
- अनुमतिपत्र प्राप्त व्यक्तिहरूबीच उत्पन्न विद्युत सम्बन्धी विवाद समाधान गर्ने,

विद्युत नियमन आयोग नियमावली, २०७५ः

उक्त नियमावलीको नियम ४५ मा सेयर संरचनामा परिवर्तन गर्न आयोगसँग स्वीकृति लिनुपर्ने व्यवस्था गरिएको छ । विद्युत उत्पादन, प्रसारण, वितरण वा व्यापारको काम गर्न अनुमति प्राप्त कम्पनी वा संस्थाले सार्वजनिक रूपमा सेयर निस्काशन गर्न वा सेयरको संरचनामा पाँच प्रतिशतभन्दा बढी परिवर्तन हुने गरी सेयर खरिद बिक्री गर्न आयोगको पूर्वस्वीकृति लिनुपर्नेछ । तर नेपाल स्टक एक्सचेज लि. मा सूचीकृत भएको कम्पनी वा संस्थाको सेयर खरिद बिक्री गर्न पूर्वस्वीकृति लिनुपर्ने छैन भन्ने व्यवस्था रहेको छ ।

विद्युत सम्बन्धी कम्पनीको शेयरको सार्वजनिक निस्काशनको पूर्वस्वीकृति तथा नियमनसम्बन्धी निर्देशिका, २०७८ :

विद्युत नियमन आयोगले विद्युत उत्पादन, प्रसारण, वितरण वा व्यापारको काम गर्न अनुमतिपत्र प्राप्त कम्पनी वा संस्थाले सार्वजनिक रूपमा शेयर निस्काशन गर्नुपूर्व आयोगबाट स्वीकृति लिनुपर्ने व्यवस्थालाई स्पष्ट, पारदर्शी तथा प्रभावकारी रूपमा कार्यान्वयन गर्न विद्युत नियमन आयोग ऐन, २०७४ को दफा ४३ ले दिएको अधिकार प्रयोग गरी उक्त निर्देशिका तर्जुमा गरेको देखिन्छ । यस निर्देशिकामा शेयरको सार्वजनिक निस्काशनको लागि देहाय बमोजिमको मुख्य व्यवस्था गरिएको देखिन्छः

- अनुमतिपत्र प्राप्त कम्पनीले सेयरको सार्वजनिक निस्काशन गर्न आयोगको पूर्वस्वीकृति लिनुपर्ने, उक्त स्वीकृति लिनुअघि प्राप्त हुने कूल रकमको उपयोगको सम्बन्धमा स्पष्ट वित्तीय योजना सञ्चालक समिति तथा साध(राणसभाबाट पारित गरेको हुनुपर्ने ।
- सञ्चालक समितिले हकप्रद सेयर निस्काशनसम्बन्धी प्रस्ताव आयोगको सहमति लिई साधारणसभामा पेश गर्नुपर्ने ।
- अनुमतिपत्र प्राप्त कम्पनीले आफू मुख्य कम्पनीको हैसियतमा एकाउन्न प्रतिशत वा सोभन्दा बढी सेयर रहने गरी आफ्नो मातहतको आयोजनामा वा आफ्नो सहायक कम्पनीको आयोजनामा वा नयाँ सहायक कम्पनी स्थापना गरी आयोजना निर्माणको लागि संस्थागत लगानी गर्न हकप्रद सेयर निस्काशन गर्न सक्ने ।
- हक प्रद सेयर निस्काशन गर्दा बढीमा १:२ को अनुपातभन्दा बढी नहुने गरी निस्काशन गर्न पाइने । सेयर निस्काशन गर्दा अधिल्लो पटक निस्काशन गरिएको हकप्रद सेयरको रकम आयोजना निर्माणमा खर्च भईसकेको हुनुपर्नेछ ।
- निर्माणाधीन आयोजनाको लागि हकप्रद सेयर निस्काशन सम्बन्धी व्यवस्था गरेको । आयोजनाको भौतिक प्रगति कमितमा असी प्रतिशत हासिल भएको, पुँजीगत लगानीको सम्बन्धमा स्पष्ट वित्तीय एवं तालिकाबद्ध कार्ययोजना सञ्चालक समिति वा साधारणसभाबाट पास गरेको र कम्पनीले आयोजना निर्माणका लागि ऋण लिएको बैंक तथा वित्तीय संस्थाबाट हकप्रद सेयर निस्काशन सम्बन्धमा सहमति लिएको हुनुपर्ने ।
- साधारण सेयरधनीले आफ्नो सेयर प्रचलित कानून बमोजिम धितोपत्र बजारमा खरिद बिक्री गर्न सक्ने ।
- सूचीकृत कम्पनीको संस्थापक सेयरधनीमध्ये कुनै सेयरधनी संगठित संस्था भएमा त्यस्तो संगठित संस्थाले आफूसँग रहेको सेयर खरिद बिक्री गर्नुभन्दा पन्थ दिन अगावै सोको विवरण सर्वसाधारणको जानकारीको लागि सार्वजनिक गरी आयोगमा समेत जानकारी दिनुपर्ने ।

जलविद्युत क्षेत्रका संगठित संस्थाहरूले सर्वसाधारण लगानीकर्ताहरूको लागि धितोपत्र जारी गर्दा धितोपत्र ऐन तथा सो अन्तरगत बनेका नियम तथा निर्देशिका विद्युत नियमन आयोग ऐन, २०७४, विद्युत नियमन आयोग नियमावली, २०७५, विद्युत सम्बन्धी कम्पनीको शेयरको पूर्वस्वीकृति तथा नियमन सम्बन्धी निर्देशिका, २०७८ को पालना गर्नु पर्ने व्यवस्था रहेको छ ।

धितोपत्र ऐनले धितोपत्र बोर्डलाई देशको आर्थिक विकासको लागि आवश्यक पूँजी परिचालन गर्न पूँजी बजारको विकास गरी धितोपत्रमा लगानी गर्ने लगानीकर्ताको हित संरक्षण गर्नका निम्नित धितोपत्रको निस्काशन, खरिद बिक्री तथा विनियमलाई व्यवस्थित बनाई धितोपत्र बजार र धितोपत्र व्यवसायमा संलग्न व्यक्तिहरूको काम कारबाहीलाई नियमित र व्यवस्थित गर्ने जिम्मेवारी दिएको छ ।

विद्युत नियमन आयोग ऐनले विद्युत नियमन आयोगलाई विद्युत उत्पादन, प्रसारण, वितरण वा व्यापारलाई सरल, नियमित, व्यवस्थित तथा पारदर्शी बनाई विद्युतको माग र आपूर्तिमा सन्तुलन कायम राख्न, विद्युत महसुल नियमन गर्न, विद्युत उपभोक्ताको हक र हित संरक्षण गर्न, विद्युतको बजारलाई प्रतिस्पर्धात्मक बनाउन तथा विद्युत सेवालाई भरपर्दो, सर्वसुलभ, गुणस्तरयुक्त तथा सुरक्षित बनाउने जिम्मेवारी दिएको छ ।

विद्युत नियमन ऐन २०७४ ले जलविद्युत कम्पनीका शेयरको सार्वजनिक निस्काशन सम्बन्धी नियमन सम्बन्धमा कुनै व्यवस्था गरेको छैन, यद्यपि नेपाल सरकारले ऐनको कार्यान्वयनका लागि आवश्यक नियम बनाउन सक्ने छ भन्ने दफा ४१ को व्यवस्था अन्तर्गत रही विद्युत नियमन आयोग नियमावली, २०७५ बनाएको र सो नियमावलीको दफा ४५ मा विद्युत उत्पादन, प्रसारण, वितरण वा व्यापार सम्बन्धी कार्य गर्न इजाजतपत्र प्राप्त कुनै कम्पनी वा संस्थाले सार्वजनिक रूपमा शेयर जारी गर्न आयोगको स्वीकृति लिनुपर्ने व्यवस्था गरेको छ ।

ऐनको दफा ४१ तथा नियमावलीको नियम ४५ को आधारमा आयोगले विद्युत सम्बन्धी कम्पनीको शेयरको सार्वजनिक निस्काशनको पूर्वस्वीकृति तथा नियमन सम्बन्धी निर्देशिका, २०७८ जारी गरको छ र सोही निर्देशिका अन्तर्गत रही विद्युत नियमन आयोगले सार्वजनिक निस्काशन तथा हकप्रद निष्काशन सम्बन्धमा आवश्यक व्यवस्था गरी सोको नियमन गर्दै आइरहेको छ ।

विद्युत सम्बन्धी कम्पनीहरूले सार्वजनिक निस्काशन वा हकप्रद शेयर निस्काशन गर्दा पहिला विद्युत नियमन आयोगको स्वीकृति लिई सो स्वीकृति सहित धितोपत्र बोर्डमा निवेदन दिनुपर्ने व्यवस्था रहेको छ । स्वीकृतिका लागि आयोगमा बुझाउनु पर्ने कागजात तथा विवरणहरू र धितोपत्र बोर्डमा बुझाउनु पर्ने कागजात तथा विवरणहरू एउटै प्रकृतिका देखिन्छन । यसले गर्दा स्वीकृति लिने प्रकृया संगठित संस्थाहरूको लागि लामो, खर्चिलो हुँदै आइरहेको छ र यसको बोझ अन्तमा लगानीकर्ताहरूले नै बोक्नुपर्ने अवस्था रहेको छ । धितोपत्र सम्बन्धी ऐनले धितोपत्र बोर्डलाई पूँजी बजारको नियमन निकायको रूपमा तोकेको छ भने विद्युत नियमन आयोग ऐन, २०७४ ले विद्युत नियमन आयोगलाई विद्युत सम्बन्धी प्राविधिक व्यवस्थाहरूको नियमन निकायको रूपमा तोकेको छ । अहिले विद्युत नियमन आयोगको काम कारबाहीलाई हेर्दा ऐनको उद्देश्य अनुरूप प्राविधिक कार्य भन्दा सार्वजनिक निस्काशन तथा हकप्रद निस्काशन सम्बन्धी कार्यमा बढी समय व्यतित गरिरहेको देखिन्छ ।

विद्युत सम्बन्धी कम्पनीको शेयरको पूर्वस्वीकृति तथा नियमन सम्बन्धी निर्देशिका, २०७८ को व्यवस्थाहरु हेर्दा करीब ८०-९० प्रतिशत व्यवस्थाहरु धितोपत्र बोर्डको धितोपत्र दर्ता तथा निस्काशन नियमावली २०७३, धितोपत्र निस्काशन तथा बाँडफाँड निर्देशिका, २०७४ सँग मिल्ने पाइन्छ र मुख्य भिन्नता भनेको आयोगको निर्देशिकामा निर्माण चरणमा रहेका आयोजनाको हकमा निर्माण कार्यको भौतिक र वित्तीय प्रगति कम्तीमा पचास प्रतिशत सम्पन्न भएको हुनु पर्नेछ । सो को प्रमाणीकरण बैंक तथा वित्तीय संस्थाको परामर्शदाता समेतबाट भएको हुनु पर्नेछ भन्ने नै हो । विद्युत नियमन आयोगको निर्देशिकाको निर्देशन ७ ले संगठित संस्थालाई अन्य प्रयोजनका लागि हकप्रद शेयर जारी गर्न सक्ने र यसरी जारी गर्दा अनुपात १:१ भन्दा बढी हुन नहुने व्यवस्था गरेको छ । हकप्रद शेयर निस्काशन अनुपातमा प्रतिबन्ध बाहेक निर्देशन ७ मा भएका अन्य व्यवस्थाहरु धितोपत्र बोर्डको नियमावली र निर्देशिकाको व्यवस्थासँग मिल्दछ । दुवै निकायले जारी गरेका कानूनी व्यवस्था हेर्दा माथि उल्लेख भएका मुख्य भिन्नता बाहेक अन्य व्यवस्था एकै रूपको देखिएकोले यसले दुवै निकायको काममा दोहोरोपन ल्याएको छ । दोहोरोपनले दुवै निकायमा उपलब्ध सीमित श्रोत र साधनको अनावश्यक खर्च भैरहेको छ । अत यसलाई हटाई काम कार्यवाहीमा सहजीकरण गर्न देहाय अनुसारको काम गर्न उपयुक्त हुनेछ :

स्पष्ट र व्यवस्थित प्राथमिक निष्काशन स्वीकृति प्रकृया सुनिश्चित गर्न आयोगले आफ्नो निर्देशिकामा उल्लिखित प्रावधानहरु अनुसार प्राविधिक प्रमाणीकरणमा मात्र ध्यान दिनु पर्दछ र परियोजनाको भौतिक र वित्तीय प्रगतिको मूल्यांकन गर्न आफ्नो भूमिका सीमित गर्नु पर्दछ ।

प्राथमिक निष्काशन स्वीकृति प्रकृया

निवेदन पेश गर्ने

- साधारण सभाले प्राथमिक निष्काशनमा जाने निर्णय अनुमोदन गरेपछि इजाजतपत्रवालाले आफ्नो भौतिक तथा प्राविधिक प्रगति प्रमाणीकरणका लागि निवेदन पेश गर्दछ ।
- प्रगति प्रमाणीकरणको निवेदनका साथ बैंकको परामर्शदाताबाट प्रमाणीकरण समावेश हुनुपर्दछ ।

नियमन आयोगद्वारा स्वतन्त्र प्रमाणीकरण

- नियमन आयोगले परियोजनाको प्रगतिको स्वतन्त्र प्रमाणीकरण गर्दछ जसमा परियोजना स्थलको भ्रमण समेत गर्दछ । सो कार्य आयोगले आफ्नो कर्मचारी वा स्वतन्त्र परामर्शदाता बाट गराउन सक्दछ ।
- आयोगले परामर्शदाताहरूको लागि योग्यता मापदण्ड परिभाषित गर्नेछ र प्रमाणीकरण रिपोर्टमा हुनुपर्ने आवश्यक(ताहरू निर्दिष्ट गर्नेछ ।

नो अब्जेक्शन लेटर जारी गर्ने

- प्रमाणीकरण सफलतापूर्वक सम्पन्न भएपछि, आयोगले निवेदक संस्थालाई नो अब्जेक्शन लेटर जारी गर्दछ । संस्थाले आयोगको नो अक्जेक्शन लेटर सहित धितोपत्र बोर्डमा निवेदन दिनेछ र बोर्डले नियमावली र निर्देशिकाको व्यवस्था बमोजिम निष्काशन अनुमति सम्बन्धी अन्य कार्यहरु गर्दछ ।

विवरणपत्र स्वीकृति र दर्ता

धितोपत्र बोर्डले विवरणपत्रमा स्वीकृति प्रदान गरेपछि उक्त स्वीकृत विवरणपत्र आयोगमा दर्ता गर्ने र सो दर्ता भएपछि मात्र संस्थाले सार्वजनिक निस्कासन गर्ने ।

हकप्रद निस्कासन सम्बन्धमा आयोगको प्रकृया

- हकप्रद निस्कासन सम्बन्धमा संचालक समितिले निर्णय गरेपछी संस्थाको वित्तीय विवरण, हकप्रदको अनुपात, कूल निस्कासन हुने रकम, प्राप्तहुने रकमको प्रयोग सम्बन्धी विवरणहरु सहित आयोगमा निवेदन दिने ।
- आयोगले प्राप्त विवरणहरुको अध्ययन गरी स्वीकृति प्रदान गर्ने र सो स्वीकृति सहित साधारण सभा सम्पन्न गर्ने ।
- संस्थाले धितोपत्र कानून बमोजिम बोर्डमा निवेदन दिई स्वीकृति प्राप्त गर्ने र बोर्डबाट स्वीकृति प्राप्त हकप्रद निस्कासन सम्बन्धी विवरण पुस्तिका आयोगमा दर्ता गर्ने । सो विवरण पुस्तिका दर्ता भए पछि मात्र हकप्रद शेयर निस्कासन गर्ने ।

हकप्रद शेयर निस्कासन अनुमति सम्बन्धमा नेपालको अन्य नियामक निकायको र अन्तराष्ट्रिय अभ्यासहरूलाई हेर्दा सो कार्य पूँजीबजारको नियामक निकायलाई दिइएको हुन्छ । अभ बजार नियामक निकायले के कर्ति रकम उठाउने, कुन अनुपातमा शेयर जारी गर्ने कार्य संगठित संस्थाको संचालक समिति र साधारण सभालाई दिएको हुन्छ । अत आयोगले पनि अन्तराष्ट्रिय अभ्यासहरूलाई अनुसरण गर्न उपयुक्त हुन्छ ।

जलविद्युत क्षेत्रका संस्थाहरुको संस्थागत सुशासन ज्यादै कमजोर रहेको विद्यमान अवस्थामा आयोगले त्यस्को सुटृटीकरणका लागि नेपाल राष्ट्र बैंक र बिमा प्राधिकरणले अभ्यास गरे जस्तै नियामकीय प्रतिवेदनको ढाँचा तयार गरी लागू गरी लेखापरीक्षकले लेखापरीक्षण प्रतिवेदनसँगै सो प्रतिवेदन पनि दिने व्यवस्था गर्नु पर्दछ । साथै प्रचलित कानुनमा रहेका संस्थागत सुशासन सम्बन्धी व्यवस्थाहरुको पालना गर्न गराउन कडा हुनु पर्दछ ।

नेपाल धितोपत्र बोर्ड र विद्युत नियमन आयोगलाई सम्बन्धित ऐनहरूले आ-आफ्नो क्षेत्राधिकारहरु तोकिदिएकोमा माथि सुभाव गरिए अनुरूप कार्यहरु गरेमा बोर्ड र आयोगको कामहरु पनी सहज हुने र विद्युत क्षेत्रका संगठित संस्थाह(रुले पनि सहज रूपमा नियामक निकायबाट सेवाहरु पाउने हुन्छन् । यसबाट नियामक निकायसँग उपलब्ध सीमित श्रोत र साधनको उपयोग भई सम्बन्धित ऐनहरूको उद्देश्य प्राप्त हुने विश्वास गर्न सकिन्छ ।

निजी क्षेत्रको प्रवर्द्धनमा आयोगको भूमिका र अपेक्षा

प्रकाश दुलाल ९

विद्युत नियमन आयोगको गठन विद्युत उत्पादन प्रसारण वितरण वा व्यापारलाई सरल, नियमित, व्यवस्थित तथा पारदर्शी बनाई विद्युतको माग र आपुर्तीमा सन्तुलन कायम राख्न, विद्युत महशुल नियमन गर्न, विद्युत उपभोक्ताको हक र हित संरक्षण गर्न, विद्युतको बजारलाई प्रतिस्पर्धात्मक बनाई विद्युत सेवालाई भरपर्दो, सर्वसुलभ, गुणस्तरयुक्त तथा सुरक्षित बनाउन नेपालमा पहिलो पटक विद्युत नियमन आयोग ऐन २०७४ जारी भएपछि विधिवत रूपमा २०७६ साल वैशाखमा विद्युत नियमन आयोग गठन भएर कार्य शुरू गरेको विद्युत नियमन आयोग ६ वर्ष पूरा गरेर ७ वर्षमा प्रवेश गर्दैछ । आयोगको सातौं वार्षिक उत्सवको सन्दर्भमा तयार गरिएको यो आलेख निजी क्षेत्रको नजरबाट विद्युत नियमन आयोगको भूमिका र अपेक्षामा केन्द्रित छ ।

नेपालको ऊर्जा क्षेत्रमा स्वदेशी तथा विदेशी निजी क्षेत्र, दातृ निकाय, अन्तराष्ट्रिय वित्तीय संस्था, स्वदेशी सार्वजनिक क्षेत्र अर्थात् सरकारको समेत प्रत्यक्ष उपस्थिति छ । तर पछिल्लो समय ऊर्जा उत्पादनमा निजी क्षेत्रको योगदान बढौदै गएर ऊर्जा क्षेत्र स्वदेशी निजी लगानीको प्रमुख आकर्षण बन्दै गएको छ । त्यसैले अहिले विद्युत नियमन आयोगले ऊर्जा क्षेत्रको विकासको निजी क्षेत्रको लगानी प्रवर्द्धन गर्ने वातावरण बनाउँदै विद्युत व्यापारमा समेत निजी क्षेत्रले चासो देखाएको र संसदमा पेश भएको विद्युत विधेयकमा विद्युत व्यपारमा निजी क्षेत्रलाई समावेस गर्ने प्रावधान समेत रहेकोले विद्युत नियमन आयोगले नेपालको निजी क्षेत्रले विद्युत व्यपारमा अनुमति पाए लगतै कामगर्न सक्ने गरी ओपन एक्सेस गाइडलाइन र हिलड चार्ज निर्धारण तत्कालै गर्नुपर्दछ । नत्र निजी क्षेत्रको लगानीमा ऊर्जा विकास गर्ने सरकारको योजनामा अवरोधसँगै संसदबाट विद्युत ऐन पारित भएर विद्युत व्यापारमा अनुमति पाए पनि विद्युत व्यापार गरिहाल्ने अवस्था हुने छैन ।

जलविद्युत आयोजनाहरूको पहिचान, विकास, निर्माण र संचालनमा निजी क्षेत्रको प्रवेशपछि ऊर्जा क्षेत्रमा निजी लगानी बढौदै गएपछि निजी क्षेत्रले जनताको विश्वास आर्जनका लागि समेत विद्युतको क्षेत्रमा नियमनकारी निकाय आवस्यक ठानेर नै सो लागि आवाज उठाउँदै आएको थियो । त्यतिवेला विद्युत नियमन आयोगले नेपाल राष्ट्र बैंकले बैंक तथा वित्तीय संस्था, नेपाल धितोपत्र बोर्डले धितोपत्र निश्काशन तथा कारोबार गर्ने संस्था वा व्यक्तिलाई नियमन गरे जस्तै विद्युत क्षेत्रमा उत्पादन, प्रसारण, वितरण कार्यमा कृयाशील संस्था एवं व्यक्तिलाई नियमन गरेर विद्युत क्षेत्रलाई विश(वासनीय र भरपर्दो बनाउन अभिभावकीय संस्थाको रूपमा आयोग रहने अपेक्षा निजी क्षेत्रले गरेको थियो ।

आयोगको गठनपछि भएका केही महत्वपूर्ण कार्यले निजी क्षेत्रको लगानी संरक्षण र प्रवर्द्धनमा सहजीकरण भएपनि निजी क्षेत्रको अपेक्षा अनुसार आयोगले काम गर्न नसकेको गुनासो ऊर्जा उत्पादकहरूमा व्याप्त छ । विद्युतमा निजी क्षेत्रको लगानीको माध्यमबाट रोजगारी सिर्जना, वैदेशिक मुद्रा आर्जन, व्यापार घाटा कम, ग्रामीण पूर्वाधार विकाससँगै

^१ लेखक स्वतन्त्र ऊर्जा उत्पादकहरूको सँस्था नेपाल (IPPN) को उपमहासचिव हुनुहुन्छ । - सम्पादक

पुँजी बजारको विस्तारको अवसरबाट सरकारले प्राप्तगर्ने फाईदा लाई आँकलन गरेर उर्जामा निजी क्षेत्रको ऊर्जाशील भूमिका र सहभागितालाई गुणात्मक गति दिन आयोगले नेतृत्वदायी भुमिका खेल्न जरुरी छ ।

तर आयोगले आफ्नो उद्देश्य र निजी क्षेत्रको अपेक्षा अनुसार काम गर्न नसकेर अलमलिएको हो कि जस्तो भान हुन्छ । सीमित स्रोत साधन र जनशक्ति अभावको कारणले यस्तो हुन गएको भनिए पनि आयोगको नेतृत्वले आफ्नो कार्यक्षेत्र र देशको अवस्था हेरेर विद्युतमा निजी क्षेत्रको उत्साहलाई प्रोत्साहन हुने गरी नीतिगत निर्णय गर्न सके आयोगको आवश्यकता र औचित्य पुष्टि हुने मात्रै होइन आयोगका पदाधिकारीहरूको गरिमा समेत बढाउने छ ।

निजी क्षेत्र प्रवर्द्धनमा आयोगः

१. आयोगले २०७६ साल असोजमा १० मे.वा भन्दा कम क्षमताका आयोजनाहरूको हाईड्रोलोजी पेनाल्टी हटाउन गरेको निर्णयले त्यो वेला रुण भनिएका १० मे.वा. भन्दा साना अधिकांश आयोजनाहरूको आर्थिक अवस्था अहिले धेरै राम्रो मात्रै नभएर जलविद्युतमा आम लगानीकर्ताका सँगै प्रवर्द्धकको मनोवल समेत बढेको छ । आयोगको यसै निर्णयलाई आधार बनाएर नेपाल विद्युत प्राधिकरणले १० मे.वा भन्दा साना आयोजनाहरूको पिपिए निर्वाध खुलाउने निर्णय समेत गरेको छ ।
२. आयोगले रुण जलविद्युत आयोजनाको समस्या समाधानको लागि २०७६ साल असोजमा रुण जलविद्युत आयोजनाका लागि पुनर्कर्जाको व्यवस्था गराउन नेपाल राष्ट्र बैंक समक्ष गरेको पहलको परिणाम स्वरूप पुनर्कर्जा उपयोग गर्न पाएर करिब ४ दर्जन जलविद्युत आयोजना बन्द हुनबाट मात्र जोगिएन् वल्कि निजी क्षेत्रको समस्यामा राज्यले साथ दिन्छ भन्ने विश्वास समेत उर्जा उद्यमीमा जगाएको छ ।
३. विभिन्न समयमा आएको बाढी, पहिरोको कारणले क्षतिग्रस्त निर्माणाधीन वा निर्माण सम्पन्न जलविद्युत आयोजनाहरूमा भएको क्षतिबाट पुनःस्थापीत हुन बैंक तथा वित्तीय संस्थाबाट थप ऋण पाउने अवस्था नभएर शेयरधनीले स्वपुँजी हाल्नुपर्ने वाध्यतामा लिमिटेड कम्पनीहरूमा स्वपुँजी हाल्ने एक मात्र कानुनी बाटो हकप्रद शेयर निश्कासन गरी आएको रकम आयोजनाको पुनःनिर्माणमा खर्च गर्ने व्यवस्था नभएर बाढीले क्षतिग्रस्त आयोजना पुनर्निर्माण अलपत्र आयोजनाले वित्तीय स्रोत जुटाएर आयोजनाको पुनः निर्माणमा खर्च गर्न राईट शेयरको माध्यमबाट स्रोत जुटाउन सक्ने गरी हकप्रद सेयर जारी गर्नपाउने व्यवस्था आयोगबाट भएपछि धेरै संकटग्रस्त आयोजना पुनर्निर्माण भएर अहिले सञ्चालनमा छन् ।
४. जलविद्युत आयोजनाले १ महिनाअघि नै नेपाल विद्युत प्राधिकरणलाई विद्युत आपूर्तिको प्रक्षेपण विवरण बुझ(उने र भनिएअनुसार विद्युत उत्पादन तथा आपूर्ति हुन नसके ठुलो परिमाणमा आर्थिक हर्जाना गर्ने व्यवस्थाले विद्युत उत्पादकलाई ठुलो समस्यामा पारिरहेको थियो । आयोगकै सक्रियतामा त्यो पूर्वानुमानको समय अब १ सातामात्र हुने र भनेअनुसार विद्युत दिन नसके 'डेप्लिएसन डिक्लरेसन'को सामान्य चार्ज मात्र लिन पाउने व्यवस्था भएर ऊर्जा उद्यमीलाई ठुलो राहत मिलेको छ भने नेपाल विद्युत प्राधिकरणलाई पनि सात दिन अघि मात्र अनुमान गर्दा आपूर्तिमा ठुलो भेरिएसन नआउने भएकाले प्रणाली स्थिरता कायम गर्न सजिलो भएको छ । यो व्यवस्था कार्यान्वयनसँगै आयोजनाले अनुमान गरेभन्दा बढी विद्युत उत्पादन भएर प्राधिकरणले लियो भने त्यसको पनि भुक्तानी पाउने छन् ।

आयोगसँग निजी क्षेत्रले गरेको अपेक्षा:

१. नेपाल विद्युत प्राधिकरण र पिपिए सँग सम्बन्धित:

क) बाढी पहिरो, विश्वव्यापी वित्तीय संकट, विष्फोटक पदार्थको आपूर्तिमा समस्या, रुख कटान र सरकारी जग्गा प्राप्तिमा भएको समस्या लगायतका कारणले आयोजना तोकिएको समयमा सम्पन्न गर्न नसकिने अवस्था सिर्जना भएका आयोजनाहरूको उत्पादन शुरु गर्नुपर्ने मिति (RCOD) अवधि -२ वर्ष थप गर्ने ।

ख) १० मेगावाटभन्दा माथिका जलविद्युत आयोजनाहरूमा लाग्दै आएको हाइड्रोलोजी पेनाल्टी जल(वायु परिवर्तनका कारण नदीको बहावमा परिवर्तन भइ विद्युत उत्पादनमा कमि भएको हुँदा जलविद्युत आयोजनामा हाइड्रोलोजी पेनाल्टी हटाउने ।

ग) जलविद्युत आयोजनाहरूको अध्ययनका क्रममा हाईड्रोलोजीको अध्ययनमा नेपाल सरकारको गेज स्टेसनबाट लिईएको तथ्याङ्कका आधारमा गरिएको जलविद्युत आयोजनाको Energy Calculation Global Warming का कारणले खोलाको बहावमा परिवर्तन भइरहँदा भरपर्दो नदेखिएकोले पीपीए अनुसार आयोजना सञ्चालनमा आएको ५ वर्षपश्चात् आयोजनाको Contract Energy मा परिमार्जन गर्न पाउने व्यवस्था परिमार्जन गरी आयोजना सञ्चालनमा आएको १ वर्ष पश्चात् आयोजनाको ऋथल(तचबअत भ्लभचनथ मा परिमार्जन गर्न पाउने व्यवस्था गर्ने ।

घ) नेपाल भारत विद्युत व्यापारको संभावनालाई मध्यनजर गरेर जलस्रोतको अधिकतम् उपयोग हुने आयोजनाको डिजाइन Q40 को मापदण्ड परिमार्जन गरेर तद्ध सम्म गर्न सकिने व्यवस्था गर्ने ।

ड.) निजी क्षेत्रका जलविद्युत आयोजनाले पाउँदै आएको फरक फरक विद्युत खरीद/विक्री दर परिमार्जन गरी सबै आयोजनाको विद्युत खरीद दर एउटै कायम गर्ने ।

छ) निर्धारित तालिका अनुसार प्रसारण लाईन निर्माण सम्पन्न नभएर विद्युत खरीद गर्न नसकेमा निजी क्षेत्रका उत्पादकहरूलाई विद्युत प्राधिकरणले पेनाल्टी तिनुपर्ने व्यवस्था लागू गर्ने ।

च) विद्युत खरीद विक्री सम्भौता अनुसार वर्षा याममा विद्युत खरीद गर्न वा विद्युत लिन नसके उत्पादित विद्युतको मूल्य भुक्तानी व्यवस्था गर्ने ।

ज) समान प्रकृतिका उस्तै आयोजनाहरूको विद्युत खरीद दर समान गर्न र १०० मे.वा. भन्दा माथिका आयोजनाको विद्युत खरीद दमा रहेको १७ प्रतिशत ROE को प्रावधान हटाउने ।

झ) पिपिएमा तोकिएको अवधि आयोजनाहरूको वित्तीय व्यवस्थापन समापन (Financial Closure) नभ(एका आयोजनाको अवधि २ वर्ष थप गर्ने ।

२. ऊर्जा मन्त्रालय सँग सम्बन्धित:

क) विद्युत ऐन, २०४९ को दफा १० उपदफा ४ बमोजिम विद्युत उत्पादनको अनुमतिपत्र पाएका ५० प्रतिश(तभन्दा बढी स्वदेशी लगानी रहेका जलविद्युत आयोजनाको लाइसेन्सको अवधि ५० वर्ष कायम गरेर

सो पछि पनि करार गरेर सोही कम्पनीलाई दिने कानुनी व्यवस्थाको लागि सरकारलाई सुझाव दिई जल (विद्युतमा सर्वसाधारण शेयर लगानी कर्ताको लगानी संरक्षण गर्ने) ।

ख) तल्लो आयोजना च्छ रहेको र माथिल्लो आयोजना एच्छ वा स्टोरेज आयोजना बनाउँदा तल्लो आयोजनाको सहमति लिनुपर्ने, सो लिँदा तल्लो आयोजनाको ऊर्जा उत्पादनको क्षतिपूर्ति माथिल्लो आयोजनाले गर्नुपर्ने व्यवस्था अव्यवहारिक भएकोले तल्लो आयोजनाको विद्युत खरिद दर माथिल्लो आयोजना सरह कायम गरिदिने

ग) एउटै नदीमा धेरै आयोजना रहेको अवस्थामा माथिल्लो आयोजनामा कुनै समस्या आएको कारणले विद्युतगृह बन्द गर्दा तल्लो आयोजना पनि केही समय बन्द हुने अवस्था सिर्जना हुने हुँदा उक्त कारणले तल्लो आयोजनाको विद्युत उत्पादनमा पर्ने असरलाई सम्बोधन गर्ने कानुन बनाउने ।

ड) एउटै नदी करिडोरमा बनेका सबै आयोजनाको लागि साभा प्रसारण लाईन बनाउन अनिवार्य गर्ने ।

ड) नेपाल भारत विद्युत व्यापारको संभावनालाई मध्यनजर गरेर जलस्रोतको अधिकतम् उपयोग हुने आयोजनाको डिजाइन Q40 को मापदण्ड परिमार्जन गरेर Q25 गरेर आयोजना विकास गर्न सकिने व्यवस्था गर्ने ।

३. पुँजी परिचालनसँग सम्बन्धित

क) ऊर्जा विकास मार्गीचित्र, २०८१ कार्यान्वयनको लागि आवश्यक ४६.५ अर्ब अमेरिकी डलरको वित्तीय स्रोतको आपूर्तिको लागि ऊर्जा आयोजनामा आइपीओ र हकप्रद शेयर निष्काशन तत्काल खुलाउन नेपाल धितोपत्र बोर्ड र अर्थ मन्त्रालय सँग समन्वय गर्ने ।

ख) ऊर्जा आयोजनामा क्राउड फाइनासीडको माध्यमबाट स्वपूँजी परिचालन सहज बनाउन आधारभूत शेयरधनी र कम्पनीका सञ्चालक बाहेको शेयर आयोजनाबाट विद्युत उत्पादन शुरु भएपछि लकइनको व्यवस्था हटाउन धितोपत्र बोर्ड सँग समन्वय गर्ने ।

ग) ऊर्जा विकास मार्गीचित्र, २०८१ कार्यान्वयनको लागि बैंक तथा वित्तीय संस्थाले होके वर्ष २ प्रतिशतका दरले ऊर्जा क्षेत्रमा ऋण लगानी बढाउँदै १० वर्ष भित्र २० प्रतिशत पुऱ्याउनको लागि राष्ट्रबैंक समक्ष पहल गर्ने ।

घ) बाढी प्रभावित आयोजनालाई २ वर्षसम्म ब्याज अनुदानका साथै सबै आयोजनालाई पुनर्कर्जाको सुविधाका लागि राष्ट्र बैंक समक्ष पहल गरिदिने ।

ड) आयोगको विद्युतसम्बन्धी कम्पनीको सेयर सार्वजनिक निष्कासनको पूर्वस्वीकृति तथा नियमनसम्बन्धी निर्देशिका, २०७८ मा रहेको भण्डारिलो र नेपाल धितोपत्र बोर्डमा अनिवार्य बुझाउनुपर्ने कागजात हटाई सरलीकृत गर्ने ।

ENORMOUS OPPORTUNITY ON REGULATORY FRONTS

Governing Electrical Sector through Electricity Regulation Commission in Nepal

By Prabal Adhikari

Country Synopsis

Worldwide experience reveals that an efficient and market-oriented regulatory environment is needed for Nepal to improve its power sector and establish a sound and sustainable linkage between electricity and economy. The long-standing perception about the necessity of creating a powerful, autonomous regulatory body in the country was finally materialized through the issuance of Electricity Regulatory Commission Act in 2017 and the subsequent Rules in 2018. Though at a nascent stage, being functional in 2019, Electricity Regulatory Commission (ERC) provides optimism to all stakeholders including the Government that electricity sector will be more open to non-discriminatory competition in the long run by ensuring regulatory certainty for energy security, and will match up with the market dynamics for more effective, competitive outcomes in both quality and price of electricity, thereby also emphasizing the power system security with regard to infrastructural constraints and the philosophy of system operation. The sound performance of the ERC will also lead the country towards the power sector reform and bolstering its institutional and operational strength to efficiently cope with the challenges of power market dynamics in the regional context. It's a fact that a major constituent of the enabling environment for the international investment in energy sector and the cross-border power trading in harmony with the neighboring countries is the existence of a well-performing electricity regulatory body in the country.

Nepal electricity Authority (NEA) is the entity fully owned by the Government and is responsible for generation, transmission and distribution of electricity in Nepal. After Electricity Act, 1992 prevented NEA from being a monopoly in generation business, the private sector came into the hydropower development of Nepal with active participation, largely outperforming NEA. Though unbundling of NEA has been a long-time agenda as a part of power sector reform and it, as a vertically integrated entity, still carries out the responsibilities of generation, transmission and distribution of electricity though Government has recently established a separate transmission entity called Rastriya Prasaran Grid Company Limited in Nepal. A separate power trading company, Nepal Power Trading Company, with 51 percent equity share of NEA, has been incorporated in 2017 and licensed, as the first power trading licensee, for domestic and cross border power trading in 2022, but it is yet to be operationalized. Hence NEA is the sole buyer of the power generated by the IPPs and also carries out the responsibility of cross border power trading with India as per the Nepal Electricity Authority Act 1984 and the subsequent Government decisions.

Nepal, having spent more than 11 decades since the commissioning of the first hydropower plant, Pharping (500 KW), has so far exceeded 3,500 MW of installed capacity in the national power system. However, the generation system predominantly carries Run-off-River hydropower plants

despite storage facility for some hours of a day in the case of Peaking Roun-off- River plants . On the demand side, national peak demand has been fluctuating in the range of 2,000-2,200 MW in current years, implying that the ongoing economic activities in the country have not undergone an unprecedented boom . Meanwhile, it's worth noting that the country has witnessed significant capacity addition by independent power producers so far since the year 2000 when Khimti I Hydropower Project (60 MW) was commissioned by the private sector .

Nepal has enormous potential for hydroelectricity, a clean form of energy the country is blessed with and a huge part of it is still unharvested . Gross hydropower potential of Nepal has been estimated to be around 83,000 MW, as assessed by Dr . Hari Man Shrestha during his PhD research in 1966, based on mean annual flow, whereas Water and Energy Commission Secretariat (WECS), Ministry of Energy, Water Resources and Irrigation, Government of Nepal, has estimated this potential in 2019 to be 72,544 MW, based of 40 percent Probability of Exceedance . Due to high seasonal variability in river flow and lack of reservoir hydropower plants in the country except Kulekhani I, II and III (total installed storage capacity 106 MW in operation), the generation falls down to about one-third of Nepal's total installed capacity during dry season months of a year; however, climate change impacts are expected to worsen the situation further in future . Currently, the installed capacity (3,512 MW) of Nepal includes only 662 MW from NEA . It, as a single off-taker in the country, has signed long term power purchase agreements with Independent Power Producers (IPPs) and NEA's subsidiaries for the projects with the combined installed capacity of around 11,165 MW, out of which 4,222 MW of projects have already achieved the financial closure and the projects of 4,112 MW are at different conditions even after signing the PPAs as per the data available from NEA sources .

In the context of Nepal where national peak demands in dry and wet seasons are not of much difference, despite power surplus situation during wet seasons, the deficit of power during dry seasons is expected to remain at least for half a decade to come even in the optimistic scenario . As such, cross border power trading becomes an inevitable in Nepal's hydropower development from energy security and surplus management perspectives . An estimated projection indicates that Nepal needs to export around 1,400 MW of surplus hydropower during the upcoming wet season .

The National Energy Crisis Alleviation and Energy Development Action Plan, 2072 had cast positive impacts on the power supply situation in the country, especially to remove the long hours of load shedding in Nepal through, inter alia, additional hydropower plants commissioned by the IPPs and additional power import from India through Dhalkebar-Mujaffarpur transmission line . It, for the first time, introduced the concept of Generation Mix of Run-off-River, Peaking-Run-off-River, Storage & pumped Storage and alternative sources with their various shares to meet the generation target of 10,000 MW in ten years .

Likewise, Ministry of Energy, Water Resources and Irrigation has issued a comprehensive, visionary document called "Energy Development Roadmap 2081" for Nepal's power sector outlook till 2035 on December 31, 2024 through a cabinet decision . The peak national demand of 13,500 MW based on the assumption of 7 . 2 % GDP growth and the power export of 15,000 MW to India and Bangladesh will be met by generating 28,500 MW of hydropower by 2035 as per the roadmap . The roadmap is expected to play a pivotal role in the energy security of the country and should also fulfil the objective of replacing fossil fuels and other non-electricity sources in the country's existing energy mix by grid electricity in addition to its role in the clean energy transition of South Asia through power export . However, the country needs to adhere to the sectoral approach for the increase in domestic demand for increasing the per capita electricity consumption from around 380 kilowatt-hours to 1500 kilowatt-hours by 2035 . It has been estimated that the complete im-

plementation of the roadmap requires the fund of around 46 .5 billion US Dollars which is not a small amount for a country like Nepal which is currently undergoing the fate of being in FATF grey list indicating risk to the national economy, fear of low foreign investment and high transaction costs . Further, Nepal needs to radically reduce the bureaucratic delays and adopt fast-track clearances instead of lengthy reviews, especially in the case of forest and environment so as to achieve the targets envisaged by the national roadmap .

Nepal was the first country to start transactions for both power import and export in the day-ahead market of the Indian Energy Exchange (IEX) in 2021 . So far, Nepal has obtained approval of the Designated Authority of India for the export of 536 .2 MW of hydropower to the Indian power exchange, 360 .5 MW of hydropower through bilateral contract with Indian entities and 40 MW of hydropower through a tripartite agreement to Bangladesh . Further, Nepal and India have also signed Long-Term Power Trade Agreement for increasing the quantum of export of power from Nepal to India to 10,000 MW within a timeframe of 10 years on January 4, 2024 .

As mentioned in the preface of the ERC Act 2017, the regulatory commission is required to maintain balance between demand and supply of electricity by making generation, transmission, distribution and trading simplified, regular, systematic and transparent, regulate electricity tariff, protect rights and interests of electricity consumers and make electricity services reliable, accessible, qualitative and secured . It is necessary to regulate the entire power sector of Nepal comprising generation, transmission, distribution or trading particularly in the context that Nepal is still following a single buyer model despite multiple public and private sector players in the generation business and the power sector reform needs to be carried out by transforming NEA into separate entities as envisaged in the proposed Electricity Act which is under parliamentary consideration .

There is a wave of power sector reform going on all over the world and electricity industries are undergoing greater autonomy by being deregulated from the control of the Government . In Nepal, generators are bound to sell the electricity produced by them to NEA which is the State-owned utility and no market forces of demand and supply still play any roles here and the tariff determination as well as other terms and conditions of the power purchase agreement used to be frame-worked as per the wishes and the interests of NEA, the Government entity till the ERC became functional . It's ironical to state that the same posted rate and the PPA templates as practiced by NEA for power purchase from the IPPs before the ERC became functional five years ago are continued even today without undergoing effective regulation by the ERC . It is yet to be examined by considering standard principles whether these rates reflect the cost of generation and ensure a reasonable return to the investors . In the absence of a well-functioning regulating body, generators always undergo a huge risk of not being paid a reasonable tariff with a fair return on the equity added to the cost of each unit of electricity generated and transmitted from their respective generation projects . Not only that, if power purchase cost is high and not reasonable, it ultimately leads to the unaffordable tariff of electricity for the customers . In this way, regulation is required to maximize the welfare of all stakeholders whether they are electricity generators or transmission facility owners or traders or distributors and customers . Earlier, there was Electricity Tariff Determination Commission which used to work only for determining the tariff for the electricity consumed by its customers .

Further, the need of regulating the power sector arises also from the perspective that Nepal has not developed a power market yet even after so many years since Electricity Act was promulgated in 1992 . We need to provide regulatory certainty to all stakeholders who are or will be in the power sector of the country through the regulatory commission . Many activities are required to be accomplished here: power market development including the establishment of electronic plat-

forms called Power Exchanges for power trading and its regulations, open access to transmission infrastructures and its regulations, determination of transmission service charges and wheeling charges, rules and procedures for periodic assessment of Total Transfer Capability (TTC) and Available transfer Capability (ATC) of the transmission lines, deviation settlement mechanism in case of both power injection and drawl beyond the schedule, transmission congestion management, ensuring network discipline through grid code and distribution code, etc . Likewise, Nepal is a country where seasonality exists in electricity generation, triggering power surplus in wet season and power deficit in dry season . Regulations are required to address both these scenarios so as to avoid mismatches between generation and demand . A seasonal tariff could be a solution to be introduced by the regulatory body . When we have plenty of generation, paying high tariffs by the customers during the wet season months does not carry any sense and, as such if the electricity prices in the Indian or neighboring countries' markets are low, there automatically comes the question why we should not supply electricity to our customers at those prices of the export market . Hence an electricity regulatory commission is extremely required in our context even to study the market dynamics both inside and outside the country as Nepal has already started cross border power trading with India .

Likewise, as Nepal is required to import significant quantum of electricity to the tune of around 1,000 MW from the neighboring country during the dry season months, the tariff applied to the customers during those months, usually from December to May, should undergo mechanism to consider the price of imported electricity including the associated transmission service charges and the losses so as to save the importing entity from undergoing huge financial losses when the import tariffs are usually higher than the prevailing customer tariffs . Even under such situations, it is the responsibility of the regulatory commission to limit the tariffs to certain categories of customers like domestic and agriculture so that the welfare of such customers would not be jeopardized . The national grid of Nepal is very fragile in terms of stability and security and the ERC's role becomes very crucial to save the grid and operate it as per standard practices within the prescribed limits .

After all, the paramount role of the ERC lies on taking care of the uninterrupted and quality power supply to customers and we all have experienced that Nepal, due to several factors like inadequate supply, transmission constraints and inefficient customer services, has been suffering such problems . Customers' rights are often ignored in the situations like this and the crux of the matter is how the regulatory body gives justice to all stakeholders by protecting their genuine rights and valid interests . Furthermore, since Nepal has already been connected to the Indian grid and there are prospects for the regional grid to evolve in future, the ERC needs to play the role through its regulations and monitoring for harmonizing the national grid code with regard to smooth and seamless operations of the different systems in the synchronized environment with all elements such as Special Protection System (SPS), Phase Monitoring Units (PMUs) and communication systems (SCADA) properly in place and function .

Regulatory Challenges

Creation and operationalization of Electricity Regulatory Commission is always a crucial segment of power sector reform in every country . The present context of Nepal power sector may be characterized by a high level of private participation in a single segment of power sector, i .e ., generation, and a low level of competition and regulatory reform . Further, Nepal has undergone federal structuring with three levels of Government and the prevailing Constitution of Nepal has ensured rights for each of them in electricity sector . As such, the Electricity Regulatory Com-

mission, being a single one in the country, needs to take into account not only the policies of the federal Government, but also of the Governments at provinces and local levels in accomplishing its responsibilities, posing a challenge during its early stage .

Some major challenges to the Electricity Regulatory Commission of Nepal may be considered as follows:

- **Power Sector Reform:** Though Nepal initiated power sector reform long ago, the pace has been sluggish and the major tasks are yet to be accomplished . NEA remains to be a vertically integrated entity owned by the Government . It is the only entity which buys electricity from the IPPs . The single buyer model offers obstacle to generators for cost-reflective pricing of electricity and hence there is no choice to generators for negotiating with any other buyers on the terms and conditions of power purchase agreement . On distribution side also, NEA alone is shouldered with the responsibility of supplying power to customers
- **Power Market Design and Its Functioning:** In the context that Nepal has not yet designed and created a competitive market, everything in this regard should be started by the ERC from the ground level . No power exchanges providing an electronic platform for buyers and sellers for transparent and algorithm-based price discovery based on demand and supply of electricity have been created so far . The transaction directly takes place under power purchase agreements between NEA and IPPs, without a power trading licensee, after taking approval of Electricity Regulatory Commission based on its bylaws, not through the detailed power market regulations .
- **Market Manipulation:** ERC may be required to monitor and control market manipulation including cartelization and abuse of dominant position by any market participants with mala fide intentions to avoid competition and fair electricity pricing . ERC's lack of experience may introduce such challenges .
- **Lack of Automation, Digitization and Technological Innovation:** There is lack of access and exposure to the required automation, digitization and technological innovation . They will be impeding the performance of ERC, if not properly taken care of . In today's digital and technology-driven world, all necessary software and tools are necessary to enhance the regulatory efficiency . Also, low familiarity with IT-based solutions will exacerbate the situation leading to under-performance .
- **Lack of Accurate and Timely Data from Licensees:** Accurate and timely data as well as activity reports are required to be submitted by all licensees for the purpose of control and monitoring including the compliance checking to ensure whether they have followed the regulations properly . However, licensees are yet to prepare themselves from this perspective and they may feel extra burden or fear of falling prey to oversight agencies or fear of being caught with the inconsistent data, while furnishing true information and other details to the Commission . As the Commission requires up-to-date data, reports and other documents from them, their inability to timely accomplish it ultimately affects the ERC's ability to deliver the regulatory results expected by the Government and the entire power sector .
- **Staff Recruitment and Capacity Building:** Without having and sufficient and capable staff for the performance of the ERC, expected outcomes are far away . Likewise, lack of tech savvy and skilled employees in these entities and delayed implementation of the required policies by them make the ERC's job of enforcing regulations strenuous . Likewise, lack of skilled professionals in the core team will affect the ERC's performance and, hence, in addition to

developing the inner manpower strength, the way to tackle the problem is to keep intact a panel of experts who will be supporting the Commission in accomplishing its various functions .

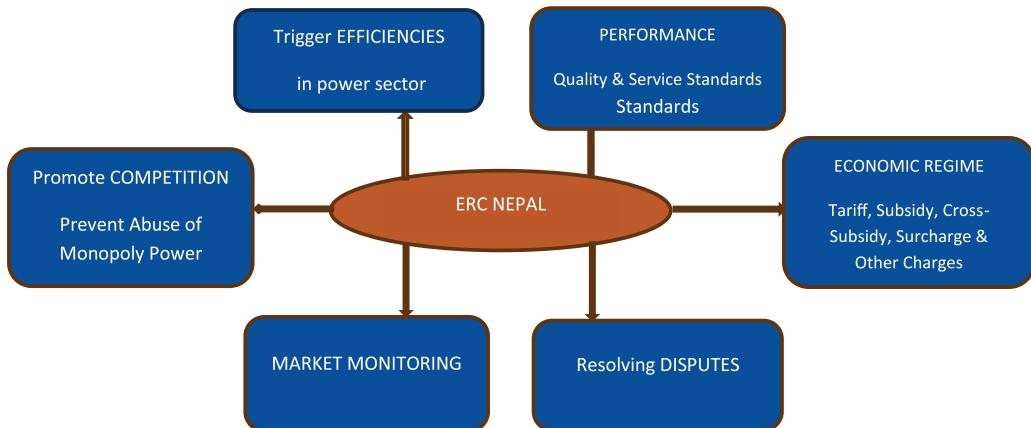
- **Regulating the Regulator Itself:** This comes to be a challenge to the Commission especially when all members of the ERC may not be on the same page in terms of the required knowledge and experience about regulating the power sector . However, power sector governance or regulation is a very dynamic area requiring extensive expertise .
- **Newer Technologies:** Since the new technologies are emerging in the power sector every day, being continuously updated with them and taking them at implementation level is a challenge in itself to the Commission, utilities and all market players .
- **Regulatory Independence:** The Commission should be free to function independently away from the political influence . However, autonomy of the regulator should not be understood as the power to run the Commission in an isolated mode without coordination and consultation with the Government so as to follow the policies introduced by the Government .
- **Delay in Promulgating the New Electricity Bill:** ERC cannot function effectively without the required legislation and Government policies . The new Electricity Act is absolutely necessary to frame various regulations and implement them in the areas such as an independent transmission entity like Central Transmission Utility and an independent system operator as Grid Controller of India limited . New Electricity Act is required to introduce private sector into power trading also, but the delay will affect the ERC in its functioning in various realms .
- **Limited Domestic Market:** The share of grid electricity in the country's mix is only about 7 percent as per the statistics available . Domestic demand of electricity, though we have made high forecast for the future to the tune of around 13,500 MW by 2035, depends on how the country's GDP growth will look like in reality . It is to be noted that there is need to find the access to the export market for both seasonal power surplus and deficit . As such, NEA's ARR (Annual Revenue Requirement) projected by the ERC while setting the Customers' tariff may be exposed to large deviations due to possible soaring of electricity prices available in the Indian power exchanges or other routes like bilateral contracts with India .
- **Unreliable Grid:** Robust grid is required for the sound performance of the power sector . Nepal's national grid suffers from capacity constraints . It has not been synchronized yet for the entire country and radiality of the network is still a pressing issue . The unreliable and unstable grid poses threats to ensure the quality and round-the-clock supply to customers without interruptions .
- **Lack of Synchronization with the Indian Power System:** Though Nepal-India high level committees on power sector cooperation as per the Power Trade Agreement, 2014, have already decided to synchronize the power systems of the two countries, the pre-requisites for the synchronization like installing Special Protection System (SPS) have not been completed yet .
- **Geopolitics in Cross Border Power Trading:** Cross border power trading with India and other countries through Indian territory is not free of geopolitics as the Indian Guidelines and procedure related to it have incorporated provisions which restrict the power export through some eligibility criteria for approval .
- **Low Familiarity with IT-based Solutions:** It is difficult to achieve full regulatory success envisaged by the ERC Act in the absence of adequate IT-based solutions .
- **No Spinning Reserves:** Generation adequacy along with certain spinning reserves to address

the generation contingencies is a must to operate the power system, but we have dry season deficit of power .

- **Lack of Sufficient Policies and Guidelines at the Government Level:** The Government needs to framework and formulate various guidelines and policies to facilitate ERC for various regulations .
- **Cybersecurity Threats:** It could be a big challenge when the power system is becoming increasingly smart and automated, and cybersecurity threats causing data theft, system malfunction and even damaging the system hardware may require the urgent attention of the stakeholders including the Commission .
- **Inertia to Utilize Quasi-judicial and Penal Powers:** Though the existing ERC Act and the Rules allow ERC to utilize quasi-judicial and penal powers in case of violation of the regulatory norms and instructions by the licensees, the Commission generally exhibits reluctance to exercise such powers .
- **Striking a Balance between the Spirit of Electricity Utilities and Interest of Customers:** It is always difficult to ensure equilibrium in maintaining competition and give satisfaction to all participants involved as the perfection in regulatory matters is not possible even when the Commission continues to keep a grip over them amidst market dynamism and newer technologies .

Regulatory Opportunities

It is obvious that, in spite of challenges, there lie opportunities, too . Foreign investment in power sector does not come in a country where regulatory regime is poor and not trustworthy . Hence the ERC has a big opportunity in this country to bring public and private entities on the same page and adopt a fair play in action by preventing negative impacts on the power sector enterprises, and it will encourage more investment in the country's power sector .


Some of the opportunities to the Electricity Regulatory Commission of Nepal, in addition to the encouragement to investors, may be considered as follows:

- **Regulatory Transparency and Accountability:** The ERC represents a reform in power sector as an opportunity to bring credibility and efficiency to the power sector governance through transparency in its activities and bringing information about the licensees open to public, thereby also providing an immense opportunity to enhance its own credibility and accountability to the people .
- **Fairness and Predictability in Market Behavior:** The effective role of the Commission promotes fairness and predictability in market behavior .
- **De-politicization of the power Sector:** As the Commission frames several rules and regulation including the grid code and the distribution code, they have tendency to enhance discipline in the power sector and gradually discourage politicization and every activity comes under the regulations . As such, stakeholders start to believe in rules and regulations rather than political influence .
- **Promoting Prospects to Study and Research:** Since more statistics and information of technical and commercial nature pertaining to different licensees including market participants are disclosed by the Commission through regular reports, it opens doors to further investigation, analysis, study and research on various areas like consumers' behavior, market dynamics, im-

pacts on investment decisions, etc .

- **Promoting Stakeholders' Consultation and Safeguarding Their Interests:** This can be considered as big opportunity for all stakeholders of the power sector when they are well consulted through various means including public hearing and their interests are fairly protected in the form of welfare maximization .
- **Improving Power Sector Performance and Governance:** A significant improvement in power sector performance and financial viability of electricity utilities can be observed when the ERC steps into the sector through various regulatory affairs involving policy, economic, legal and technical regulations .
- **Optimal Use of Transmission Infrastructures:** Since TTC, ATC and Transmission Reliability Margin for the transmission lines will be assessed as per ERC's provisions, optimal use of transmission infrastructures can be ensured through Open Access/General Network Access Regulations, Deviation Settlement Mechanism Regulations, Congestion-related Regulations with the applicability of congestion charges .
- **Creating conducive Environment to Investment and Growth:** Since returns and risk-sharing are guaranteed by the Commission through the deployment of pricing mechanism and standardization of PPA templates, dispute resolution, etc ., it creates an enabling environment to domestic and foreign investors .
- **Ensuring Affordable and Quality Power Supply:** Competition in the market introduced by the ERC will ultimately help reduce the electricity tariffs to the customers and increase the quality of power supply as they will be choosing their distribution entities based on the services they commit and provide .
- **Adding Prospects to Cross Border Power Trading and Regional Energy Cooperation:** The ERC can play crucial roles in cross border power trading and regional energy cooperation through various ways like harmonization of grid code and power market regulations, developing knowledge and experience sharing mechanisms, etc ., also by coordinating with the regulatory bodies of India and other countries .
- **Resource Planning:** ERC provides a unique opportunity for long-term national resource adequacy plan and optimal generation mix to promote energy security in the country .
- **Performing Advisory Role to Government:** The ERC Act, 2074 provides the ERC to accomplish advisory roles when the Government seeks its insights and opinions for policy improvement on power sector issues before or during the formulation of the relevant laws, guidelines, policies and programs .

These opportunities are to be met by the ERC by carrying out various functions as pictorially illustrated below:

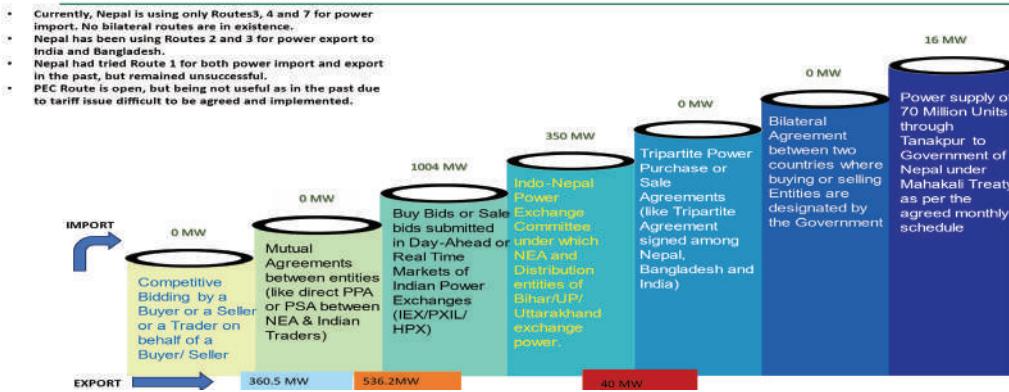
Competition for Market Efficiency

Competition in electricity sector triggers innovative, value-added services that deliver on the promises of choice, convenience and control. However, in Nepal's context, NEA which was created in 1985, is still a natural monopoly. At that time, it made a sense, but today customers seek energy solutions, smart home technologies, faster services, more responsiveness, better quality and interruption-free supply unlike the customers of 1980's and 1990's. Competition lowers electricity tariffs, improves power supply quality, promotes innovations, reliability in T&D, market benefits and energy-efficient products, also discouraging sluggishness and inefficiencies of the utilities in monopoly environment. Hence the ERC should move forward to introducing customer choice in electricity procurement when the new Electricity Act comes. Consumers should be familiar with the existing retail market and the comparative ideas who can supply cheaper power with better quality and other service conditions to go with the retailer of their choice. There is the need to replace the traditional regulatory pricing by market pricing in future.

A competition can be introduced only when there are multiple buyers and multiple sellers, whereas Nepal's case is single buyer model where the Government utility, NEA, purchases electricity from multiple generators (sellers) and NEA itself is also a generator and a distributor. As of now, even if the ERC allows NEA to procure electricity through competitive bidding among the generators, this process will allow choice only to NEA to select the generator(s), but there is no choice to generators to select their buyers. NEA, hence continues to act as a wholesaler to purchase electricity in large quantum from various generators and also as a retailer to sell electricity to individual consumers. It means that wholesale market has not been established yet in Nepal's context since multiple buyers in the form of power traders and DISCOMs (distribution companies) are not added to the system and the customers do not have choice for DISCOMS or service providers. In addition to the establishment of the wholesale market after the proposed Electricity Act is passed by the Parliament, ERC needs to play a strong role to create here retail market, too, allowing customers to choose their suppliers. But before reaching there, the ERC is required to initiate allowing NEA to procure power through competitive bidding from the domestic generators and, during dry season deficit, from the Indian generators/traders/DISCOMS besides the prevailing route of direct procurement from the domestic generators through PPAs approved by the ERC and at the price determined by the ERC. As allowed by the ERC, NEA has already started to practice ceiling-based competitive bidding instead of the earlier fixed tariff PPA for solar power procurement.

Only the ERC is the regulatory body which can develop electricity market for the control of monopoly of the vertically integrated State entity like NEA and enhance the market efficiency in Nepal . However, the fear factor that ERC itself may be controlled or captured by the political regime may not only erode the entire prospects of the ERC to move ahead on the footsteps of international best practices, but also demotivate and deinstitutionalize it, leading to a regulatory fiasco on long run . Let the ERC grow and gain maturity in a natural way to enjoy regulatory fruits in Nepal's power sector .

Endnote with ERC & Cross Border Market


The bulk power trading between Nepal and India started after the commissioning of Dhalkebar-Mujaffarpur 400 kV Transmission Line and the issuance of “Guidelines for Import/Export (Cross Border) of Electricity 2018” by Government of India, “Cross Border Trade of Electricity) Regulations Authority, 2019” by Central Electricity Regulatory Commission and “Procedure for approval and facilitating Import/ Export (Cross Border) of Electricity by the Designated Authority” by Central Electricity Authority of India . In this regard, Nepal has also signed Cross Border Settlement Nodal Agency (SNA) Agreement with NTPC Vidyut Vyapar Nigam (NVVN) on 5th October, 2020 for the settlement of grid operation-related charges including operating charges, charges for deviation, etc . related to power trading as per the requirement of the Indian Government policies on cross border trade of electricity . The Ministry of Power, Government of India, has designated NVVN (besides being the nodal agency for cross border transactions) as the Settlement Nodal Agency for the settlement of grid operation related charges with the neighboring countries, namely, Bangladesh, Bhutan, Nepal and Myanmar on 26th November, 2020 .

Aa a result of these milestone initiatives of Government of India, NEA started to import power from the Day Ahead Market (DAM) of Indian Energy Exchange (IEX) since May 1, 2021 and export power to the Day Ahead Market (DAM) of Indian Energy Exchange (IEX) since November 3, 2021 . In this way, Nepal became the first neighboring country in South Asia to start transactions in the Day Ahead Market of Indian power exchange . Later, Ministry of Power, Government of India, vide letter dated 26th July 2023 conveyed to Central Electricity Authority that participation of entities of neighboring countries in Real Time Market (RTM) segment of Indian power exchanges may be permitted on case-to-case basis after two years and five months since the issuance of the DA's Procedure on 26th February 2021 . Today Nepal is doing transactions on both Day Ahead and Real Time markets of IEX for both power import and export .

However, no South Asian countries including Nepal have issued their own cross border power trading guidelines yet . In this context, it's high time that Ministry of Energy, Water Resources and Irrigation, Government of Nepal, issued the guidelines as a policy document associated with it and a subsequent initiative is to be taken to issue cross border power trading regulations by the ERC on priority basis because the quantum of cross border power trading in Nepal's context is increasing and several issues to be tackled are evolving .

ERC may issue these Regulations directly as per Electricity Regulatory Commission Act 2074 under the provision of Section 13, Sub-Section (1), Part C to grant consent to the licensed persons for the purchase and sale of generated electricity . Despite no mentioning of the specific words for cross border power trading in the prevailing ERC Act, it doesn't restrict the scope of the ERC to domestic power trading only because the phrase used therein “the purchase and sale of generated electricity” does not specify which country the electricity may be generated in, thereby allowing the ERC to enter the realm of cross border power trading, too .

ERC has been granting its consent to NEA for the tariff negotiated or agreed through various routes illustrated below with regard to the cross border power import or export . However, ERC has not framed any regulations yet in this regard . In this context, the ERC should, at the earliest, frame relevant Regulations by also considering the various import/export routes, *inter alia*, as follows, which are currently in practice with regard to the cross border power trading .

REGULATORY INTERVENTIONS FOR DEPLOYMENT OF BATTERY ENERGY STORAGE SYSTEMS (BESS) IN NEPAL

Balawant Joshi and Richa Karve

Idam Infrastructure Advisory India

1. Introduction

Nepal stands at a transformative point in its energy journey, as articulated in the recently published **Energy Development Roadmap 2081 (2024)** by the Government of Nepal (GoN). With an ambitious vision to achieve energy self-sufficiency and Net Zero Emissions by 2102 (2045), the roadmap emphasizes large-scale renewable energy (RE) integration, enhanced Cross-Border Electricity Trade (CBET), and a reliable domestic electricity supply. Meeting a projected demand of ~40,710 GWh and enabling exports of up to 15,000 MW by 2092 (2035) will require the country to expand its installed capacity to 28,500 MW—necessitating bold reforms across policy, regulations, institutions, and infrastructure.

A cornerstone of this vision will have to be the **integration of Energy Storage Systems (ESS) such as Pumped Hydro Storage (PHS) and Battery Energy Storage Systems (BESS)**, which are critical for ensuring grid flexibility, RE integration, and supply reliability. Nepal has vast potential for PHS but currently accounts for only 3.5% of installed capacity and 1% of generation. Further, it faces many challenges such as social resistance, political uncertainty, high investment costs, and technical issues such as seasonal variability and inadequate infrastructure. Given limited contribution and associated challenges, this article explores opportunity and application of BESS in Nepal's grid.

This article outlines key aspects around BESS and addresses core questions surrounding its deployment in Nepal. These include understanding the need for BESS, identifying the most suitable chemistries, drawing lessons from India's BESS progress, reviewing the current policy and regulatory framework, and recommending targeted interventions such as value streams, business models, tariff structures, and promotional measures to enable successful implementation.

2. Need for BESS in Nepal

To truly understand why BESS are vital for Nepal, it is essential to first examine the technical and economic hurdles that continue to challenge the country's power sector. These underlying imbalances set the stage for recognizing the transformative potential of BESS. As we uncover these existing gaps, it becomes clear how BESS can serve as a key enabler in Nepal's journey toward a more reliable, efficient, and resilient energy future - one that aligns with the nation's broader development aspirations.

2.1 What power sector challenges in Nepal call for BESS?

Nepal's power sector stands at a critical inflection point. The country has made significant prog-

ress in electrification, with 98% of the population having access to electricity and nearly all connected to the national grid . However, as Nepal moves toward its clean energy and electrification goals—doubling per capita electricity consumption to 700 kWh and achieving 15,000 MW of clean energy capacity by 2087 (2030)—it faces a set of persistent technical and economic challenges that BESS can help address (please refer Figure 1) .

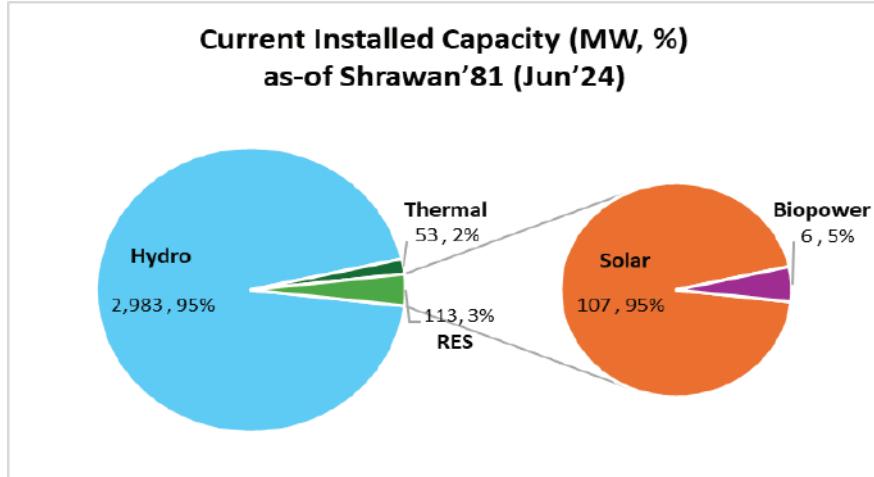


Figure 1 Current Installed Capacity of Nepal (as of Asadh'81 (Jun'24)) .

As shown in the below Figure 2, the integration of variable RE (VRE), particularly solar, remains minimal despite Nepal's enormous potential . Out of an estimated 47 GW of solar potential, only 107 MW has been installed as of Ashad 2081 (June 2024) . Economic constraints such as high capital costs, reliance on external funding, and inadequate tariff structures further delay RE expansion .

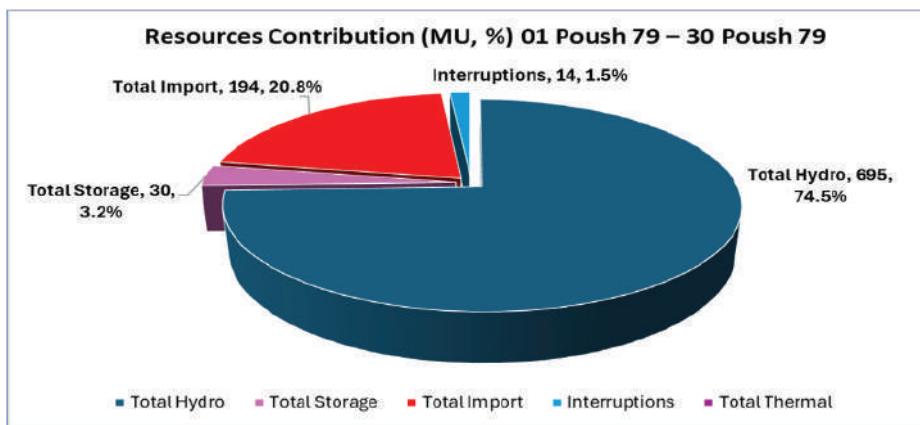


Figure 2 Generation Mix Contributions Poush'79 (Dec'22)

One of the most pressing issues is the **seasonal variability in hydropower generation**, which currently contributes 95% of Nepal's installed capacity as shown in Figure 2 . During the dry season (December to May), reduced water availability causes a sharp decline in generation from

run-of-river hydropower plants. This seasonal drop in generation leads to heavy reliance on high-cost electricity imports from India, which accounted for 14% of total available energy in FY81 (FY24) which is shown in the below Figure 3.

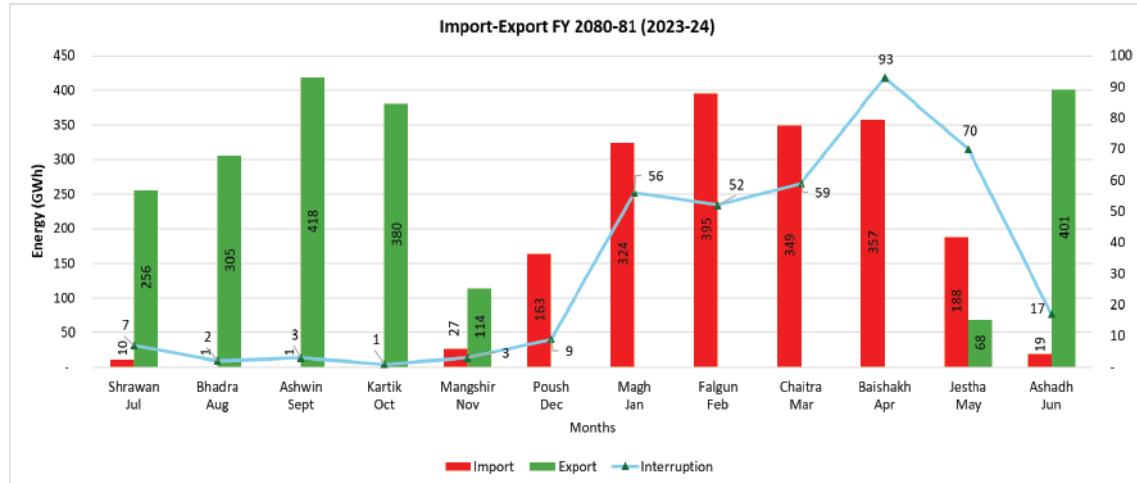


Figure 3 Energy Import and Export for Nepal 2080-81 (2023-24).

At the same time, Nepal is experiencing **rising peak demand**, especially during evening hours. For instance, on 16 Jestha 81 (29 May 2024), the system peak load reached 2,409 MW at 7:30 PM, exceeding the national annual peak load of 2,212 MW^{viii} as shown in the Figure 4. During such times, the grid depends on **expensive imports** to maintain balance. Additionally, the daytime generation shortfall during the wet season highlights the need for flexibility to meet daily load profiles.

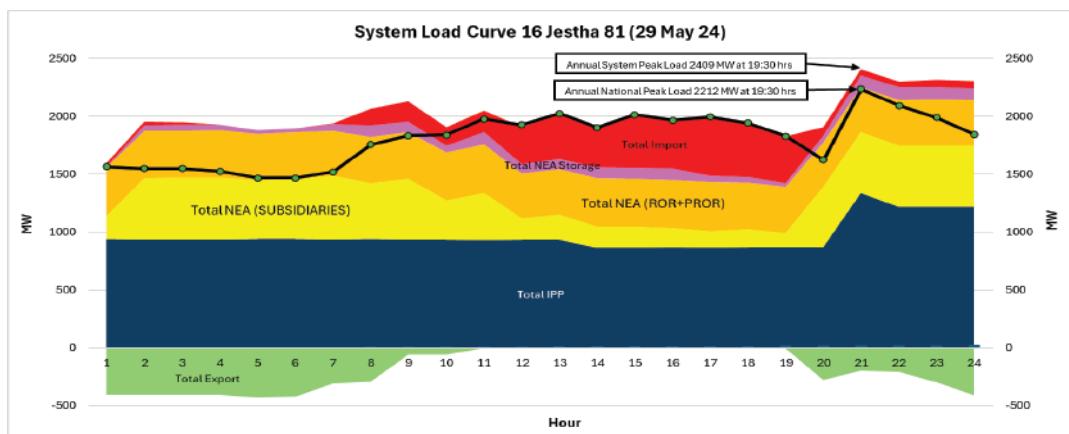


Figure 4 System Peak Load Curve 16 Jestha 81 (29 May 24).

Nepal's **grid infrastructure remains underdeveloped**, and the dominance of hydropower in-

troduces instability during dry periods. **Hydropower's limited storage capability**—only 3.5% of installed capacity and 1% of generation—limits the grid's flexibility to balance supply and demand as shown in the Figure 2. Despite Nepal's vast potential for hydropower and PHS, development is hindered by social resistance, political uncertainty, high investment costs, and technical issues such as seasonal variability and inadequate infrastructure. While PHS offers a promising solution to dry-season deficits by storing surplus wet-season energy, it remains in the early stages, with no operational projects and the 150 MW Begnas-Rupa project still under development. Realizing the benefits of PHS will require coordinated efforts through feasibility assessments, supportive policy reforms, and enhanced cross-border energy collaboration.

These challenges—**seasonal shortages, peak-time shortfalls, grid instability, underutilized RE potential, and high import dependence**—collectively signal the urgent need for scalable, flexible, and reliable diurnal energy storage solutions like BESS. Now that the need for BESS in Nepal is clear, the next step is to examine how BESS can specifically support Nepal's power grid and reinforce this understanding.

2.2 How can BESS support Nepal's grid and clean energy transition?

BESS offers Nepal an opportunity to fundamentally reshape its energy landscape. As a fast-responding, scalable, and modular technology, BESS can address both short-term grid reliability concerns and long-term RE integration needs by offering following benefits (Figure 5):

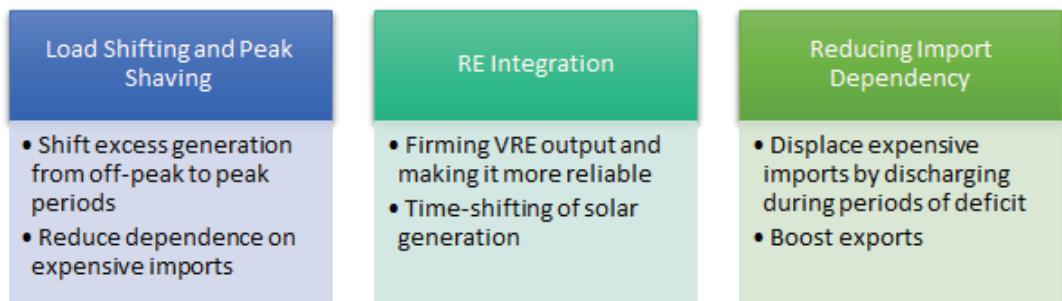


Figure 5 Benefits of BESS.

Having highlighted the need for and importance of BESS for Nepal, it's crucial to understand how this technology can be introduced and developed in a country that is still new to such innovations.

3. Recommended BESS Technology for Nepal

BESS uses chemical reactions to store and release electricity, playing a vital role in grid stabilization, RE integration, and load balancing. The two most common and mature battery chemistries are lead-acid and lithium-ion.

Lead-Acid batteries are widely used in photovoltaic systems while Li-ion batteries dominate utility-scale BESS due to their high energy density, efficiency (90–95%), and scalability. There are two main types of Li-ion batteries: Lithium Iron Phosphate (LFP) batteries are generally more suitable than Nickel Manganese Cobalt (NMC). Following Table 1 compares these chemistries

on key techno-commercial parameters:

Table 1 LFP vs . NMC Comparison .

Aspects	LFP	NMC
Price	More affordable raw materials (iron and phosphorus) but complex manufacturing; ~20% cheaper than NMC for the same capacity .	Higher cost due to pricier raw materials (nickel, cobalt, manganese) .
Energy Density	Lower energy density, making it suitable for endurance-based applications like stationary energy storage .	Higher energy density, ideal for weight-sensitive applications like EVs .
Temperature Tolerance	Handles heat well but struggles in cold conditions (performance drops 10-20% below 0°C and ~60% at -20°C) .	Performs well in both low and high temperatures, offering balanced thermal performance .
Safety	Superior safety due to chemical and structural stability; highly resistant to overheating and fires .	More prone to thermal runaway under high temperatures or extreme conditions .
Cycle Life	Significantly longer cycle life (3,000–6,000 cycles), ideal for long-term use .	Shorter cycle life (500-1,500 cycles), better suited for high-power, short-term applications .
Service Life	Can exceed 10 years with proper care, making it a long-term solution .	Typically lasts 2-3 years in demanding scenarios .

For utility-scale BESS, LFP batteries are generally more suitable than NMC batteries due to their superior safety, longer cycle life, and cost-effectiveness . In the context of Nepal, particularly for temperature ranges between 4–45°C and an average of 30°C, LFP batteries' ability to withstand high temperatures (up to 270–300°C) and deliver 3,000–6,000 cycles make them a more resilient and economical choice . Additionally, their wider operating range (-20°C to 60°C), high efficiency (85–95%), and sufficient energy density (200–400 Wh/kg) make LFP batteries highly compatible with Nepal's diverse climate and budgetary constraints .

4. Key Learnings from India's BESS Development

At the core of India's BESS evolution lies a series of promotional policies and regulatory measures as depicted in Figure 6 below that have catalysed a range of schemes, initiatives, and incentives - each playing a vital role in enabling the successful deployment and ongoing advancement of BESS across the Indian power sector .

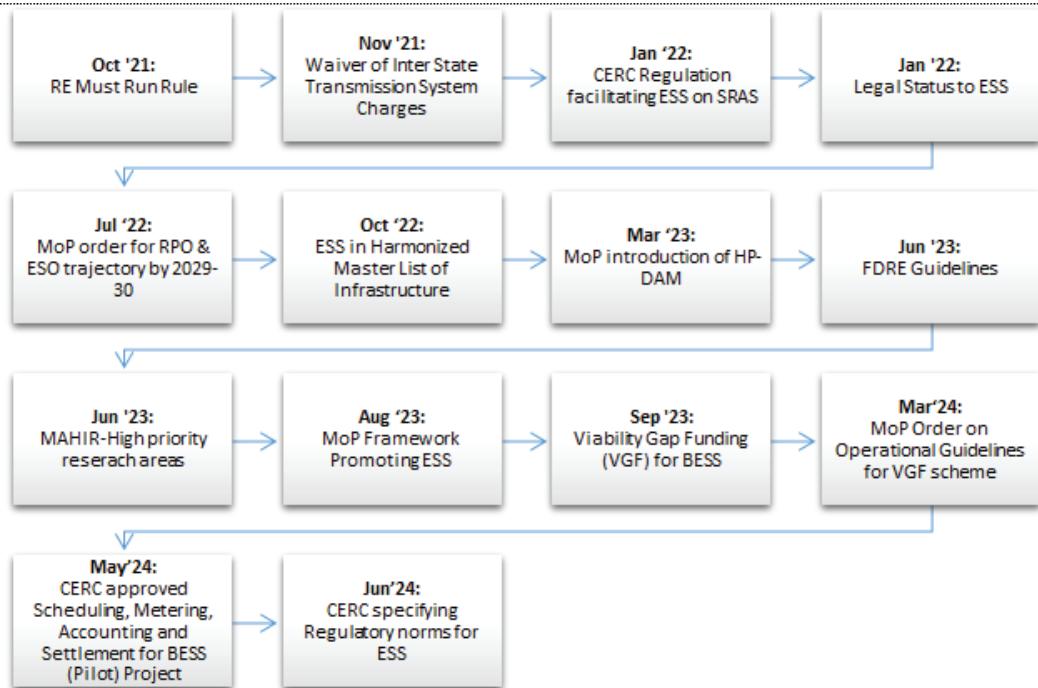


Figure 6 Recent Policies & Regulatory Framework for Energy Storage in India .

4 .1 What are the Key Learning from the India's Policy Developments for BESS?

The key learnings from India's policy developments between November 2021 and December 2023 for energy storage and clean energy integration are:

- Policy Certainty and Long-Term Vision:** India's consistent rollout of policies—such as ISTS waivers, ESO targets, and recognition of ESS as critical infrastructure—provides clarity and long-term visibility to investors, which is crucial for large-scale capital-intensive technologies like BESS and PSP .
- Revenue Stacking:** The introduction of ancillary services participation (CERC regulations), HP-DAM market access, and provisions for merchant models diversified revenue streams for energy storage, enhancing its commercial viability beyond just RE integration .
- Storage Targets and Mandates:** The Energy Storage Obligation (ESO), starting at 1% and increasing to 4%, with 85% RE content, ensures a guaranteed demand trajectory, which is vital for scaling up domestic manufacturing and market response .
- Enabling Infrastructure Status and Financing:** Declaring ESS as essential infrastructure and linking it to concessional finance and PLI schemes reduces risk perception and financing costs, especially for early projects .
- Viability Gap Funding (VGF):** Approval of Viability Gap Funding (up to 40% of capex) for 4,000 MWh BESS projects creates a cost-reduction pathway and accelerates early deploy-

ments by addressing financial viability gaps .

The significance of the policy and regulatory changes in the Indian power sector has provided a strong platform and foundation for the successful introduction and evolution of BESS within the Indian power system .

4 .2 How have BESS costs evolved in India, and what can Nepal learn?

BESS costs globally are declining, with current average battery costs at NPR 18,900/kWh (\$140/kWh) and total BESS capital costs ranging from NPR 29,700–31,000/kWh (\$220–230/kWh) .

It has been observed from the global trend that the CAPEX for 4-hour utility-scale BESS is expected to fall from NPR 2,83,740/kWh (\$2,101/kW) in 2077 (2021) to NPR 1,50,990/kWh (\$1,118/kW) by 2086 (2030), while fixed O&M costs may drop from NPR 6,480/kWh (\$48/kW-yr) to NPR 3,240/kWh (\$24/kW-yr) in the same period (refer Figure 7) .

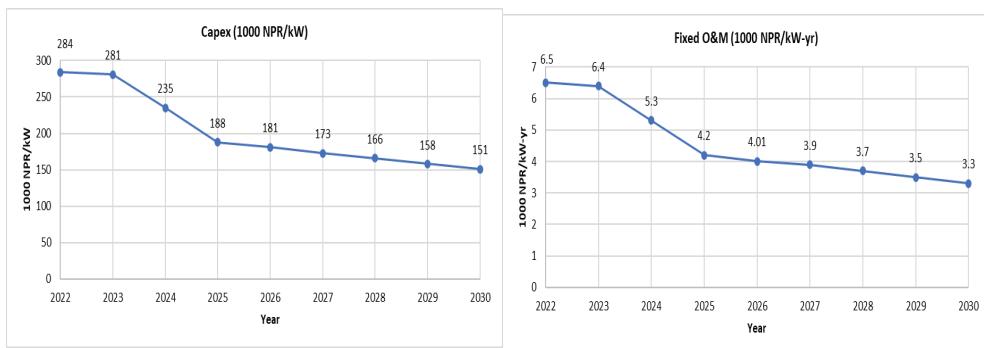


Figure 7 Global BESS Capex and O&M Price Trend .

India is also witnessing a fall in BESS prices, going by results of latest tenders . Recent projects reflect a maturing market . In case of standalone BESS projects, the prices have come down from NPR 17 lakh/MW/month (₹10.84 lakh/MW/month) in SECI's 2078 (2022) tender to the lowest tariff came from the RRVUNL Greenshoe project quoting NPR 3.5 lakh/MW/month (₹2.21 lakh/MW/month) for 500 MW/1000 MWh capacity in 2081 (2024) .

Similarly, under the RTC and Hybrid RE Tenders has been awarded and these tenders have witnessed a decline in price from NPR 10.72/kWh (₹6.69/kWh) to NPR 4.85/kWh (₹3.09/kWh) over the past one year from 2080-81 (2023-24) . The NHPC Greenshoe (Tranche-VIII) tender recorded the lowest tariff at NPR 4.85/kWh (₹3.09/kWh) .

As FDRE tenders have become more common, their associated tariff rates have seen a significant decline with lowest tariff at NPR 5.13/kWh (₹3.27/kWh) for NTPC FDRE (Tranche II) and usually ranges between NPR 5.13/kWh – NPR 8.78/kWh (₹3.27/kWh – ₹5.59/kWh) .

India's BESS landscape features four key tender types as shown in Figure 8 below:

Figure 8 Characteristics of Indian BESS Tenders .

Nepal can benefit by learning from India's experience . Nepal can use BESS to strengthen its energy security, increase the use of RE, and become a strong player in power exports in a region that is moving toward clean energy . To make the most of this opportunity, Nepal will need clear policies and a well-defined roadmap for integrating BESS into its power system . At the same time, it will be unrealistic to expect costs similar to India for initial projects in Nepal . Costs in Nepal would be 15-20% higher than India, depending on nature of procurement and risk sharing .

6. Existing Policy and Regulatory Framework of Nepal

The policy and regulatory landscape governing tariff determination in Nepal is rooted in the **Electricity Act, 2049 (1992)**, the **Electricity Regulatory Commission (ERC) Act, 2074 (2017)** and the **National Electricity Grid Code 2079(2023)** . Together, these acts provide the foundational legal mechanisms for determining electricity tariffs, regulating electricity sale and purchase, and enabling new project developers—including Distributed Energy Resources (DER) players—to engage with the system . Following Table 2 summarizes key provisions from these frameworks pertaining to BESS:

Table 2: Summary of Existing Policy & Regulatory Frameworks

Framework	Section	Relevant Provisions
Electricity Act (Nepal)	Section 11	Details royalty payments to GoN: Rs . 100/kW + 2% of avg . tariff for first 15 years; Rs . 1,000/kW + 10% thereafter . Provides long-term fiscal certainty for the government .
Electricity Act (Nepal)	Section 16	Authorizes GoN or licensees to recover electricity tariffs and associated charges from consumers, based on assessments under Section 17 .
Electricity Act (Nepal)	Section 17	Mandates a Tariff Fixation Commission to determine tariffs based on cost-reflective parameters (depreciation, CPI, returns, royalties, etc .) and allows consumer classification for differentiated tariff structures . Licensees cannot charge beyond approved rates .
Electricity Act (Nepal)	Section 18	Grants tariff-setting autonomy to isolated/off-grid distribution systems . May be applicable to remote RE and storage projects, and potentially to grid-scale BESS, subject to regulatory interpretation .
Electricity Act (Nepal)	Section 21	Governs GoN's bulk electricity procurement for the national grid . Prices must allow full investment recovery within 25 years, using methods such as avoided cost or average tariff percentages .
National Electricity Grid Code (2079)	Section 1 .4	Defines generation roles and assets in a technology-agnostic way, allowing classification of BESS as generating units .

Electricity Regulatory Commission (ERC) Act	Section 13	Empowers ERC to approve tariffs, regulate electricity transactions, and authorize agreements . Considers O&M, capex, debt, returns, surcharges . Can prescribe wheeling charges and temporary surcharges .
---	------------	--

A review of relevant policy and regulatory mechanisms indicates the following Figure 9:

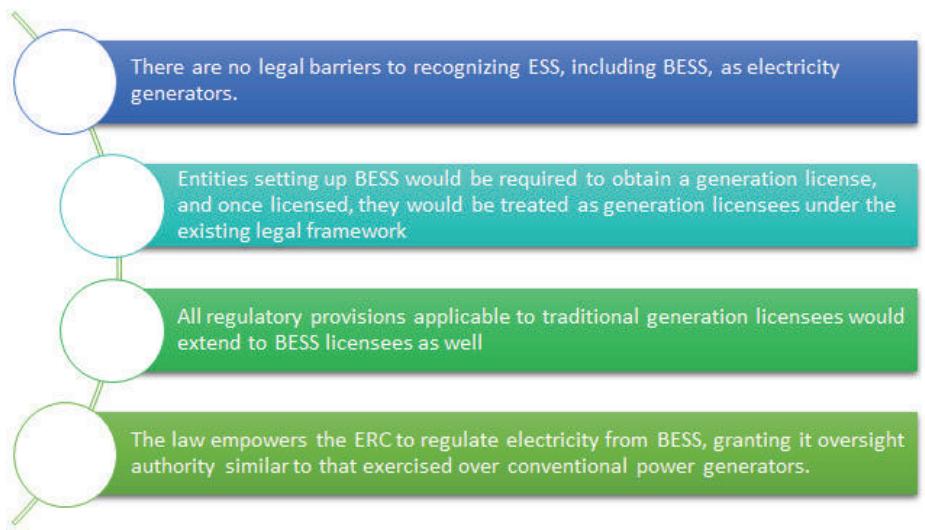


Figure 9: Key Takeaways from Existing Frameworks

7. Recommended Interventions: Promotional Measures, Value Streams, Business Models, and Tariff Structures

This section outlines strategic pathways to facilitate the successful adoption of BESS in Nepal . It emphasizes key promotional measures to stimulate market growth and presents a proposed roadmap to support the deployment and integration of BESS within the national power system .

6.1 Financial Incentives

For emerging markets like Nepal, where storage deployment is still in its early stages, drawing insights from India's approach can help overcome initial cost barriers and build a strong foundation for long-term market development . For instance, high upfront costs need **VGIF, capital subsidies, and tax breaks** . Financial incentives and legal clarity can attract private investment, enable pilots, and trigger cost reductions through competition and localization .

6.2 Value Streams

BESS provide a strategic solution to energy challenges by storing excess energy during low-demand periods and delivering it during peak times . This supports domestic energy balance, reduces import reliance, and enhances grid stability and self-sufficiency . With the ability to unlock

multiple value streams, BESS aligns with Nepal's vision for a resilient, low-carbon energy future. Globally, BESS is recognized for the following value streams (Figure 10):

Energy Arbitrage	Buy low, sell high—charge during off-peak and discharge during high-price periods
DSM Charges Reduction	Minimize deviation penalties and improve grid frequency regulation
Peak and TOD Charge Reduction	<ul style="list-style-type: none"> Lower demand charges by shifting consumption away from peak hours
Ancillary Services	Support grid balancing through SRAS and TRAS
Curtailment Costs Reduction	<ul style="list-style-type: none"> Store surplus generation instead of wasting it; discharge during deficits
Peak Shaving & Load Shifting	Reduce grid stress and avoid peaker plant use
Capacity Market Mechanism	<ul style="list-style-type: none"> Receive payments for capacity availability, even without active generation

Figure 10 Most Common Value Streams for BESS.

BESS provides valuable benefits for both consumers and utilities, offering cost savings, reliability, grid services, and flexibility, making it a key element of modern power systems. While value streams like ancillary services and capacity market mechanisms will take time and regulatory intervention before being implemented in Nepal's power market, several near-term opportunities can improve grid efficiency and financial sustainability.

The **immediate focus should be on reducing peak demand, reduce interruptions and managing Time-of-Day (TOD) charges**, particularly in high-demand sectors, by shifting energy use from peak to off-peak periods to reduce costs and congestion. Deploying BESS in large RE projects will minimize curtailment by storing excess energy. **BESS can also enable energy arbitrage**, optimizing costs and stabilizing the grid. Additionally, **co-locating BESS with solar power projects would** also provide a valuable value stream of addressing solar intermittency. By storing excess energy during peak sunlight hours, BESS ensures a more reliable energy supply during low generation or high demand, enhancing solar efficiency. To fully utilize co-located solar + BESS, Nepal should expand its role beyond energy arbitrage and curtailment cost reduction, integrating it into peak shaving and load shifting strategies to further optimize grid performance.

6.3 Contracting Models

A range of business models have been explored to enable BESS deployment in Nepal (Figure 11), each tailored to different ownership structures, revenue streams, and risk-sharing mechanisms. These models include Power Purchase Agreements (PPAs), capacity contracts, Energy-as-a-Service (EaaS), leasing arrangements, and Build-Operate-Transfer (BOT) models. Among these, **PPA-based models are particularly recommended during the initial phase of the market development**. Their relative simplicity, established legal structure, familiarity among investors and financial institutions make them a bankable option that can accelerate early adoption of BESS.

As the sector matures, Nepal can gradually diversify its contracting models. For instance, co-located BESS—particularly with solar or run-of-river hydro generation—can benefit from capacity contracts or BOT arrangements, which offer greater alignment between generation and storage assets and allow for longer-term performance-based partnerships. These models can also support more complex use cases that may emerge as grid management needs evolve.

6.4 Tariff Structures and Regulatory Reforms

Drawing from India's experience with BESS tariff frameworks, the Working Group analysed the following options for determination and adoption of tariff as below:

Annuity based tariff (Indian ₹ Cr/MW)

- i. Single part tariff (in Indian ₹/kWh)
- ii. Two-part tariff consisting of fixed charge and charging energy cost
- iii. Two-part tariff consisting of fixed charge and Indian ₹/cycle
- iv. Three-part tariff consisting of fixed + energy + ancillary charge

To support BESS deployment in Nepal, the ERC should initiate a formal tariff determination process that ensures cost recovery and incentivizes market participation. Early tariff structures may include annuity-based tariffs in NPR Cr/MW/month, single-part energy tariffs in NPR/kWh, or two-part tariffs combining fixed charges with NPR/cycle components. This will require revisions to existing tariff regulations to formally include BESS and reflect its value streams—such as availability, reliability, and time-of-use benefits—within the pricing framework.

6.5 Key Options for Nepal for successful BESS Integration

Nepal stands at a critical juncture in its clean energy transition, with BESS poised to play a key role in enabling a reliable, resilient, and RE-powered grid. Achieving this will require coordinated efforts across policy, regulation, and finance.

The Energy Development Roadmap 2081 (2024) marks a significant step, with one of its 81 strategies tasking the ERC with determining purchase and sales rates for grid-connected solar PV systems with storage developed by the private sector. This signals a clear intent to integrate BESS into the national energy framework. With its emphasis on RE expansion, grid reliability, and supportive regulatory structures, the Roadmap sets a strong foundation for BESS to support demand-supply balancing, grid stability, and energy export ambitions in Nepal's evolving power sector.

In light of the above, the following strategic actions are proposed below in Figure 12:

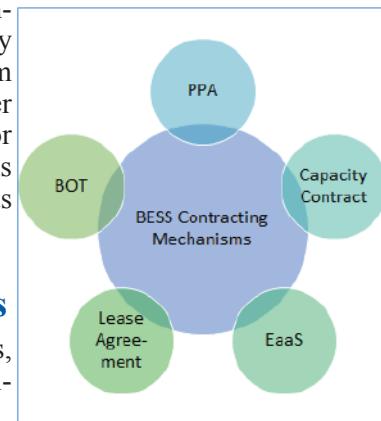


Figure 11 BESS Contracting Mechanisms.

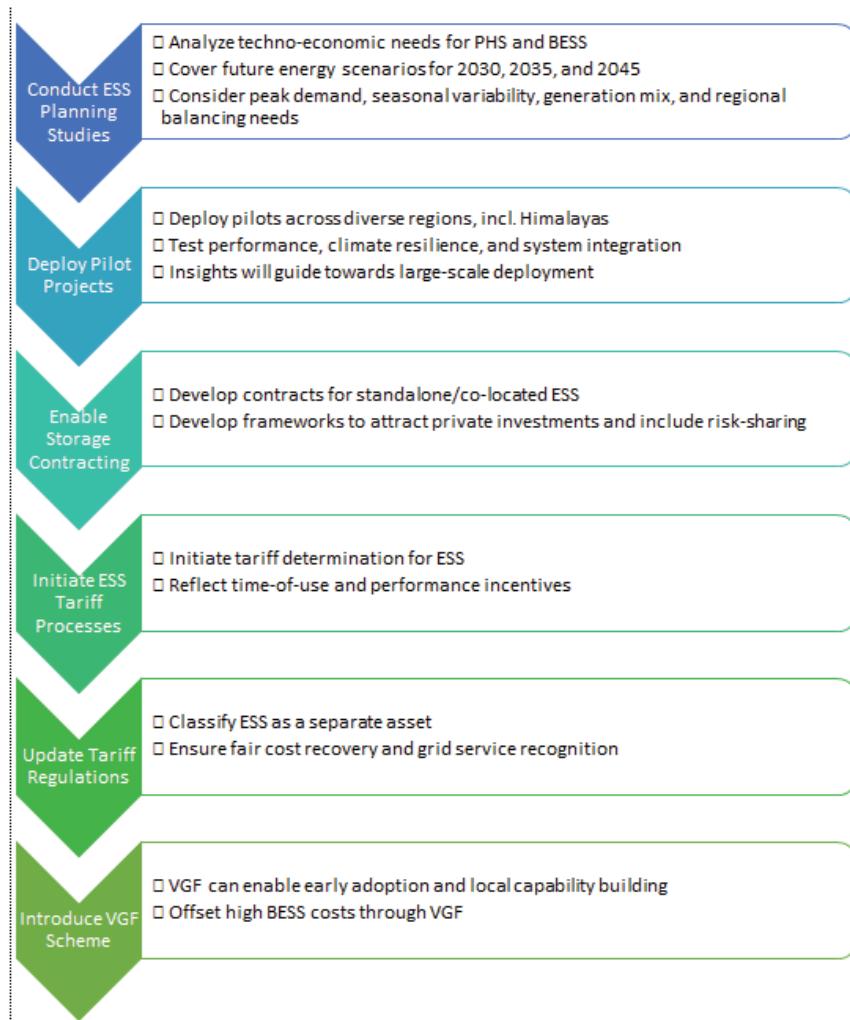


Figure 12 Strategic Actions for ERC . Nepal .

In conclusion, with a well-coordinated national effort—backed by clear regulations, strategic incentives, robust business models, and sustained capacity-building—Nepal can successfully integrate BESS into its power system . This approach will not only strengthen grid reliability but also ensure that the country fully harnesses the potential of its RE resources, paving the way for a secure and sustainable energy future .

References

- http://wecs .gov .np/source/ESR_2024 .pdf
- http://wecs .gov .np/source/ESR_2024 .pdf
- <https://sarepenergy .net/wp-content/uploads/2024/07/5PRESE1 .pdf>
- <https://sarepenergy .net/wp-content/uploads/2024/07/5PRESE1 .pdf>

- <https://sarepenergy.net/wp-content/uploads/2024/07/5PRESE1.pdf>
- http://wecs.gov.np/source/ESR_2024.pdf
- https://www.nea.org.np/admin/assets/uploads/annual_publications/Transmission_Director-ate_2081.pdf
- <https://sarepenergy.net/wp-content/uploads/2024/07/5PRESE1.pdf>
- <https://www.icra.in/CommonService>
- https://atb.nrel.gov/electricity/2024/utility-scale_battery_storage
- <https://www.sairenergy.com/solar-energy-news/jsw-renew-energy-wins-seci-tender-for-bess>
- <https://www.mercomindia.com/jsw-rays-orianा-among-winners-of-rvunls-500-mw-bess-auction>
- <https://www.mercomindia.com/nhpc-1-2-gw-solar-plus-storage-auction>
- <https://www.mercomindia.com/axis-renew-juniper-serentica-tprel-win-ntpcs-fdre-ii-auction>
- <https://solarquarter.com/2024/03/13/secis-1500-mw-fdre-ii-auction-sees-hero-future-jsw-neo-serentica-renewables-and-renew-win-big/>
- <https://faolex.fao.org/docs/pdf/nep40799.pdf>
- <https://erc.gov.np/storage/contents/September2023/D5AMkiRzJmMnZVD39iqn.pdf>
- <https://www.erc.gov.np/storage/contents/September2023/bBHAhO7bz1nYeYV4VLVX.pdf>

विद्युत नियमन आयोगको संस्थागत सुदृढीकरण

डा. बिमल कोइराला^१

विद्युत विकासको प्रचुर सम्भावना भए पनि निजी क्षेत्र वा सार्वजनिक-निजि क्षेत्रको साखेदारीमा विद्युत उत्पादन र वितरण गर्ने खुकुलो प्रावधान नहुँदा विद्युत विकास सरकारको कार्यक्षेत्रमा मात्र सिमित रहेकोले विद्युत उत्पादन, वितरण र व्यापार नेपाल विद्युत प्राधिकरण कै कार्यक्षेत्रको विषय थियो । वि.सं. २०५७ पछी निजी क्षेत्रलाई विद्युत उत्पादन खुल्ला गरे पछी जलविद्युत विकास नीति, २०५८ ले विद्युत विकासका विविध पक्षहरूको सुपरिवेक्षण र नियमनका साथै उत्पादनका निम्नि प्रतिष्यर्धी वातावरण बनाउन नयाँ संस्थाको सृजनाको आवश्यकता बोध भएको हो । तत्कालिन विद्युत महशुल निर्धारण आयोगलाई नियमन संस्थाको रूपमा विकास गर्दै विद्युतको गुणस्तरको अनुगमन एवं सुपरिवेक्षण गर्ने कार्यको सिलसिलामा सार्वजनिक तथा निजी क्षेत्रका उत्पादनकर्ताहरूको विद्युत खरीद सम्भौता समेतलाई ध्यानमा राखी आवश्यकता अनुसार निर्देशन र सुपरिवेक्षण गर्ने अधिकार दिइएको थियो । विद्युत महशुल र व्हीलिड महशुल निर्धारण गर्ने, विद्युत प्रणालीको सुरक्षा तथा आपूर्तिको नियमितता र विद्युतको गुणस्तरको अनुगमन एवं सुपरिवेक्षण गर्ने, उपभोक्ताको हित संरक्षण गर्ने, ग्रीड कोड तयार गर्ने, भार संप्रेषणका आधारहरु स्वीकृत गर्ने, विद्युतको सुरक्षा तथा गुणस्तरको आधार तयार गर्ने, आदि जस्ता महत्वपूर्ण अधिकारका सहित खाका कोरिएको उक्त आयोगले विद्युत खरीद सम्भौता गर्नु अगाडि विद्युत खरीद विक्री दर निर्धारणका आधारहरुमा स्वीकृति दिनुका साथै उपभोक्तालाई विक्री वितरण गरिने विद्युत महशुल दरको निर्धारण गर्ने अधिकार समेत प्राप्त थियो । अन्ततः जलविद्युत आयोजना राम्रो सञ्चालन अवस्थामा राख्न मुख्य-मुख्य विद्युत उपकरणहरू र संरचनाहरूको मर्मत सम्भारका आध(रहरू नियमन संस्थाबाट तोकिने पनि उल्लेख छ । विद्युत नियमन आयोग, २०७४ अनुसार गठन भएको विद्युत नियमन आयोग जलविद्युत विकास नीति, २०७४ ले परिकल्पना गरेको नियमन संस्थाको अधिकारहरूलाई थप परिष्कृत गरी समय सापेक्ष रूपमा केहि अधिकार तथा जिम्मेवारीहरु थप गरी गठन गरिएको हो ।

लोकतान्त्रिक पद्धति अपनाउने देशहरूमा अधिकांश रूपमा अन्तर्राष्ट्रिय रूपमा नीति बनाउने निकाय र नियमन गर्ने निकाय बेग्ला बेग्लै हुन्छन् । नीति बनाउने भूमिका कार्यकारी (Executive) को हुन्छ भने नियमनका लागि विशिष्टीकृत निकायको व्यवस्था गरिएको हुन्छ, जुन आफैमा आफ्ना अधिकार तथा जिम्मेवारीहरु वहन गर्न स्वतन्त्र हुन्छ । नियामक निकायले नियमन गर्ने क्षेत्रहरु व्यावसायिक संस्थाहरूको आर्थिक र सामाजिक सरोकारका विषयहरु हुन्छन्, जुन प्रभ(ावित हुँदा उपभोक्ताले प्राप्त गर्ने सेवामा पनि असर पर्दछ । नियामकले त्यस क्षेत्रमा कार्यरत व्यावसायिक संस्थाहरूको वित्तीय स्वास्थ्यलाई मध्यनजर गरी उपभोक्ताले ती व्यावसायिक संस्थाहरूबाट प्राप्त गर्ने सेवाहरूको स्तर निर्धारण गर्दछ । यसका अतिरिक्त, सम्बन्धित क्षेत्रको व्यावसायिकतालाई कार्यकारीको अवान्धित हस्तक्षेप तथा राजनीतिबाट पन्छाउँदै कार्यकारीको दीर्घकालीन नीतिलाई कार्यान्वयन गर्ने उपयुक्त मार्ग निर्माण गर्दछ । यसका अतिरिक्त नीति कार्यान्वयन

¹ लेखक नेपाल सरकारको पूर्व मुख्य सचिव हुनुहुन्छ । - सम्पादक

गराउने सवालमा समेत नियामक निकायको भूमिका हुन्छ । त्यस क्षेत्रको विशिष्टीकृत ज्ञान भएका कारण नियामक निकाय सरकारको सल्लाहकार पनि हो । धेरै जसो अवस्थामा नियामक निकायलाई अर्धन्यायिक अधिकार प्रदान गरिएको हुन्छ जुन अधिकार प्रयोग गरी उनीहरूले क्षेत्राधिकारभित्र पर्ने विषयमा विवादसमेत समाधान गर्न सक्दछन् । तसर्थ, नियामक निकायले क्षेत्रको नियमन, नीति कार्यान्वयन, नीति निर्माण तथा विवाद समाधान जस्ता अति महत्वपूर्ण जिम्मेवारी बोकेका हुन्छन् । विद्युत नियमन आयोगलाई पनि त्यस्तै महत्वपूर्ण जिम्मेवारीहरू दिइएको छ । धितोपत्र बोर्ड, नेपाल, नेपाल बिमा प्राधिकरण र नेपाल दुरसंचार प्राधिकरण, आदि जस्ता निकायभन्दा विद्युत नियमन आयोगलाई अभ्य स्वतन्त्र र शक्तिशाली नियामको रूपमा परिकल्पना गरिएको छ ।

कानूनी रूपमा बलियो हुँदैमा निकाय आफैमा सक्षम वा शक्तिशाली हुँदैन । नियमन निकायसंग एउटा सबल साङ्गठनिक संरचना हुनु जरुरी छ र त्यस संगठनिक संरचना अन्तर्गत रहने कर्मचारीहरू सक्षम र क्षमतावान हुनुपर्दछ । त्यस पछी चाहिने भनेको आर्थिक स्रोत हो, जसको उपलब्धतामा मात्र निकायले पूर्ण क्षमतामा स्वायत्त भई कार्यसम्पादन गर्न सक्दछ । सम्बन्धित सरोकारवालाहरूले त्यस निकायको उद्देश्य एवम् मर्मलाई नबुझे र अपनत्व नलिए उक्त निकाय कानूनी रूपमा सबल भए पनि प्रभावकारी रूपले कार्यसम्पादन गर्न सक्दैन । आयोगले आफुलाई एक प्रभावकारी, सर्वपरिचित एवम् विश्वासिलो नियामक निकायको रूपमा स्थापित हुन पनि यिनै विषयमा ध्यान दिनु जरुरी छ ।

विद्युत नियमन आयोग केहि सफलता र केहि पाठहरू सहित छैठौं बर्षमा पुँदै छ । यस बीचमा विभिन्न कारणहरूले आयोग पूर्ण रूपमा सञ्चालनमा आउन ढिलाई भएको देखियो । नेपालको ऊर्जा क्षेत्रले सम्भावना र अवसरको ढोका खोल्दै छ । जलवायु परिवर्तनका प्रभावका साथै विद्युत प्रणालीको स्थायित्व एवं विद्युतको प्रतिस्पर्धात्मकताका सन्दर्भमा नेपालको विद्युत उत्पादनले दक्षिण एसियाली बजारमा सार्थक भिन्नता ल्याउन सक्छ । हाल ३,१०० मेगावाटभन्दा बढी जलविद्युत उत्पादन जडित क्षमता रहेको, थप ७,८०५.१५ मेगावाटको नेपाल विद्युत प्राधिकरणसंग विद्युत खरिद बिक्री सम्झौता भएको १०,००० मेगावाटको विद्युत निर्यातका लागि भारतसँग भएको सम्झौताले देशलाई ऊर्जामा आत्मनिर्भर मात्र नभई क्षेत्रीय बजारमा तात्क्विक उपस्थिति जनाउने अवसर सृजना गरेको छ । तर, यसरी विद्युत विकास रप्तारमा अधि बढ्दै गर्दा बजार स्थायित्व, लगानीको सुरक्षा, र उपभोक्ता हित सुनिश्चित गर्न एक बलियो नियामको खाँचो छ । यसकारण, आयोगले जुनसुकै हालतमा पनि आफ्ना किमि कमजोरीहरूलाई सुधार्दै कानूनले परिकल्पना गरेको अधिकार प्रयोग गर्न आवश्यक क्षमता विकास गर्नु पर्ने खाँचो ।

विद्युत नियमन आयोगको संस्थागत सबलीकरणका लागि आयोगले देहायका विभिन्न महत्वपूर्ण कार्य गर्नु जरुरी हुन्छ ।

१. ठोस संस्थागत संरचना र प्रक्रियाको विकास

आयोगको हालको संस्थागत संरचनामा केहि सुधारका क्षेत्रहरू देखिएका छन् । विशेष गरी, हालको संस्थागत संरचना सिमित छ र विद्युत नियमन आयोग ऐन, २०७४ ले दिएका अधिकारहरू पूर्ण रूपमा अभ्यास गर्न आयोगको स्वीकृत संरचनामा कर्मचारीहरू पर्याप्त मात्रामा छैनन् । प्राविधिक, अर्थात्, इन्जिनियरिङ तर्फका कर्मचारीहरूको बाहुल्य भएता पनि कानून, वित्त, अर्थशास्त्र, आदि जस्ता विषयमा पर्याप्त कर्मचारीको उपस्थित देखिन्न । यसका अतिरिक्त, विद्युत बजार निर्माण तथा संचालन, ऊर्जा अर्थशास्त्र, ऊर्जा योजना, उपभोक्ता हक, आदि जस्ता विषयमा उच्च शिक्षा आर्जन गरेका अथवा अनुभव भएका जनशक्तिलाई कर्मचारीहरूको रूपमा आयोगमा भित्राउन ढिला गर्नु हुँदैन । त्यसै गरी, बहु-विधामा ज्ञान आर्जन गरी पर्याप्त अनुभव बटुलेका जनशक्तिलाई आन्तरिक रूपमा वृत्ति विकास प्राप्त गर्ने वात(

वरण पनि निर्माण गर्नु पर्दछ । अबका दिनमा संस्थागत संरचनाको संसोधन गर्दा उल्लेखित विषयमा आयोगले ध्यान पुर्याउनु जसरी छ ।

आयोगमा देहाय बमोजिमको संरचनागत व्यवस्था प्रस्ताव गरिएको छ:

■ **योजना, प्रशासन तथा लेखा निर्देशनालय**

यस शाखाको मुख्य कार्य जन-संशाधन व्यवस्थापन, सम्पत्ति व्यवस्थापन, कार्यक्रम आयोजना तथा व्यवस्थापन, सूचना प्रविधिको व्यवस्थापन, ज्ञान व्यवस्थापन, आदि हुनुपर्दछ । यसले आय-व्यय, बजेट, योजना, आदि निर्माण गर्नुका साथै कर्मचारीको तलब-भत्ता, सेवा-सुविधा, आदि विषयहरु गर्दछ । यसका अतिरिक्त, कानून अनुपालनका विषयमा अदालतलगायत अन्य निकायलाई कानूनी विषयमा उत्तर/प्रतिउत्तर दिने जिम्मेवारी समेत यसै निर्देशन(लाल्यको हुनेछ ।

■ **आर्थिक तथा वित्तीय निर्देशनालय**

महसुल, विद्युत खरिद बिक्री दर, प्रसारण दस्तुर, आदि दस्तुर निर्धारणका क्रममा आवश्यक वित्तीय विश्लेषणको कार्य वित्तीय विश्लेषण शाखाले गर्नु पर्दछ ।

■ **इन्जिनियरिङ तथा प्राविधिक निर्देशनालय**

यस शाखाले विद्युत एवम् विद्युत सम्बन्धी आयोजनाहरूको प्राविधिक पक्षहरु हेर्नु पर्दछ । ग्रीड सहिता, वितरण संहिता तथा अन्य प्राविधिक मापदण्डहरूको निर्माण, अनुपालन, आदिका साथै आयोजनाको डिजाइन, ऊर्जा तालिका एवम् आयोजनाको प्रगतिहरूको गणना तथा जाँच गर्ने जस्ता प्राविधिक कार्य गर्नु पर्दछ । विद्युत क्षेत्रको साइबर सुरक्षा (Cyber Security) सम्बन्धि विषय पनि यस शाखाले हेर्न सक्दछ ।

■ **नियामकीय मामिला निर्देशनालय**

यसले विद्युतको माप प्रक्षेपण, थोक बजारसम्बन्धी व्यवस्था, विद्युत खरिद बिक्री सम्झौताका आधार, विद्युत व्यापार अनुमतिपत्रको संचालनका शर्त, आदि कार्य गर्नुपर्दछ । यसका अतिरिक्त, अनुमतिपत्र प्राप्त व्यक्ति गाभिने, मिल्ने, शेयर खरिद बिक्री, शेयर निष्कासन, आदि लगायत कार्य पनि यसै शाखाले गर्नु पर्दछ । यस निर्देशनालयको कार्य नियामकीय उपकरणको निर्माण गर्ने, आयोगले जारी गर्ने निर्णय एवम् आदेशहरूको मस्यौदा तयार गर्ने तथा त्यस विषयमा सल्लाह सुभाव दिने, अन्य शाखाहरूलाई कानूनी राय सुभाव प्रदान गर्ने, आदि हुनुपर्दछ । आयोगलाई विवाद समाधान गर्न समेत यसै शाखाले कानूनी सहायता प्रदान गर्नुपर्दछ ।

■ **उपभोक्ता मामिला निर्देशनालय**

यसले उपभोक्ताको सूचनाको हक सुनिश्चित गर्ने लगायत सार्वजनिक सुनिवाई एवम् सरोकारवालासंगको छलफलहरु आयोजना गर्ने लगायत उपभोक्ताको हक तथा हित सुनिश्चित गर्न आवश्यक गतिविधिहरु गर्नु पर्दछ । यसले ग्राहस्थ उपभोक्ता संलग्न हुने विवादहरूको निरोपणको लागि आवश्यक कार्य गर्नु पर्दछ । उपभोक्ताको हितसंग प्रत्यक्ष सरोकारका निर्देशिकामा समेत यसले सहयोग गर्दछ ।

यसका अतिरिक्त, संस्था कसरी चल्छ एवम् निर्णय प्रक्रिया कस्तो हुन्छ भन्ने विषयमा द्विविधा एवम् अस्पष्टता

हटाउन आयोगको कार्यसम्पादनसम्बन्धि कार्यविधि (Conduct of Business Guideline) अथवा मानक सञ्चालन प्रणाली (Standard Operating Procedure) को व्यवस्था गर्नु पर्छ र आपतकालीन वा असामान्य स्थितिमा बाहेक अन्य अवस्थामा त्यस्तो कार्यविधि अथवा पद्धतिबाट विचलन मान्य नहुने व्यवस्था गर्नु पर्दछ ।

२. कर्मचारीको विकास

कर्मचारीहरूका लागि स्पष्ट कार्यसूची (Job Descriptions) सहित नियुक्ति दिने व्यवस्था गर्नु पर्दछ । आयोगका मानव संसाधनहरूको व्यवस्थापनका लागि भर्ना, तालिम, र कार्यसम्पादन व्यवस्थापन सम्बन्धि स्पष्ट नीति विकास गरी कार्यान्वयन गर्नु आवश्यक देखिन्छ । विशेष गरी, कार्यसम्पादन अनुगमन र मूल्याङ्कन प्रणालीहरू विकास गर्दै कार्यसम्पादनमा आधारित प्रोत्साहन संयन्त्रको ढाँचा निर्माण गर्नु आवश्यकता छ । त्यसै गरी, आयोगका पदाधिकारी एवम् कर्मचारीहरूका लागि क्षमता विकास कार्यक्रम निर्माण गर्नु पर्दछ । यसका लागि, अन्तर्राष्ट्रिय विश्वविद्यालयहरूसँग साझेदारीमा कर्मचारी तालिम गर्न सकिन्छ । महसुल निर्धारण, विद्युतको थोक बजार, खरिद बिक्री दर, आदि लगायत नियमनसम्बन्धी सैद्धान्तिक विषयहरूका अलावा स्मार्ट ग्रिड, नवीकरणीय ऊर्जा प्रविधि, र डाटा एनालिटिक्समा आधारित तालिम कार्यक्रम सञ्चालन गर्न सकिन्छ । यस्ता कार्यक्रमले कर्मचारीको दक्षता बढाउनुका साथै नियामकको विश्वसनीयता पनि बढियो बनाउँछ ।

यसका अतिरिक्त, आयोगले बजारबाट आवश्यक सीप भएका जनशक्तिहरू आयोगको कर्मचारीको रूपमा भित्रिन सक्नु भन्ने सुनिश्चित गर्न रणनीति निर्माण गर्नु पर्दछ । त्यसै गरी, आन्तरिक रूपमा पर्याप्त मात्रामा कुनै विषयको विषयगत ज्ञानको अभाव भएको अवस्थामा निश्चित अवधिका लागि विषयगत विज्ञहरू परिचालन गर्नेसम्बन्धमा एक खाका निर्माण गर्नु जरुरी छ भने संस्थागत विकास गतिविधिहरूमा लैंग्रिक समानता, अपांगता र सामाजिक समावेशीकरण (GEDSI) रणनीति अपनाउनु समयको आवश्यकता हो ।

ज्ञान व्यवस्थापनसम्बन्धि प्रणालीहरू पर्याप्त मात्रामा नहुनु नेपाली सरकारी निकायहरूको कमजोरी रहेको छ । आयोगले सुरुबाट नै यस अनुभवबाट पाठ लिएर ज्ञान व्यवस्थापनका लागि विभिन्न रणनीतिहरू तर्जुमा गरी लागु गर्नु पर्दछ । यसका लागि, प्रतिवेदनहरूको अभिलेखीकरण, पुस्तकालयको व्यवस्थाका साथ साथै अन्य निकायको सहकार्यमा ज्ञान आदान प्रदान गर्न एक मासिक मञ्चको व्यवस्था पनि गर्न सकिन्छ । सिक्ने सिकाउने कार्यलाई प्रोत्साहन गर्न पुरस्क(रहरूको व्यवस्था पनि गर्न सकिन्छ ।

३. सूचना तथा संचार प्रविधिको प्रयोग

संसारभर सूचना तथा संचार प्रविधिको प्रयोग बढ्दो छ र आयोगले आफ्नो कार्यसम्पादन गर्दा सूचना प्रविधिका मध्यमहरूको प्रयोग गरी सेवाग्राही, उपभोक्ता एवम् सरोकारवालाहरूसँग संवाद गर्न सक्दछ । सूचना तथा सञ्चार प्रविधि पूर्वाधार आन्तरिक कार्य सञ्चालन र सेवा प्रवाहमा समावेश गरी आयोगले आफ्नो संचालन तथा सेवा प्रभावकारी र पारदर्शी बनाउन सक्दछ । त्यसका लागि, वेबसाइट, अनलाइन आवेदन प्रणाली, डकुमेन्ट म्यानेजमेन्ट प्रणाली, स्वच(प्रालित गुनासो व्यवस्थापन प्रणाली र बजार निगरानी प्रणाली (Market Monitoring System) आयोगले प्रयोगमा ल्याउन सक्छ । यस्ता डिजिटल प्रणालीमा साइबर सुरक्षा र डाटा गोपनीयतामा ध्यान दिँदा उपभोक्ता र लगानीकर्ताको

भरोसा अभ बदछ ।

सूचना प्रविधिको प्रयोगका सन्दर्भमा हाम्रा छिमेकी देशका निकायहरूले निकै अनुभव हासिल गरेका छन् । नेपालमा पनि अन्य क्षेत्रका नियामक निकायहरूको अनुभव आयोगका लागि सान्दर्भिक हुन सकछ । तसर्थ, आयोगले सूचना तथा संचार प्रविधिको उपयुक्त प्रयोग गर्न लागि अन्य निकायको अनुभवका आधारमा विद्युत क्षेत्रलाई सुहाउँदो प्रणाली विकास गर्दै अघि बदन सकदछ ।

४. अनुसन्धान र विश्लेषण इकाईको व्यवस्था

प्रभावकारी नियामकीय नीति तथा व्यवस्था निर्माणका लागि तथ्यमा आधारित विश्लेषण अपरिहार्य छ । आयोगले विद्युत माग प्रक्षेपण, जलवायु परिवर्तनको प्रभाव, र बजार प्रवृत्तिको अध्ययन गर्न स्वतन्त्र अनुसन्धान इकाइ स्थापना गर्न सकछ । विश्वविद्यालय वा अन्तर्राष्ट्रिय दातृ निकायसँगको सहकार्यले यस्ता अनुसन्धानलाई गति दिन सकछ । विशेष गरी, विश्वविद्यालयहरूसंग हुने यस्तो सहकार्यले नियमन सम्बन्धि सिद्धान्त, अवधारणा तथा त्यसमा नेपालको अनुभव तथा अवस्थितिका सम्बन्धमा ज्ञान व्यवस्थापन एवम् ज्ञान सञ्चारको लागि वैकल्पिक प्रणालीको निर्माण हुन्छ । यसका कारण अध्यापन र प्रयोगशीलताको बीचमा दुरी घटन गई विद्यार्थीहरूमा क्षेत्रगत ज्ञान वृद्धि हुन्छ जसको प्रत्यक्ष फाइदा समग्र आयोग एवम् विद्युत क्षेत्रले प्राप्त गर्दछ । पटके रूपमा परामर्शदातासंग सेवा लिँदा हुने उच्च मुल्य एवम् भन्भटिलो करार व्यवस्थापनसम्बन्धि समस्यालाई यसले समाधान गर्दछ ।

५. सहकार्यका लागि समितिहरूको व्यवस्था

आयोगले विद्युत क्षेत्रको नियमन गर्दा विभिन्न निकायहरूसंग संवाद र सहकार्य गर्दै अघि बदनु पर्ने हुन्छ । आयोगले विद्युत क्षेत्रका निकायहरूबीच समन्वय गर्न “विद्युत क्षेत्र समन्वय समिति”, विद्युत व्यापारमा समन्वय गर्न “विद्युत व्यापार सहजीकरण समिति” र विद्युत क्षेत्रसंग सरोकार राख्ने अन्य क्षेत्रका नियामक निकायहरूको बीच समन्वय गर्न “विद्युत क्षेत्र नियमन समन्वय समिति” को व्यवस्था गरी आवधिक रूपमा तिनको बैठक आयोजना गर्नु आवश्यक देखिन्छ । यस्ता समितिका निर्णयहरूको स्वीकार्यता एवम् वैधानिकता वृद्धि गर्न विद्युत नियमन आयोगले नेपाल सरकार (मन्त्रिपरिषद्) संग निवेदन गरी प्रस्तावित समितिहरू गठन गर्ने नीतिगत निर्णय गर्न अनुरोध गर्न सकदछ । यस्ता समि(तिहरूको बैठक कमिटी त्रैमासिक रूपमा बस्ने र बैठकमा विद्युत क्षेत्रमा रहेका समस्याहरू छलफल गरी त्यस्तो समस्या समाधान गर्न हरेक निकायले आफ्नो अधिकार प्रयोग गर्न सकछ भन्ने सम्बन्धमा छलफल गर्न सकिन्छ ।

विद्युत क्षेत्र समन्वय समितिमा ऊर्जा जलस्रोत तथा सिंचाई मन्त्रालय, विद्युत नियमन आयोग, विद्युत विकास विभाग र नेपाल विद्युत प्राधिकरणका प्रतिनिधिको सहभागिता अनिवार्य हुने र अन्य संघीय, प्रादेशिक तथा स्थानीय तहका विभिन्न निकायका प्रतिनिधिलाई आवश्यकता अनुसार आमन्त्रित गर्न सकिने व्यवस्था गर्न सकिन्छ । यस समितिले विद्युतको माग र आपूर्तिसम्बन्धि विश्लेषण, विद्युत नीति निर्माण, नीति तथा नियमनको तादम्यता विकास, कानूनमा रहेका कमी कमोजोरी पहिचान, आदि कार्य गरी नेपाल सरकार, संघीय संसद तथा अन्य निकायहरूलाई आवश्यक सिफारिस गर्न सक्नेछ । विद्युत व्यापार सहजीकरण समितिमा ऊर्जा जलस्रोत तथा सिंचाई मन्त्रालय, विद्युत नियमन आयोग, विद्युत विकास विभाग र नेपाल विद्युत प्राधिकरणका प्रतिनिधि रहने छन् भने आवश्यकता अनुसार अन्य व्यक्ति वा निकायका प्रतिनिधिलाई आमन्त्रित गर्न सकिनेछ । नेपाल सरकारले सन् २०३५ सम्म २८,५०० मेगावाट

विद्युत उत्पादनको लक्ष्य राखेकोमा उक्त विद्युतको खपतको वृद्धि वा निर्यातका लागि आवश्यक विद्युत व्यापारसम्बन्धीय नीतिगत, कानूनी एवम् नियामकीय प्रावधानमा स्पष्टता दिँदै आवश्यक समन्वयकारी भूमिका खेल्न यस समितिले भूमिका खेल्नेछ । त्यसै गरी “विद्युत क्षेत्र नियमन समन्वय समिति”मा विद्युत नियमन आयोग, नेपाल राष्ट्र बैंक, धितोपत्र बोर्ड नेपाल, नेपाल बिमा प्राधिकरण र कम्पनी रजिस्ट्रारको कार्यालयका प्रतिनिधिको अनिवार्य उपस्थिति हुनुपर्ने र अन्य निकायका प्रतिनिधिलाई आवश्यकता अनुरूप आमन्त्रित गर्न सकिने व्यवस्था गर्ने सकिन्छ । यस समितिले विद्युत क्षेत्रमा आवश्यक लगानी, सार्वजनिक निष्कासन, विदेशी मुद्रा विनिमय तथा हेजिङ्ग, बिमा, आदि जस्ता विषयमा आवश्यक छलफल गरी नेपाल सरकार, संघीय संसद तथा अन्य निकायहरूलाई आवश्यक सिफारिस गर्न सक्नेछ ।

६. निष्कर्ष

विद्युत विकासको अति संवेदनशील घटीमा रहेको नेपालका लागि विद्युत नियमन आयोगद्वारा निर्वाह गरिने नियामकीय भूमिका अत्यन्त महत्वपूर्ण हुन्छ । तसर्थ, आन्तरिक रूपमा सबलीकरणका लागि आयोगले समय खेरा फाल्नु हुँदैन । सक्षम एवंम् सक्रिय नियमनका लागि आयोगले रणनीतिक रूपमा आवश्यक क्षमता विकास गर्नु पर्दछ र भविष्यमा पनि त्यो क्षमता कायम रहेस् भन्ने सुनिश्चित गर्न आवश्यक प्रणालीहरूको विकास गर्दै जानु पर्दछ । तब मात्र, दशकौंको कडा गृहकार्य पश्चात फलिभूत भएको यस आयोगले सार्थक रूपमा नेपाललाई चाहिँदो नियमनकारी भूमिका निभाउन

Power Outages, Prevailing Maintenance Strategies and Future Direction

Dr . Bishal Silwal

Assistant Professor

IOE – Pulchowk Campus

Nepal has abundant hydropower potential and the maximum utilization of resources are always desired for . There is a growing pressure for the country to focus on the efficient generation and utilization of electrical energy . However, the pressing challenge of the utility in the near future, as it plans, will be to maximize the consumption of electrical energy produced . Therefore, an effort to overcome the aforementioned has been put in place by promoting electric mobility, electric cooking and rapid industrialization . This will ultimately help Nepal to achieve its goal to be a net zero emission nation by 2045, which it announced in the COP26 conference held in Scotland in October 2021, and was welcomed by the nations around the globe .

However, a high rate of electricity demand or consumption needs a stable and continuous supply of electrical power to consumers, which is not the current case in Nepal . Most of the hydro-electric plants under the ownership of NEA fare badly when it comes to the round-the- clock availability of the power generating facilities . Most of these power generating facilities are built with world-class machinery and with the participation of highly competent civil and electro-mechanical contractors, they suffer from poor upkeep and timely application of maintenance procedures thereby making these facilities unavailable for durations longer than that of similar capacity plants in other countries .

Nepal has been trading electrical energy from the Indian energy market independently and selling electricity to Bangladesh in the recent times . It has been a long- due wish for Nepal to sell its abundant hydro energy to its neighbors and these events of successful cross-border power trade has been seen as a major first step towards the fulfilling of this wish . However, if the problem of frequent power outages prevails, Nepal risks being an unworthy energy partner for these nations . Moreover, this could also lead to a financial shortfall, which is exactly opposite of the primary objective of the energy trade .

Therefore, ensuring a reliable electricity network with zero or negligible power outages is what the Nepali utility sector should primarily aim for, at the moment . This can be done by making each component of the power system robust enough so that they are minimally affected by the internal and external disturbances, thereby avoiding breakdowns and shutdowns . It is not only essential to address the issue of unreliable electricity network because of the aforementioned increased consumption and energy trade aspect, but it is also critical because of the immense economic burden caused by the power outages on both the consumer and the utility .

Power Outages

Normally, electricity power cuts or outages can be classified into planned and unplanned outages . In planned outages, the information about the power failure is known to both the utility and the consumers, whereas there is no prior information about the unplanned outage . This happens due to several failures and other problems in the equipment of the electrical system, including the substation, transmission line, distribution line . Planned power cuts often occur during maintenance work involving power plants, transmission systems, and distribution systems . Unplanned outages are mainly caused by the faults that can occur in any subsystem or component of the

power system, for instance, generator, transformer, transmission line, distribution line, switch-gear, etc . Initial predictions of some faults can also be made, while faults such as short circuits in transmission and distribution lines are caused by bad weather such as strong winds and storms can be unpredictable .

As already mentioned, the economic burden caused by such failures is immense, both for the utility and the consumer, especially the industry . For the utility, generation failure means less energy produced and thus less energy sold leading to financial loss . On the other side, frequent power failure will, on one hand, lead to the damage of the equipment and, on the other, lead to reduced production and thereby other financial losses to the industry . According to a report published in 2003, the economic burden on the industries due to frequent planned outages was estimated to be 0 .14 USD per kWh, and that for the unplanned outages was 0 .49 USD per kWh (USAID-SA-RI/Energy Program 2003) .

In addition to the loss in production and the cost of equipment maintenance, industrial consumers are also subjected to the economic burden of installing alternate energy source like diesel plant . This, on one hand, has an adverse effect on the environment, and on the other hand, leads to higher operational cost . According to a report published by the World Bank, the online financial service provider company e-sewa had been spending about NRs 2 lakh to run their diesel plant to ensure uninterrupted in their service during the period of power outage due to the loadshedding . Although this is not entirely linked to the failure of generators, one can estimate the financial impact such breakdown has on consumers . Another report by the World Bank published in 2018 stated that the load shedding caused a deficit of about 11 billion US dollars in Nepal's GDP .

The high rate of electricity demand needs a stable and continuous supply of electrical power to consumers . Thus improvement of the operational performance of a national electric supply is important for its economic and social developments . Furthermore, faults inherent within the long operation of the generating station and aging of their associated equipment like generators and transformers typically result in the shutdown of the plant and lead to the interruption of power . Moreover, some faults are directly linked to the safety of the personnel working at the power station .

Although power failures can be attributed to several components in the power system, the breakdown of the hydro-generators and transformers due to various faults turns out to be more expensive, if the fault is not identified before the occurrence . The reason is that once a breakdown occurs, it might take several days to diagnose and maintain the machine . Moreover, in a hydro-power plant the generator and the transformer are codependent such that if one fails, the generated power cannot be transmitted to the end-consumers . Therefore, identification and the rectification of the hydro-generator and transformer faults is very important to avoid the longer breakdowns .

Prevailing maintenance practices

Reactive maintenance has been the dominant maintenance strategy in the Nepali utility sector for a long time . This strategy involves the rectification of the fault issues only after they occur . Although this maintenance strategy might look inexpensive in upfront, the high financial deficit due to the unplanned downtime often makes it an expensive strategy .

While reactive maintenance strategy has been dominant in the Nepali utility sector, it has come to notice that NEA and other private power producers have also adopted a preventive maintenance strategy such that several scheduled condition monitoring tests are performed on its generators and transformers . These tests, which are also suggested in the guidelines prepared by the Depart-

ment of Electricity Development, are supposed to be performed with an intention to “prevent” problems or failures before they take place by following routine and comprehensive maintenance procedures .

However, these offline tests do not indicate several other existing abnormalities in the generators . In the preventive maintenance strategy, the machines are overhauled routinely regardless of the condition of the machines or their parts . This involves the scheduling of routine shutdown even if they are not required . This strategy may reduce the occurrence of failures but it also leads to the increased maintenance costs due to the first, financial deficit due to unnecessary plant shutdown, and second, replacement of machine parts even if it is not required .

Therefore, it necessitates the need of a updating the maintenance strategy used in the hydropower stations in Nepal so that the number of downtimes due to faults and the duration of the downtime is significantly reduced .

Real-time condition monitoring

Condition monitoring is a process where the health of the equipment, for instance, generators and transformers, is monitored for signs of deterioration . With the information about the health, the maintenance activities can be better planned, and the downtime can be reduced, eventually reducing the costs . Generally, the monitoring of the voltages, currents, vibration, and temperature can reveal abundant information about the health of the machine . When the parameters are monitored in real-time and the maintenance is planned based on the monitored data, this strategy is called condition-based maintenance . Condition-based maintenance involves monitoring the current condition of equipment or systems using various sensors, measurements, and data collection techniques . Maintenance actions are then scheduled based on the observed condition or predetermined thresholds .

The real-time data collected together with the historical data including sensor data, maintenance records and other relevant information can be further utilized such a way as to obtain advance warning of a failure, significant cost savings can be obtained by avoiding unnecessary repair work . Such an approach is known as predictive maintenance . Predictive maintenance is the process of monitoring the health of the machines in real-time in order to predict the occurrence and the severity of the failure . With the prior information of the failure, maintenance can be planned and there is an opportunity to change only those parts that are prone to immediate damage or deterioration . With this strategy, unplanned downtime of the unit is reduced or eliminated and the risk of catastrophic failure is mitigated . The working idea of this strategy is shown below:

Investment Vs Return

While the initial outlay for the condition monitoring and predictive maintenance implementation, including the sensor installation, data acquisition hardware and software, personnel training, etc., can be significantly high, the long-term benefit often outweigh these costs. This cost saving can be attributed to reduced unplanned downtime, where some studies suggest 30-40% reduced downtime. Other than the reduced downtime, optimized maintenance scheduling and resource allocation, extended equipment lifetime, and lower spare-parts inventory costs are other factors that come into play. Some reports indicate the reduction of the maintenance costs by 25-30% compared to reactive maintenance and 8-12% compared to preventive maintenance. The long-term savings in operation and maintenance costs and the increased reliability and the availability of generating stations typically result in a substantial return on the initial investment.

In conclusion, the strategic and effective implementation of modern maintenance strategies and standards will represent a paradigm shift in ensuring reliable electricity, by directly addressing the core problem of prolonged downtimes. By continuously monitoring the health of the critical equipment, potential failures can be detected and addressed proactively, minimizing the need for extensive and unplanned outages. This is crucial to achieve the goal of maximum utilization of our abundant hydropower potential further moving closer to the net-zero emission target.

जलाशययुक्त जलविद्युत विकासमा फडको

डा. विष्णुप्रसाद गौतम

जलविद्युतको विकासका लागि नेपालले मुख्य दुई वरदान पाएको हो, एउटा प्रचुर बहने जलस्रोत, अर्को प्रचुर छाँगो पार्न मिल्ने धरातल । स्रोत बग्रेल्ती हुँदा र माग कम हुँदा स्रोतको उच्चतम उपयोग गरिँदैन । तर माग बढ्दै जाँदा स्रोतको उच्चतम उपयोग गर्ने दिशामा हाम्रो जोड हुनुपर्छ । स्रोत साधनको उच्चतम प्रभावकारिताका साथ उपभोग गर्नु नै दिगो विकासको मूल मन्त्र हो ।

वर्षमा बगेर खेर जाने र बाढी पहिरोजस्ता घटना गराउने अनि हिउँदमा पानीको अभाव हुने स्थितिबाट सुधार गर्दै जानु विज्ञान प्रविधिको दिशामा अधि बढ्दै गर्दाको हाम्रो कार्यभार हो । जलको संचय गरेर उपयोग गर्ने हाम्रो संस्कार पनि हो । सचित जलका बहुआयामिक लाभहरू हुन्छन् । लाभहरूमध्येको एक आयाम जलाशययुक्त जलविद्युत हो । यो लेखमा जलाशययुक्त जलविद्युत विकासका लागि केही सिर्जनशील उपायहरूको चर्चा गरिएको छ ।

१. जलाशयलाई हरित ब्याट्रीको रूपमा विकास गरौ

जलाशयमा आधारित जलविद्युत हरित ब्याट्री हो । विश्वमा विविध खाले ब्याट्रीको व्यापक अनुसन्धान र विकास भइरहेको सन्दर्भमा नेपालले जलाशयरूपी हरित ब्याट्रीको विकास र विस्तार गरेर विशिष्ट उपलब्धि हासिल गर्न सकछ । गरेनौं भने, समयले हामीलाई नै ठूलो परिमाणमा रासायनिक ब्याट्री किन्तुपर्ने बनाउँदैछ । ब्याट्रीमा आधारित ऊर्जा संचय प्रणाली (Battery Energy Storage System, BESS) हाल विश्वव्यापी चर्चामा रहेको अवधारणा हो र नेपालमा पनि सौर्य ऊर्जाको विकाससँगै द्यूक्क्क भित्याउने चर्चा हुन थालेको छ । उपलब्ध हरित ब्याट्रीको विकास नगरेर रासायनिक ब्याट्री आयात गर्नु बिडम्बना हुनेछ । त्यसका लागि राज्यले आफै तथा निजी क्षेत्रमार्फत जलाशययुक्त जलविद्युत विकासका लागि हरसंभव प्रयास गर्नु श्रेयष्ठ देखिन्छ । विश्वमा के-कस्ता अभ्यास छन् तिनकै सिको गर्ने मात्र नभई हामीले मौलिक उपायहरू खोज्नुपर्नेछ ।

२. नयाँ संभावना खोजी गरौ

नेपालका प्राय खोला नदीहरूमा जलविद्युत परियोजनाका लागि लाइसेन्स जारी भइसकेका छन् । प्रायः नदीप्रवाही आयोजनाको रूपमा । १००० मिटरभन्दा बढी हेड हुने परियोजनाहरू पनि छन् । ठूलो हेड हुने परियोजनामा अलिकति जल संचय गर्न सकदा पनि उल्लेख्य बिजुली निकालन सकिन्छ । तर नदीप्रवाही मनोविज्ञानमा आधारित हुँदा त्यस्ता संभावनाहरू उजागर नै हुन पाएनन् । एक हिसाबले भन्नुपर्दा थुप्रै साइटहरू ती संभावना खोजी नै नहुने ढंगले परिभाषित

भए । तर स्रोतको सीमितता हुन लाग्दा नै हो नयाँ नयाँ हिसाबले संभावनाको खोजी गर्नुपर्ने । खोला खोल्सी र नदीहरूको अध्ययन गर्दा के देखियो भने नदीप्रवाही परियोजना विकास गर्नका लागि साना ठहरिएका केही खोल्सीहरू जलाशय विकास गर्नका लागि उपयुक्त हुन पनि सक्छन् । विशेष गरी ठूला नदीमा मिसिन आउने स-साना खोलाहरूमा बहाव कम भएतापनि पर्याप्त उचाई हुन्छ । यो खालको विशिष्टता भएका खोलामध्येका केही साइटहरूमा अग्लो भूभागमा स-साना जलाशय बनाउने ठाउँ भेटिने संभावना पनि देखा पर्छ । यी खालका साइटहरू केही किलोवाट देखि १० मेगावाट स-साना जलाशययुक्त परियोजना विकासका लागि संभाव्य ठाउँ हुन सक्छन् । त्यस्ता नयाँ नयाँ संभावनायुक्त साइटहरू सरकारी तवरबाटै पनि खोजी गर्न सकिन्छ । अनि आकर्षक नीति तथा पर्याप्त सूचनाद्वारा निजी क्षेत्रलाई नयाँ संभावनायुक्त साइट खोज्ने दिशामा अग्रसर गराउन सकिन्छ ।

३. सानाबाट शुरू गरौं

जलाशययुक्त जलविद्युत विकासमा हामी धेरै पछाडि परेका छौं । नदीप्रवाही परियोजना विकासमा भने उत्साहजनक विकास गर्न सक्यौं । हिजो १८३ किलोवाट, केही मेगावाट हुँदै अहिले २-४०० मेगावाटका परियोजना नेपालकै निजी क्षेत्रले विकास गर्न लागेको छ । परिमाणमा यस्तो क्षमता विकास हुँदै जाँदा परियोजनाका किसिममा पनि नदी प्रवाहीबाट दैनिक संचयका पिकिड परियोजनासम्म विकास भइसकेको छ । विकासको यो गतिलाई अब जलाशययुक्त परियोजनामा प्रवेश गराउनु पर्दछ । यसका लागि जलाशययुक्त परियोजना भनेका ठूला हुन्छन् भने मनोविज्ञान चिन्नु आजको आवश्यकता हो । हिजो केही सय किलोवाटबाट विकास भएर केही सय मेगावाटमा पुगेजस्तै सानो आकारबाट जलाशययुक्त परियोजना विकासको मूल फुटाउने हो भने केही वर्षपछि जलाशययुक्त परियोजना विकासमा पनि उल्लेख्य फट्को मार्न सकिनेछ । कुनै नयाँ आयाम भित्तिउने विषयमा शुरूवाती सफलता अति महत्त्वपूर्ण हुन्छ । बंगलादेशमा ४० मेगावाट विद्युत निर्यात हुनुले जुन खुसी दिएको हो त्यो भनेको ४० मेगावाटको परिमाणले भन्दा पनि तेस्रो मुलुकमा विद्युत निर्यातको ढोका खुलेकोले हो । ठिक त्यसरी नै साना परियोजनाको विकासबाट शुरू गरियो भने ठूला परियोजना विकासको ढोका खुल्दै जानेछ ।

४. प्रकाशित दरको व्यवस्था गरौं

जलाशययुक्त परियोजना विकासका लागि विद्युत प्राधिकरणले २०७४ सालमा खरिद दर प्रकाशन गरेको थियो । नदीप्रवाहीको लागि सुख्खा यामको बिजुलीको प्रतियुनिट दर ८.४० रुपैयाँ हुँदा जलाशयको लागि १२.४० रुपैयाँ तोकिएको थियो । तर निजी क्षेत्रबाट संभवतः कुनै पनि परियोजना विकास हुन सकेनन् । उक्त दरको व्यवस्था कत्तिको उपयुक्त होला भनी लेखकले केही साइटहरूमा नदीप्रवाही र जलाशययुक्त परियोजनाको प्रारम्भिक तवरको तुलनात्मक अध्ययन गरेको थियो । जलाशययुक्त परियोजनाले समान जडित क्षमताको नदीप्रवाही परियोजनाले हाल पाउने वार्षिक आम्दानीभन्दा डेढ गुणा बढी (५० प्रतिशत अतिरिक्त आम्दानी) पाउने देखियो । अतिरिक्त आम्दानीमध्ये करिब ३५ प्रतिशत जति अतिरिक्त दरको कारणले गर्दा र १५ प्रतिशत जति संचय गरेको अतिरिक्त ऊर्जाको कारणले गर्दा हुने रहेछ । डेढ गुणा बढी आम्दानी हुने भएपछि प्रतिमेगावाट लागत डेढ गुणासम्म हुँदा जलाशययुक्त आयोजना आर्थिक रूपमा संभाव्य हुँदोरहेछ । ५० प्रतिशत बढी लागतले जलाशयको खर्च धान्ने हो भने जलाशययुक्त आयोजना संभाव्य हुने रहेछन् ।

जलाशययुक्त परियोजनाको लागि जलाशय एकदमै खर्चिलो संरचना हो । उदाहरणको लागि, १५ दिनसम्म १ क्युमेक

पानी प्रयोग गर्न पुगे गरी बनाउने जलाशयको आकार ६० क्युमेक पानीलाई ६ घण्टा पिकिङ्को लागि संचय गर्न चाहिने आकारको जलाशय बराबर हुन आउँछ । यो तुलनाले जलाशययुक्त परियोजनाको लागि चाहिने जलाशयको विशालताको अनुमान गर्न सधाउँछ ।

केही परियोजनाहरूको वास्तविक लागत र केही जलाशययुक्त खाकाहरूको हिसाब गर्दा के पाइयो भने जलाशय बना(उने लागत (बाँध र जलाशय क्षेत्रको लागत) नदीप्रवाही परियोजनामा बाँध तथा बालुवा थिग्राउने पोखरी बनाउँदा लाग्ने लागतको तुलनामा ४.७ गुणा बढी हुँदासम्म माथि भनिएको डेढ गुणा लागतको सीमाले भ्याउन सक्छ । भन्नाले, कुनै नदीखण्डमा १ मेगावाटको नदी प्रवाही परियोजना बनाउँदा बाँधदेखि बालुवा थिग्राउने पोखरीसम्म निर्माणिको लागत २.८ करोड लाग्ने थियो र उक्त खण्डलाई जलाशययुक्त किसिमले विकास गर्ने हो भने बाँध र जलाशयको लागि १३ करोडसम्म खच्चिदा परियोजना आर्थिक हिसाबले संभाव्य हुनसक्ने देखिन्छ । सबै ठाउँमा जलाशयका लागि उपयुक्त जमिन भेटिँदैन । भेटिने ठाउँमा पनि सबैतिर एकनाशको लागत सम्भव हुँदैन । तर कुनै कुनै ठाउँमा साना जलाशयहरूको हकमा बस्ती स्थानान्तरण र खेतीयोग्य जमिन डुबानको पाटो नआउने हुनाले प्रतिमेगावाट १३ करोडको लागतमा जल(शय बन्न सम्भव हुने आँकलन गर्न सकिन्छ । विद्युत खरिद दरमा केही थप गरेर अतिरिक्त आमदानी ५० प्रतिशतबाट ७५ प्रतिशतसम्म पुर्याउन सकेमा पक्कै केही साइटहरू आकर्षक ठहरिने संभावना देखिन्छ । तर परियोजनाहरूको यो ढंगले विस्तृत अध्ययन र विश्लेषणको चलन विकास हुन नपाउँदै जलाशययुक्त परियोजनाको प्रकाशित दरको व्यवस्था हाल हटेको छ । सायद अझ वस्तुगत प्रचलन शुरूवात गर्ने हेतुले उक्त व्यवस्था हटाएर विद्युत नियमन आयोगले त्यस किसिमका अध्ययन र विश्लेषणहरू गरिरहेको छ । तर विद्युत नियमन आयोगको अध्ययन ठूला र रणनीतिक आकारका परियोजनाको मनोविज्ञानमा सीमित रहेको पो छ कि भन्ने अनुमानमा यो लेखमा नयाँ सन्दर्भप्रति प्रकाश पार्न खोजि(एको हो । परियोजना पिच्छे लाभलागत विश्लेषण गरेर विद्युत खरिद सम्भौता गर्ने खालको परिपाटीमा जान खोजेको बुझिएको छ । राष्ट्रिय महत्त्वका ठूला परियोजनाहरूको लागि राज्यले नै परियोजना पिच्छे गहन अध्ययन र विश्लेषण गर्नुपर्छ । तर हरेक स-साना परियोजनाको हकमा त्यस खालको अभ्यास व्यावहारिक नहुने देखिन्छ । फेरि निजी क्षेत्रले हालसम्म जति विद्युत परियोजना विकास गर्न सक्यो त्यसमा एउटा महत्त्वपूर्ण आधार भनेको बिजुलीको दर पहिल्यै यकिन हुनु हो । पहिल्यै दर किटान नहुने हो र अन्तिमसम्म अनिश्चय हुने हो भने अध्ययन र डिजाइनमा लगानी गर्नु ठूलो जोखिमको विषय हुनजान्छ ।

संभावित लाभ कति हुने भने यकिन नभएसम्म लगानीकर्ता लगानी गर्न अनिच्छुक रहन्छ । त्यसैले साना परियोजनाको हकमा पोस्टेड रेट (प्रकाशित दर) को व्यवस्था नै उपयुक्त हुन्छ । त्यसैले जलाशययुक्त परियोजनालाई दुई किसिममा वर्गीकरण गर्नु उपयुक्त हुनेछ । पहिलो मूलत हाल विद्युमान मनोविज्ञानमा आधारित ठूला र रणनीतिक खालका । दोस्रो स्वदेशी अनुभव, सिप र लगानीमा सानै तवरले पनि विकास गर्न सकिने सानो खालका (भनौं १० मेगावाटसम्मका) । यसरी वर्गीकरण गरेर दुई खालका नीतिगत व्यवस्था गर्नु बढी वैज्ञानिक हुनसक्छ । सानाको हकमा केही मोडेल परियोजनाहरू विश्लेषण गरेर विद्युतको खरिद दर प्रकाशन गर्नु राम्रो हुनेछ । यस्तो दरलाई अधिकतम दर मानेर ठूला परियोजनाको हकमा प्रतिफलको विश्लेषण गरी सोभन्दा कममा सहमति गर्न सकिन्छ । पहिलेकोभन्दा बढी व्यवह(ारिक शर्तहरू तथा बढी वैज्ञानिक दर तय गरियोस् । जलाशययुक्त भएबापत वर्षाको बिजुलीलाई पनि बढी दर दिने परिपाटीको सद्वा संचित ऊर्जाको मात्रै उल्लेख्य बढी दर दिने परिपाटी बढी उपयुक्त हुनसक्छ । ठूलो परियोजनाहरूमा चाहिने ठूलो पूर्वतयारी, ठूलो लगानी, ठूलो प्रविधि, ठूलो जोखिम, ठूलो विश्लेषण आदिका कारण लामो समय

लागिरहँदा केही साना परियोजनाहरू विकास भइसक्नेछन् । होइन, ठूला परियोजनाका लागि मात्रै नीति केन्द्रित भयो भने साना संभावनाहरू कहिल्यै उजागर नहुने गरी ओभेल पर्न सक्नेछन् । ठूलो महत्वकांक्षा बोकेर देशले “सक्ने नगर्ने, गर्न खोज्ने नसक्ने” को नियति नभोगोस् ।

५. जलाशयलाई अर्ध-प्राकृतिक संरचना भनी परिभाषित गरौँ

नदीप्रवाही आयोजनामा बहाव र हेड दुई मुख्य निर्णायक तत्त्व हुन् । भूगर्भ र धरातलका विषय पनि महत्वपूर्ण हुन्छन् तर बहाव र हेडको आधारमा परियोजनाको मोटामोटी आँकलन गर्न सकिन्छ । परियोजनाका अन्य अंगहरू मानव निर्मित संरचना हुने गर्छन् । तर जलाशययुक्त आयोजनाको सन्दर्भमा जलाशयको उपलब्धतालाई तेस्रो निर्णायक तत्त्व मान्नु उपयुक्त हुन्छ । कृत्रिम पोखरी बनाउने लघु आकारका परियोजनाको सन्दर्भलाई छोड्ने हो भने जलाशयको संरचना पूर्णतः मानव निर्मित होइन । बाँध बाँधेर जलाशय सिर्जना गरिने भएतापनि प्रकृतिमा उपलब्ध खाँच वा खा(डललाई नै जलाशय बनाइने हुँदा जलाशय प्राकृतिक खालको संरचना हो । यो प्रकृतिका जलाशयलाई अर्ध-प्राकृतिक संरचना भन्नु उपयुक्त हुन्छ । यसरी भन्नुको विशेष अर्थ छ, त्यो के भने हाम्रो शर्तमा आधारित रहेर जलाशय बनाउने नभई प्रकृतिमा उपलब्ध आकार र क्षमतामा जलाशय बनाउन सकिने सोच ल्याउँ । जलाशय बनाउन उपयुक्त जीमिन सबै खोला नदीमा समान रूपमा उपलब्ध हुँदैन । कुनै कुनै ठाउँमा चाहिँ जलाशयका लागि उपयुक्त खाँच वा खाडल उपलब्ध भइदिन सक्छन् जबकि बहाव र हेडको सुत्र र मापदण्डमा त्यो द्र्याकै फिट नहुन सक्छ । लागत प्रभावी हिसाबले अनुकूलतम आकारको बन्ने जलाशय क्यू ४० बराबरको बहावको लागि अथवा ३५ प्रतिशत सुख्खा यामको ऊर्जाको लागि भनेर फिट नहुन सक्छ । जलाशययुक्त जलविद्युतको शर्तमा फिट गराउन खोज्दा असफल घोषित गर्नुपर्ने केही साइटहरू जलाशयको आकारले खाम्ने तहको मात्र संचय गर्ने अवधारणा ल्याउने हो भने आकर्षक जलाशय बन्न सक्छन् । यो कित्ताको संभावना भएका परियोजनाहरूको लागि जिति सकिन्छ त्यति ऊर्जा संचय गर्ने गरी र संचित ऊर्जाको मात्र विशेष दर प्रदान गर्ने गरी व्यवस्था गर्न सकदा हामीसँग उपलब्ध स्रोतको समुचित उपयोग हुन सक्ने छ ।

६. संचित ऊर्जाको मात्र बढी दर दिएर पनि हरित व्याट्रीको प्रोत्साहन गरौँ

जलाशय तथा पम्प जलाशय परियोजनामा दुई आधारबाट लाभ सुनिश्चित गर्ने सामान्य अभ्यास पाइन्छः क) जडित क्षमताको आधार र ख) संचित ऊर्जाप्रिवाहको आधार । पूर्ण क्षमतामा १५ दिन चल्नेगरी जलाशय बनाउनुपर्ने प्रावध(नले जडित क्षमताको आधार समेत टेकेको हुन्छ । प्रणाली संचालनका लागि यस्ता शर्तहरू महत्वपूर्ण हुन्छन् । तर हाल प्रचलनमा आउँदै गरेको BESS को अवधारणामा विकास भएका सौर्य प्लान्टहरूले जडित क्षमताको आंशिक क्षमतामा मात्र BESS राख्ने प्रचलन देखिन्छ । त्यसरी सोच्ने हो भने जलाशयको संचित ऊर्जालाई पनि जडित क्षमतासँग जोडेरै हेर्नुपर्छ भन्नु जस्ती रहेन । माथि भनिए भैं जलाशय अर्ध-प्राकृतिक संरचना भएको हुँदा जहाँ जिति क्षमताको उपयुक्त हुन्छ त्यही आकारको जलाशय बनाउन दिने हो भने उच्च हेड भएका परियोजनाहरूले सानो जलाशय बनाएर पनि उल्लेख्य संचित ऊर्जा निकालन सक्ने देखिन्छ । जस्तो, १५ दिनको पूर्ण क्षमताको बहाव बराबरको संचय गर्नुपर्ने मापदण्डमा रहेर एउटा परियोजनाको परिकल्पना गरौँ । मानौं, १००० मिटर हेड र ६.५ क्युमेक बहाव भएको ५० मेगावाटको एउटा नदीप्रवाही परियोजना छ । उच्च पहाडमा बाँध बाँध्नुपर्छ । १५ दिनको बहाव संचय गर्न धेरै ठूलो जलाशय चाहिन्छ जुन संभव देखिँदैन । तर ०.६५ क्युमेक मात्र बहाव संचय गर्ने जलाशय बनाउने हो भने १० गुणा सानो जलाशय बनाए पुछ र त्यस्तो स्थल भेटिन सक्छ । यस्तोमा ५ मेगावाटको जलाशययुक्त परियोजना संभव देखिने

भयो । यसरी ५० मेगावाटको नदीप्रवाही ८ ५ मेगावाटको जलाशययुक्त परियोजना गाभिएको रूपमा बुझन सकिने भयो । ५ मेगावाटको जलाशययुक्त परियोजनाको संचित ऊर्जाको लागि आकर्षक दर पाउने हो भने निजी क्षेत्रले यो अवध(रणामा पकै विश्लेषण गर्न थाल्नेछ । उपलब्ध स्रोतको समुचित प्रयोगका लागि संचित ऊर्जालाई जोड दिने सोच खुला गर्नु उपयुक्त हुनेछ । कानुनमा एकैपटक सबै सुविधाहरू समेट्न नसकिएला तर कानुनी व्यवस्था यस्ता नबनून् कि तिनले यस्ता नयाँ खालका संभावनाहरूलाई निरुत्साहित गरून् ।

७. जलाशय क्षेत्रलाई जमिनको नयाँ वर्ग तोकौं

वन ऐन २०७६ को प्रावधान हेर्ने हो भने प्रचलित कानुनले अन्यथा व्यवस्था गरेको बाहेक नदी, खोलानाला, बगर, मैदान, खर्क, तालतलैया, नाङ्गो पहाड आदि क्षेत्रलाई वन क्षेत्र मानिएको छ । कतै जलाशय बनाउनु परेमा यस्ता क्षेत्रहरू चाहिने हुन्छन् । ती क्षेत्रलाई वनक्षेत्र मानेर सो अनुरूप वातावरणीय प्रभाव मूल्यांकन गर्नुपर्छ । नदीप्रवाही आयोजना बनाउँदा त ठूलो सास्ती खेप्नुपरेको अवस्थामा जलाशय बनाउने कुरा थप चुनौतीपूर्ण बनेको छ । जलाशय विकास गर्ने विषयले आकर्षण पैदा नगर्नुको एउटा कारण वातावरणीय प्रभाव मूल्यांकन बनेको छ ।

हामी जलस्रोतमा धनी छौं तर वर्षको तीन चौथाइ वर्षा चार महिनामा हुन्छ । यस्तो वर्षाका कारण पानीको ठूलो हिस्सा बगेर जान्छ । उपयोग त हुँदैन नै, उल्टो विपत्ति निम्त्याउँछ । पानीको त्यो विशाल परिमाण थुनेर राख्ने संरचना बन(उन पनि सकदैनौं । यस्तो अवस्थामा हजारौंको संख्यामा स-साना जलाशय बनाउनु पानी सञ्चय गर्ने उत्तम विकल्प हो । जलवायु परिवर्तन भइरहेको र मूल सुकिरहेको वर्तमान परिवेशमा देशभर हजारौं जलाशय बनाउनु आजको आवश्यकता भएको छ, दिगो विकासको उपाय भएको छ । यस्ता जलाशयबाट खानेपानी, सिँचाइ, बाढी नियन्त्रण, जलचर र थलचरको आवश्यकता पूर्ति, वनस्पति संरक्षण, पर्यावरण प्रवर्द्धन, पर्यटन लगायतका बहुलाभ लिन सकिन्छ । सिँचाइका लागि निर्मित कृत्रिम जगदीशपुर ताल चराको अन्तर्राष्ट्रिय तीर्थस्थल बनेको छ । यसरी हेर्दा जलाशय बनाउनु वातावरण संरक्षणका लागि अपरिहार्य छ । जलाशयले वातावरण विनाश गर्ने नभई वातावरण संरक्षणका लागि जलाशय बनाउनुपर्ने भएकोले कानुनी व्यवस्था गरेरै “जलाशय क्षेत्र” भने जमिनको नयाँ वर्गाकरण थप गरैं । यस्तो व्यवस्थाले जलाशययुक्त परियोजना विकासमा ठूलो फइको मार्न सकिनेछ । वातावरणीय प्रभाव मूल्यांकन त गर्नुपर्छ नै तर सकारात्मक प्रभावलाई उच्च महत्त्व दिँदै जलाशय विकासको कुरालाई वातावरणीय आयामबाट निरुत्साहित नभई प्रोत्साहन गरैं । विशेषतः साना खालका जलाशयहरूको सकारात्मक प्रभाव अत्यधिक हुने र नकारात्मक प्रभाव नगण्य हुने हुँदा एउटा निश्चित आकार तोकेर सो सम्मका जलाशय निर्माणका लागि एकदमै खुकुलो र प्रोत्साहनमूलक व्यवस्था गर्नु उपयुक्त हुनेछ । बहुउद्देश्यीय परियोजना विकासका लागि थप प्रोत्साहन राख्न सकिन्छ ।

८. विद्युत प्राधिकरणमा आधार दरको व्यवस्था गराँ

नेपालका वाणिज्य बैंकहरू राष्ट्र बैंकको नियमनमा प्रभावकारी तवरले संचालनमा छन् । बैंकहरूमा व्याजदरको एउटा अभ्यास प्रचलनमा छ, त्यो हो आधार व्याज दर अर्थात बेस रेट । हेरेक बैंकले महिनैपिच्छे बेस रेट प्रकाशन गर्न्छ । कर्जाका दरहरू आधार दर र प्रिमियम जोडेर निर्धारण गरिन्छ । बचत र मुद्द्रातिमा दिइने व्याज दर पनि आधार दरमा प्रतिबिम्बित हुन्छ । आधार दर र प्रिमियमको अवधारणालाई नेपाल विद्युत प्राधिकरणमा भित्याउनु अति उपयुक्त देखिन्छ । प्राधिकरणमा आफ्नै प्लान्टबाट, निजी क्षेत्रबाट तथा आयातबाट समेत बिजुली भित्रिन्छ । फरक क्षेत्रबाट लिने दर फरक छ भने निजी क्षेत्रका प्लान्टबाट लिने दर समेत पिपिएका प्रावधानका कारण फरक हुन्छ । आफ्ना प्ला(

न्तहरू पनि कुनै नयाँ छन् भने कुनै पुराना छन् जसमा संचालन लागत मात्रै हिसाब गर्दा पुग्ने हुँदा एकदमै सस्तो बिजुली निस्किन्छ । आयात गर्दा महँगोमा पनि किन्नुपर्छ । यी सबै बिजुली खरिदको भारित औसत दर निकालेर त्यसलाई आधार दर भनी प्रकाशन गर्ने व्यवस्था गर्नु उपयुक्त हुनेछ । अनि बिजुली बेच्ने दरलाई आधार दर प्लस प्रिमियमको अवधारणा ल्याओँ । न्युनतम खपत गर्ने परिवार तथा कृषि सहुलियत दिनुपर्ने क्षेत्रमा माइनस प्रिमियम पनि हुन सक्ला । प्रयोजनपिच्छे फरक प्रिमियम तोक्न सकिन्छ । किन्दा वर्षा र हिँडको फरक दर भएजस्तै याम तथा समयपिच्छे फरक प्रिमियम तोक्न सकिन्छ । सबै प्रिमियम एकैपटक लागू गर्न नसकिएला तर आधार दर र प्रिमियमको अवधारणा अंगीकार गरेपछि क्रमशः लागू गर्दै जान सकिन्छ । यो अवधारणाले बिजुली किनबेचमा अत्यन्त पारदर्शी तथा वैज्ञानिक निर्णय लिनका लागि महत्त्वपूर्ण आधारशीला प्रदान गर्नेछ । यसकै आधारमा जलाशययुक्त परियोजनाका लागि करित दर दिने भनी तय गर्न सहज हुनेछ । हामीले निरन्तर सिर्जनशील उपायहरू अबलम्बन गरेर नेपालको ऊर्जा विकासमा महत्त्वपूर्ण उपलब्धि हासिल गर्न सक्नेछौं ।

Dispatching and Scheduling of Power, its importance and the role of Load Dispatch Centre

Ms . Ranju Pandey ¹

1. Introduction

Load Dispatch Centers LDCs are like the “control towers” of the power grid (Kulkarni, 2010) . In Nepal, the Load Dispatch Center (LDC) under NEA (Nepal Electricity Authority) is responsible for Real-time balancing of generation and load . The Load Dispatch Centers are responsible for ensuring grid frequency and voltage stability, managing power imports/exports, integrating variable renewable energy sources, handling outages and emergencies and more (Hasan Prishtina, 2023) .

Since there are number of challenges to supply electricity, production must be aligned with demand . Because demand varies significantly across the day, week, and seasons, generation costs differ widely, and both expected and unexpected transmission network conditions impact operations, all these factors must be considered when selecting generating units for dispatch . In order to deliver a reliable supply of electricity, scheduling and dispatching plays an essential role

Scheduling refers to planning which power plants will generate electricity, how much, and when based on forecasted demand, generation availability (especially variable renewable energy like solar/wind), and grid constraints . (CERC INDIA, 2015)

Dispatching is the real-time operation of turning those scheduled plans into action . It adjusts generation outputs to balance supply and demand second-by-second . (Yang1, 2023)

Dispatch and scheduling are essential pillars of a reliable, economical, and sustainable power system (Electric Power System Planning, 2021) . In Nepal, where the system is rapidly evolving with greater renewable integration and regional connectivity, ensuring grid reliability, enabling efficient power trading, and optimizing the use of hydro and solar resources are increasingly critical .

2. Importance of proper dispatching and scheduling

Efficient Use of Resources

Nepal has a mix of run-of-river hydro, reservoir-based hydro, and now solar power . Proper scheduling helps maximize water use during dry seasons and prioritize cheap generation (Adhikari, 2021) . Integration of Variable Renewable Energy (VRE) is very challenging as more solar power is going to be added in the system (Emmanuel Ejuh Che 1, 2025) . With the increase of variable renewable energy and hydropower (Mainly ROR plants) in the system, scheduling has become more critical to manage fluctuations and uncertainty . Therefore, real-time dispatch should respond to sudden changes in solar output (e .g ., clouds or sunset) . (Emmanuel Ejuh Che 1, 2025)

Maintaining Grid Stability

¹ The authoress is assigned to the Nepal Electricity Authority in the capacity of Director .-- Editors

Nepal's grid is relatively small and highly sensitive to imbalances . Effective dispatching is crucial to maintaining voltage levels, especially during peak and off-peak load hours, while managing transmission outages remains a significant challenge . Nepal's geography makes the mountainous regions ideal for hydropower generation . However, since most of the load is concentrated in the lower Terai belt, this requires constructing long transmission lines through difficult terrain, making repair and maintenance challenging . During the wet seasons, voltage is typically high on the generation side and low on the load side . Furthermore, Nepal's grid is highly vulnerable to natural calamities and line constraints, such as overloading, making it essential to maintain grid stability and ensure quick restoration in case of system failures . (Hongchen)

Import/Export Coordination

Nepal is involved in the import and export of electricity with India . Recently with the increase of hydropower generation, Nepal is also exporting power to Bangladesh through Indian grid and tripartite agreement . In this context, precise scheduling is crucial to avoid penalties under cross-border power trading agreements and ensure reliable supply during shortages or surpluses .

However, Nepal Electricity Authority have done Power Purchase Agreements with the Independent power Producer, making it mandatory to prioritize these plants . Additionally, the dispatch system encounters significant challenges, including limited automation and frequent forecasting errors, especially with renewable energy and hydropower . This is compounded by the ongoing decline in discharge levels, driven by the impacts of global warming .

3. Responsibilities of the System Operator

Like other countries, Nepal's System Operator primarily focuses on developing daily and real-time generation schedules based on demand forecasts and generator availability . Additionally, coordinating with generators and distributors to collect the necessary data for scheduling is a key responsibility . Furthermore, operators manage the real-time dispatch of electricity to ensure stability and meet demand . (Yang1, 2023)

a) Generation Scheduling Principles

The major principle of scheduling the generation is Merit Order Dispatch . This prioritizes the dispatch of electricity from generators based on cost-effectiveness and efficiency . Similarly, the generators need to do the Availability Declaration . That means the Generators are required to submit their available capacity and maintenance schedules to the System Operator . Outage planning is mainly to minimize disruptions and maintain grid reliability . (Hongchen)

b) Dispatch Procedures

Dispatching involves real-time monitoring, which includes continuous observation of grid conditions to make necessary adjustments . Additionally, emergency handling requires the implementation of predefined procedures to restore normal operations promptly . To ensure coordinated actions, sound communication protocols are essential for effective communication between all stakeholders . (The Scheduling and Chapter 3: The Scheduling &

4. Importance of Load Dispatch Centre in Power Dispatching:

The Load Dispatch Centre plays a crucial role in maintaining real-time grid balance by matching generation with load demand, preventing overloading or underutilization of resources . (Kamboj, 2024) . It also determines which power plants to operate based on factors such as cost, availability, fuel type, and demand patterns . A key responsibility is ensuring that frequency and voltage

stay within permissible limits, and responding quickly to faults or load imbalances to prevent grid collapse . Additionally, the Centre manages the variable nature of solar and wind generation, forecasting output, and adjusting reserves accordingly . The Centre also coordinates responses during emergencies, handling issues like generator trips, line faults, or extreme weather events . As the nerve center for SCADA (Supervisory Control and Data Acquisition) systems, the Centre facilitates communication and control between power generators, substations, transmission operators, and market participants . Effective coordination during emergencies is essential for managing contingencies and initiating load shedding to prevent blackouts . In essence, the Load Dispatch Centre is the brain of the power system, ensuring electricity flows reliably and efficiently, especially in grids with high renewable energy shares . (Rexhepi, 2024)

5. Economic Dispatch Practices

- i. Conventional Economic Dispatch (Manual or Centralized):
- ii. This method is primarily used in vertically integrated utilities . The Load Dispatch Centre dispatches generators based on marginal cost . (Farsi, 2015)
- iii. Security-Constrained Economic Dispatch (SCED):
- iv. In this approach, both generation costs and network security constraints are considered (e.g ., line limits, N-1 conditions) . (Sonee, 2024)
- v. Security and Emissions-Constrained Economic Dispatch (SECED):
- vi. SECED is an advanced version of Economic Dispatch (ED) that not only aims to minimize the cost of power generation but also incorporates grid security constraints and environmental emissions . (Chattopadhyay, 2025)
- vii. Real-Time Market-Based Dispatch:
- viii. Dispatch is based on real-time market bids from generators . The lowest-cost bids are dispatched first (merit order) .
- ix. Decentralized or Quota-Based Dispatch:
- x. This method is not purely economic and follows fixed quotas or must-run instructions for certain generators . The cost is not fully optimized .

11. Conclusion and Recommendations

The Load Dispatch Centre of Nepal primarily dispatches generators based on their availability and the system's operational requirements . The country's energy mix is predominantly composed of hydropower, with 96% of its electricity generated from hydropower plants . Furthermore, 65% of the power is generated from Run-of-River plants, which are the must run plants, with generation levels fluctuating according to seasonal variations . Most of the power purchase agreement are based on feed in tariff, and these agreements pertain to must run generators . Although, Nepal dispatches PROR (Peak-Run-of-River) plants and storage plants in an economically and efficient manner, the country's dispatch system is not fully optimized .

However, Nepal's power system is evolving rapidly, with increased hydropower penetration, growing cross-border electricity trade, and efforts to integrate solar (VRE) . Therefore, to manage secure dispatch when run-of-river plants and Solar PV power fluctuate due to with the changes in discharge and solar intensity, respectively, it is essential to optimized use of storage hydro, IPP

projects, and imports/exports while maintaining voltage and frequency stability . Furthermore, it is essential to coordinate dispatch while considering grid constraints, particularly in relation to transmission bottlenecks and remote generation sources .

12. References

- Adhikari, D . (2021) . Hydropower Development in Nepal . Retrieved from https://www.nrb.org.np/contents/uploads/2021/09/vol18_art4.pdf
- CERC INDIA . (2015) . *Framework on* . Retrieved from <https://www.cercind.gov.in/2015/regulation/SOR7.pdf>
- Chattopadhyay, D . (2025) . Security and Emission Constrained Economic Dispatch (SECED): Application for India . Retrieved from https://www.researchgate.net/publication/390705736_Security_and_Emission_Constrained_Economic_Dispatch_SECED_Application_for_India
- (2021) . *Electric Power System Planning* . Retrieved from <https://www.sciencedirect.com/topics/engineering/electric-power-system-planning>
- Emmanuel Ejuh Che 1, 2 . . . (2025) . *The Impact of Integrating Variable Renewable Energy Sources* . Retrieved from <https://www.mdpi.com/1996-1073/18/3/689>
- Farsi, F . A . (2015) . Economic Dispatch in power systems . Retrieved from https://www.researchgate.net/publication/282901269_Economic_Dispatch_in_power_systems
- Hasan Prishtina . (2023) . The dispatch center's role in the power grid operation and . Retrieved from <https://ev.fe.uni-lj.si/1-2-2023/Rexhepi.pdf>
- Hongchen . (n .d .) . *Security Constrained Economic Dispatch (SCED)* . Retrieved from <https://www.aeso.ca/assets/Uploads/3.3-SCED-Overview-by-PJM.pdf>
- Kamboj, E . A . (2024) . *Load Dispatch Center | Types, Function, and Objective* . Retrieved from Load Dispatch Center | Types, Function, and Objective: https://www.engineeringa2z.com/load-dispatch-center-types-function/#google_vignette
- Kulkarni, M . P . (2010) . *Infrastructural Analysis of Load Dispatch Centre* . *Research gate* . Retrieved from https://www.researchgate.net/publication/43656139_Infrastructural_Analysis_of_Load_Dispatch_Centre
- Rexhepi, V . (2024) . Challenges and role of the dispatch centre in the management of the power transmission system- a summary analysis . Retrieved from https://www.researchgate.net/publication/379237037_Challenges_and_role_of_the_dispatch_centre_in_the_management_of_the_power_transmission_system-_a_summary_analysis
- Sharma, P . (2024) . *Long-term Power Purchase Agreement:* . Retrieved from ISAS Briefs: <https://www.isas.nus.edu.sg/papers/long-term-power-purchase-agreement-a-win-win-deal-for-nepal-and-india/>
- Sonee, S . (2024) . Adopting SCED with Linear Program .
- The Scheduling and Chapter 3: The Scheduling & . (n .d .) . Retrieved from <https://www.sem-o.com/sites/sem-o/files/training/modules/tso-scheduling/The-Scheduling-and-Dispatch-Process.pdf>

- Yang1, Z . (2023) . *Revisit power system dispatch: Concepts, models, and solutions* . Retrieved from https://www.researchgate.net/publication/371320386_Revisit_power_system_dispatch_Concepts_models_and_solutions
-

Hydropower Cost Benchmarking

Rabin Shrestha

Senior Consultant

Electricity Economics and Planning

Introduction

Nepal possesses substantial hydropower resources, and its power system heavily relies on hydroelectric generation. This abundant potential not only holds the promise of meeting Nepal's domestic energy needs but also positions the country to contribute significantly to the growing clean energy demands of regional markets. However, despite this vast resource, Nepal has only developed a fraction of its total hydropower capacity. While recent years have seen an increase in hydropower generation, it still falls short of meeting peak demand periods, leading to potential energy shortages.

Robust hydropower cost benchmarking is an indispensable tool for the electricity regulator in Nepal. It provides the necessary transparency and data-driven insights to effectively fulfill its core mandates. By establishing reliable cost benchmarks, the regulator can:

- **Ensure Fair Tariff Setting:** Benchmarking enables the evaluation of cost claims from hydropower developers, facilitating the establishment of tariffs that are both remunerative for investors and affordable for consumers, preventing price gouging and fostering a sustainable energy market.
- **Promote Efficient Project Development:** By providing a clear understanding of typical and efficient cost structures, benchmarking encourages developers to optimize project design and execution, minimizing unnecessary expenditures and ultimately leading to lower electricity costs.
- **Facilitate Informed Decision-Making:** Reliable cost data empowers the regulator to make informed decisions regarding project approvals, tariff adjustments, and the overall planning of the power sector, ensuring alignment with the least-cost generation expansion plan.
- **Enhance Transparency and Accountability:** Publicly available cost benchmarks increase transparency in the hydropower sector, fostering accountability among developers and building trust with consumers.
- **Attract Sustainable Investment:** A transparent and predictable regulatory environment, underpinned by sound cost benchmarking, can attract responsible and long-term investments in Nepal's crucial hydropower sector.
- **Monitor Sector Performance:** Tracking project costs against established benchmarks allows the regulator to monitor the efficiency and competitiveness of the hydropower industry over time, identifying areas for improvement and policy adjustments.

The cost and technical characteristics of hydropower projects vary significantly based on site-spe-

cific conditions . These variations arise primarily from differences in river profiles, geological formations, hydrological patterns, and other environmental factors . For instance, the steepness of the terrain, the type of rock formations, and the river's flow rate directly influence design complexity, construction challenges, and overall project costs . Given these site-dependent differences, establishing benchmark costs for hydropower projects is essential for effective cost estimation, planning, and comparison .

Therefore, there is a need to establish the cost benchmarks for hydropower projects by disaggregating costs into individual components (e.g., civil works, electromechanical equipment, land acquisition) and categorizing projects according to type (e.g., run-of-river, reservoir), size (generating capacity in MW), and head .

The typical cost breakdown for hydropower projects is as follows:

- Civil Works (40–60% of total cost): This category includes the construction of the dam and reservoir, water conveyance system, powerhouse, and tailrace channel .
- Electromechanical Equipment (15–25% of total cost): This includes turbines and generators, transformers and switchgear, and control and automation systems .
- Transmission Infrastructure (5–15% of total cost): This covers substations and transmission lines .
- Environmental & Social Costs (5–10% of total cost): This category includes land acquisition and resettlement, as well as environmental mitigation measures .
- Engineering & Project Management (5–10% of total cost): This encompasses feasibility studies and design, along with project supervision .
- Operation and Maintenance: These are ongoing costs required to keep the plant operational and include personnel and labor, routine maintenance, major overhauls, dam safety and monitoring, and sediment management .

Method

There are two primary approaches to hydropower cost benchmarking: industry cost benchmarking and peer cost benchmarking . Industry cost benchmarking evaluates hydropower costs within a broader industry framework, while peer cost benchmarking compares the costs of similar hydropower projects within a specific country . In the case of Nepal, peer cost benchmarking is the more appropriate approach, as it provides a localized cost comparison that accounts for regional factors and project-specific conditions .

There are two complementary approaches to for the cost driver analysis First, an aggregate approach will examine the total cost of the project, identifying the key factors that influence overall cost . This provides a broad perspective on cost dynamics and helps identify the overall linkages . Second, a disaggregated approach will analyze individual cost components, such as civil works, electromechanical equipment, transmission infrastructure, and environmental mitigation measures . This detailed breakdown will offer deeper insights into the specific cost drivers of each project component, enabling more precise benchmarking .

a) Aggregate Method

Under the aggregate approach, energy density and linear power density is related to the overall cost of hydropower . The **Energy density** of a hydropower plant is a measure of its efficiency in

converting available water flow into electricity . It is typically expressed in **kWh per cubic meter (kWh/m³)** of water used . The **Linear power density** is a measure of how much hydropower can be generated per unit length of a river . It helps assess the energy potential along a stretch of a river and is useful for evaluating hydropower feasibility .

Empirical Relationship Between Energy Density and Cost

Energy Density (ED) in hydropower is defined as: $ED = E/V$

Where:

- ED = Energy Density (MWh/m³)
- E = Annual Energy Output (MWh/year)
- V = Total Volume of Water Used (m³/year)

Alternatively, from the hydropower equation: $ED = \eta \rho g H$

Where:

- η = Turbine Efficiency (~0.85)
- ρ = Water Density (1000 kg/m³)
- g = Gravitational Acceleration (9.81 m/s²)
- H = Head Height (m)

The Levelized Cost of Energy (LCOE, \$/MWh) can be expressed as:

$$LCOE = \sum(C_t + O_t) / \sum(E_t)$$

Since Energy Density (ED) affects total energy output (Et), an empirical inverse relationship has been observed:

$$LCOE = a \cdot ED^{-b}$$

where: a, b = Empirical coefficients based on hydropower case studies . Typically, a range between **80–150** and b is generally **0.4 to 0.6**, depending on project type . From global hydropower projects, the following trends have been observed:

Energy Density (MWh/m ³)	LCOE (\$/MWh)
0.0001 MWh/m ³	120 \$/MWh
0.0005 MWh/m ³	85 \$/MWh
0.001 MWh/m ³	60 \$/MWh
0.005 MWh/m ³	40 \$/MWh

Empirical Relationship between Linear Power Density and Cost

Linear Power Density of a hydropower is defined as: $P_L = P/L$

or expanding from the hydropower equation: $P_L = \eta \rho g Q H / L$

Where:

- P_L = Linear power density (W/m or MW/km)
- P = Total available hydropower (W or MW)
- L = Length of the river stretch (m or km)
- Q = Flow rate (m^3/s)
- H = Head (m) or total drop in elevation over length L

From empirical studies and cost benchmarks of hydropower projects worldwide, researchers have observed an approximate inverse power-law relationship between Linear Power Density (P_L , MW/km) and Levelized Cost of Electricity (LCOE, \$/MWh):

$$LCOE = a \cdot P_L^{-b}$$

Where:

- LCOE = Levelized Cost of Energy (\$/MWh)
- P_L = Linear Power Density (MW/km)
- a, b = Empirical coefficients (determined from real-world data)

Typically, a range between 80–150 and b is generally 0.3 to 0.6, depending on regional factors and plant design. From global hydropower project data, the following trends have been observed:

Linear Power Density (MW/km)	LCOE (\$/MWh)
5 MW/km	120 \$/MWh
10 MW/km	85 \$/MWh
20 MW/km	65 \$/MWh
40 MW/km	50 \$/MWh
80 MW/km	40 \$/MWh

b) Disaggregated Method

To gain a more granular understanding of cost drivers, a disaggregated approach focuses on establishing empirical relationships between individual cost components and key project attributes specific to Nepal. The project attributes influencing hydro power project costs within Nepal, including:

- Available head,
- underground/surface works
- hydrology,

- distance from the load center .
- Geological and geotechnical risks
- Environmental and social mitigation costs
- Access and logistics costs
- Impact of climate change (e .g ., glacial melt, altered river flows, monsoon flooding)
- Regulatory and permitting complexities

Conclusion

This paper has underscored the critical importance of robust cost benchmarking for the sustainable development of Nepal's significant hydropower resources . As Nepal strives to expand its generation capacity through a least-cost generation expansion plan and establish fair tariffs for independent power producers, accurate and context-specific cost benchmarks are indispensable .

The analysis highlights the limitations of relying on aggregated cost figures due to the inherent variability of hydropower projects based on site-specific conditions . To address this, the paper proposes a two-pronged approach: aggregate benchmarking using energy density and linear power density as key indicators, and a more detailed disaggregated benchmarking method that examines individual cost components in relation to critical project attributes relevant to Nepal's unique geographical and developmental context .

Moving forward, the establishment of a comprehensive database of historical and ongoing hydropower projects in Nepal, coupled with rigorous data collection and analysis, is essential for developing reliable empirical coefficients for both aggregate and disaggregated benchmarking . This localized data will enable more accurate cost projections, facilitate better investment decisions, and ultimately contribute to a more efficient and affordable expansion of Nepal's hydropower capacity, supporting its energy independence and its potential role as a regional clean energy provider . Further research should focus on quantifying the impact of the identified cost drivers and refining the empirical relationships to create practical and user-friendly cost benchmarking tools for stakeholders in Nepal's hydropower sector .

In essence, hydropower cost benchmarking equips the electricity regulator with the evidence-based framework needed to create a stable, efficient, and equitable hydropower sector that serves the best interests of both the nation and its consumers .

TARIFF-INDUCED FINANCIAL DISTRESS IN COMMUNITY RURAL ELECTRIFICATION ENTITIES OF NEPAL¹

Prof. Dr. Ram Kumar Phuyal² and Er. Sher Singh Bhat³

Abstract

This study diagnoses both intrinsic and extrinsic factors behind the financial distress of Community Rural Electrification Entities (CREEs) in Nepal. Intrinsic factors include the legal incapacity of CREEs to file their own tariff cases and their consumer portfolio, which is dominated by highly subsidized categories, creating a mismatch with the Nepal Electricity Authority (NEA) framework. Extrinsic factors are identified as regulatory oversights and implementation gaps under the Tariff Order 2021 concerning Community Wholesale Consumers.

To address these issues, the study recommends several corrective measures. First, a legal framework should be developed to allow CREEs to file individual or collective tariff cases. Until such a legal arrangement is enacted, CREEs must adapt to existing conditions. Second, extrinsic regulatory oversights should be rectified: the minimum charge should be based on the number of bulk metered offtake points ("n × 30"), energy charge exemptions should account for distribution losses (set at "N × 25" units), a flat energy charge of Rs 6/kWh should apply beyond the exempted volume for both MV and LV consumers, and NEA should issue a single consolidated bill per CREE.

For CREEs that remain financially unsustainable despite these adjustments, an administrative option to shift from the Franchisee Model to a Service Contract Model should be provided. If viability is not achieved even then, CREEs should exit, transferring assets to NEA with reimbursement of their financial contributions. In the long term, the government is advised to restructure the rural distribution sector by establishing a Rural Electrification Board (REB), allowing CREE-specific tariffs. Additionally, to boost electricity consumption and substitute fossil fuels, a distinct tariff policy separating rural and urban consumers—modeled after Thailand's successful practice—should be introduced.

Keywords:

1 This is the extracted version of the study we conducted in the initiative of GIZ and ERC. We acknowledge the technical support of GIZ and its experts engaged in the study.

2 Dr. Phuyal is an expert professor of economics, development planning, and public policy analysis at Centre for Economic Development and Administration (CEDA), and former senior member of National Planning Commission of Government of Nepal.

3 Er. Bhat is senior expert of electrification, and former deputy CEO of Nepal Electricity Authority.

1. Introduction

1.1 Community Rural Electrification in Nepal: Why It Matters

About 40% of country's population had access to electricity before the political change of 2047 BS (1990 AD) in Nepal. New political leadership was facing immense pressure from people for electrification in their respective areas, but the responsible public utility was not able to meet these heightened aspirations of people. Ultimately, Nepal Electricity Authority (NEA) decided to involve local communities for participative electrification and issued Community Electrification Bylaws 2060 (2003) as legal framework to facilitate the idea participative electrification by communities. Accordingly, communities contributed financially, physically and morally to accelerate electrification and many unnoticed localities that were never in priority of NEA for electrification managed access to electrification. With this background, a formally organized group of people representing a local community for participative electrification is recognized as Community Rural Electrification Entity (CREE). Efforts of CREEs played a vital role in expanding electricity access to marginalized communities, significantly contributing to Nepal's rural electrification progress. Today, approximately 600,000 households, mostly in remote and rural areas, benefit from electricity service through the participatory electrification movement led by CREEs. Their contributions have been instrumental in achieving Nepal's national electricity access rate of 98%, a milestone widely acknowledged by the government, NEA, and beneficiary local communities. Access to electricity in these regions is not only a matter of social justice but also a fundamental human right made possible through the dedicated and diligent efforts of CREEs.

Initially CREEs emerged as social mobilizers for accelerated rural electrification in remote localities but later they undertook the management of electricity distribution services in their respective localities as franchisee business operators through an agreement signed with NEA. Under this franchisee model, CREEs purchase and sell electricity at tariff rates set by the regulator, aligned with those applicable to consumers NEA. Since CREEs are non-licensed electricity distributors operating under the Community Electrification Bylaws 2060 issued by the NEA, legality of their operations is often questioned.

1.2 Tariff-Induced Financial Struggles of CREEs in Nepal

But by setting tariff rates for Community Wholesale Consumer Group of NEA, Electricity Regulatory Commission (ERC) has acknowledged the operation of franchisee distribution services by CREEs. Effective management of electricity distribution services by CREEs under franchisee model requires a sustainable revenue stream to cover the costs including operational, repair and maintenance, distribution losses as well as cost of bulk electricity purchases from NEA. Under the Tariff Order 2016, issued by the Electricity Tariff Fixation Commission (ETFC), CREEs were able to generate adequate revenue to cover these expenses. The Tariff Order 2020 (issued on June 15, 2020) by the Electricity Regulatory Commission (ERC) introduced minor adjustments in previous tariff rates, reflecting a downward trend in the differential between the generated revenue and the cost of bulk electricity purchases from the NEA. However, the subsequent Tariff Order 2021 (enforced on October 25, 2021) introduced significant structural changes, including an energy charge exemption for consumers with monthly electricity consumption up to 20 kWh and imposition of a minimum charge on community wholesale consumers i.e. CREEs. These

structural changes in tariff resulted in a reduction of revenue while simultaneously increasing the cost of bulk electricity purchases, leading to financial distress for many CREEs . Sustaining the financial balance under Tariff Order 2016 became challenging in prevalent tariff rates under Tariff Order 2021, necessitating a review of tariff structures and regulatory frameworks to ensure the long-term viability of CREEs .

1.3 Rationale for Studying CREEs' Financial Sustainability

Recognizing this challenge, the National Association of Community Electricity Users of Nepal (NACEUN), the umbrella organization representing CREEs, is actively advocating for revisions in the tariff structure for Community Wholesale Consumers of NEA . NACEUN has asserted that, following the implementation of the Tariff Order 2021, the majority of CREEs, with only a few exceptions, are experiencing severe financial constraints . Without timely and equitable intervention, these entities risk financial collapse, jeopardizing the electricity supply for thousands of rural households served by them . NACEUN also approached to Electricity Regulatory Commission (ERC) for review of relevant tariff rates . ERC wanted the claim of NACEUN to be established and validated through evidencing facts for review of tariff . Accordingly, GIZ took initiative to conduct a study on sustainability of CREEs under prevalent tariff structure and rates .

1.4 Objective and Scope of the Study

A study team evaluated the financial health of CREEs, focusing on revenue stability, cost structures, and the impact of the 2021 tariff order, and provide evidence-based insights to support ERC's tariff review and propose policy interventions . Key objectives include assessing financial viability, analyzing the tariff impact, recommending a rationalized tariff for Community Wholesale Consumers, and exploring alternative non-tariff interventions if needed . As non-licensed CREEs cannot file individual tariff cases, the study has not proposed CREE-specific or exclusive uniform tariffs . Instead, it has recommended a feasible, justifiable bulk tariff rate for Community Wholesale Consumers under NEA's framework .

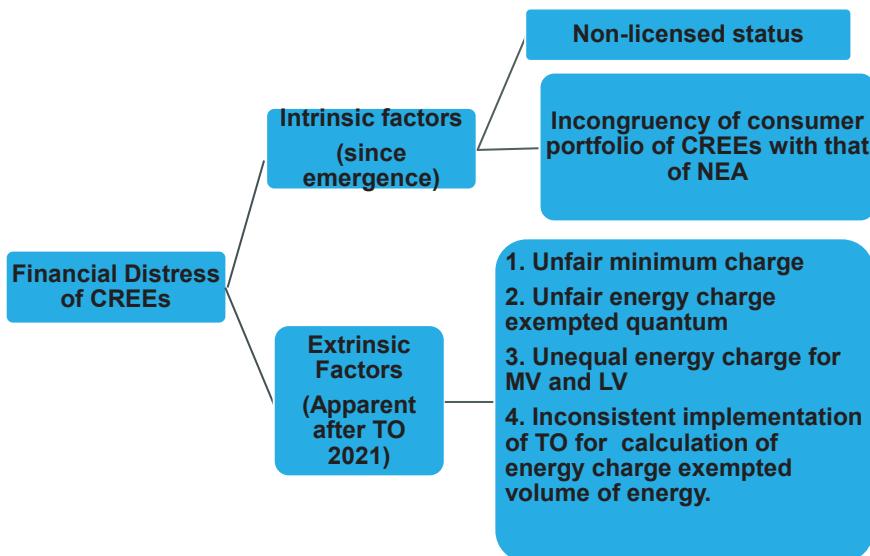
Within some constraints, the study focuses on determining a rational and justifiable tariff rate for bulk power purchases by CREEs from NEA, i .e ., the tariff rate applicable to Community Wholesale Consumers of NEA . This approach ensures that any proposed intervention aligns with regulatory feasibility while supporting the financial sustainability of CREEs within the existing policy framework .

2. Research Framework and Methodology

2 .1 Research Methods

Since ERC cannot set exclusive tariff rates for non-licensed CREEs, discovering such rates using econometric models would be unhelpful . Adjustments to other NEA consumer categories are also unfeasible due to their broad revenue implications . Therefore, the only viable solution is rationalizing the tariff rates specifically for Community Wholesale Consumers during NEA's tariff review process . So, a back-calculation approach is used, assessing CREEs' financial sustainability based on current costs, revenues, rationalized distribution losses, and service costs . Quantitative and

qualitative data were collected through literature reviews, field visits, direct communications, and stakeholder consultations. The study adopted a Cost and Revenue Analysis method to evaluate CREEs' financial health and validate NACEUN's claims.


Data collection methods include:

- i. Literature Review: Analyzing existing reports and policies on CREEs and rural electrification.
- ii. Field Visits: Engaging directly with selected CREEs and NEA centers.
- iii. Verbal and Mail Communications: Gathering financial and operational data from CREEs.
- iv. Stakeholder Consultations: Discussions with NEA's CRED and DCS Directorate, ERC, and NACEUN to ensure findings are comprehensive and validated.

Statistical Analysis of Cost and Revenue: Detailed revenue and cost data (both aggregate and element-wise) has been collected from CREEs and NEA distribution centers. A comparative analysis has been conducted using representative CREEs from different geographical regions to understand variations in financial performance. Qualitative Analysis of Cost and Revenue: Stakeholder insights, field observations, and literature findings have been synthesized to examine cost and revenue patterns. Additionally, an appropriate econometric model has been utilized to fit regression lines, serving as a pilot study for future model extensions.

2.2 Conceptual Framework

The conceptual framework diagnoses intrinsic and extrinsic factors behind the financial distress of Community Rural Electrification Entities (CREEs) in Nepal. Intrinsic factors include legal limitations in filing tariff cases and a consumer portfolio dominated by subsidized categories, misaligned with the NEA framework. Extrinsic factors involve regulatory oversights and implementation gaps in the Tariff Order 2021.

2.3 Econometrical Model

The researchers have also developed an econometric model to assess the financial health and sustainability of CREEs in Nepal. Challenges such as limited data availability and model credibility have required ongoing validation and adjustments. The draft report has included the model to illustrate its intended direction. The study has applied the Cobb-Douglas production function to analyze the impact of energy efficiency gains on output and energy use. In a partial analysis, it has assumed constant energy purchase costs, capital, losses, and expenses, finding that efficiency improvements have consistently led to higher output and energy use.

The production function is often used in economics to model the relationship between physical inputs and output which is known as Power Function came into existence, typically in the form of a nonlinear form which is adopted for the financial analysis of selected five CREEs including one distribution center, and their sustainability in Nepal expressed as;

i. Revenue Function

Where $i = 1, 2, 3, 4, 5$, and 6 . These natural number indicates Galchhi-Dhading(GD), Devbhu-mi-Panchkhal(DP), Timal-Kavre (TK), Janajyoti-Bara (JB), Badagaun-Gulmi(BG), and Dis-tribution Centre-Nuwakot (DN) respectively. **The variables are specified as follows;**

Y_i = Bulk Energy Sales – Output Factor (energy sales by CREEs at period t) . Dependent variable

(in Rs).

A_i = Total factor productivity (technological and operational efficiency parameter of CREEs)

K_i = Capital inputs i.e. cost of bulk energy purchases

D_t = Distribution Losses (in percentage)

O_t = Labor inputs and Other operational costs, e.g., human resources, materials for repairs, office operation costs, lease rent, etc

α, β, γ = Elasticity parameters for the cost of bulk energy purchase, distribution losses, labor inputs and other operational costs . They are representing output responsiveness to changes in each input i . e . rate of returns to inputs .

ε = Error term capturing unobserved factors affecting output .

ii Cost Function

The Total Cost Function is expressed as follows;

The cost function can be modified as:

$$C_i = \alpha K_i + \beta D_i + \gamma O_i \dots \dots \dots (2)$$

Where:

- α = rate of return on capital input
- β = rate of distribution loss per unit of electricity
- γ = elasticity of other operational costs

The cost function reflects the total expenditures of CREEs need to spend in all factor inputs to produce electricity . In the C-D/Power function, this includes distribution loss, power purchase as capital, and other operational factors that influence the cost structure .

iii. Elasticities of Revenue Function

For obtaining the elasticities of revenue function, we have partially differentiated equation (1) with respect to K, D and O respectively (considering the time period t is 1), we will obtain the elasticities as follows;

$$\frac{\partial Y}{\partial K} = \alpha \frac{Y}{K}$$

$$\alpha = \frac{\partial Y}{\partial K} \cdot \frac{K}{Y} \dots \dots \dots E.1)$$

$$\beta = \frac{\partial Y}{\partial D} \cdot \frac{D}{Y} \dots \dots \dots E.2)$$

And

$$\gamma = \frac{\partial Y}{\partial O} \cdot \frac{O}{Y} \dots \dots \dots E.3)$$

Where α, β, γ are the elasticities of energy purchase as capital(K),distribution loss(D), and Operational costs(O) of revenue function .

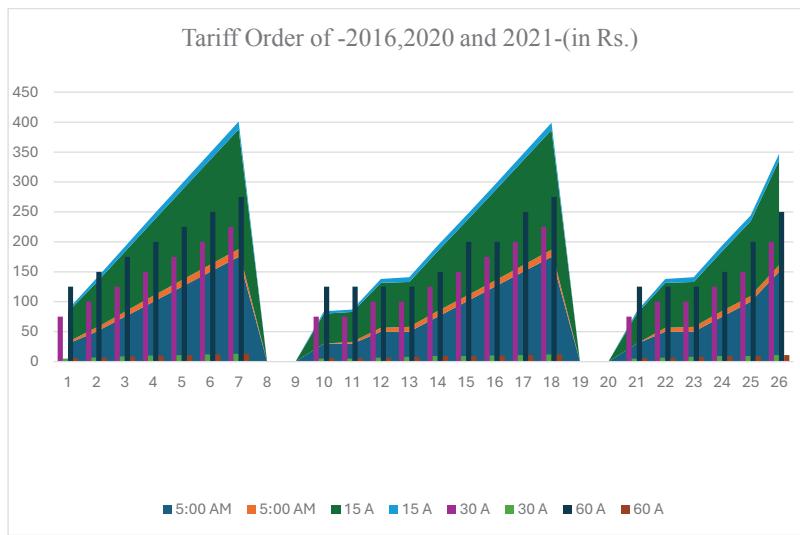
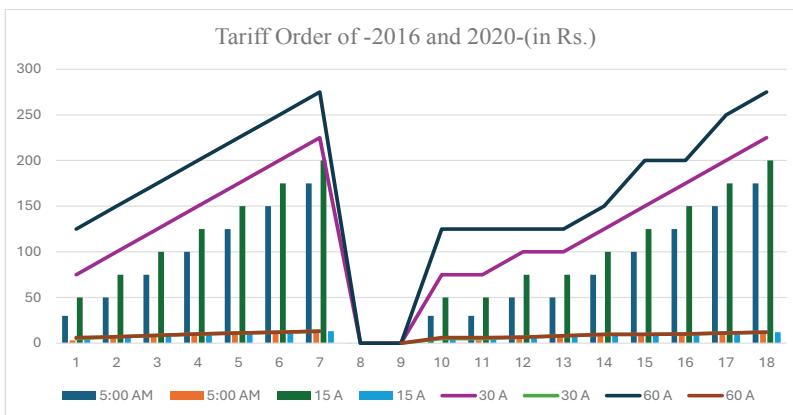
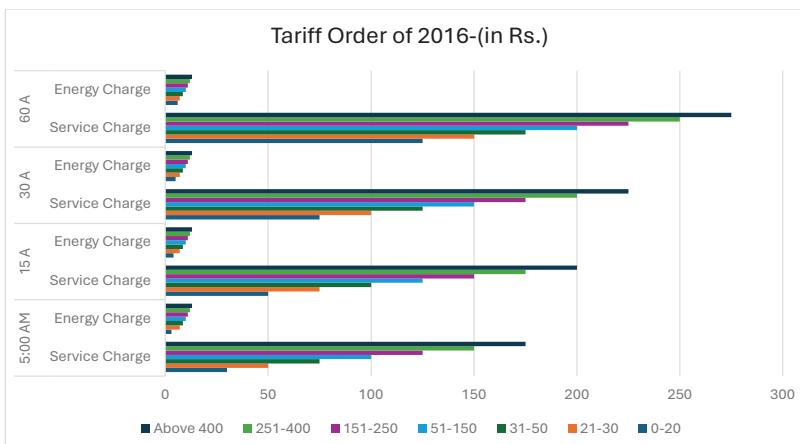
Similarly,

If $\alpha + \beta + \gamma > 1$ it shows the increasing marginal productivity/efficiency .

$\alpha + \beta + \gamma <$ it shows diminishing marginal productivity .

If second partial derivative with respect to inputs is negative, it will also show diminishing marginal productivity .

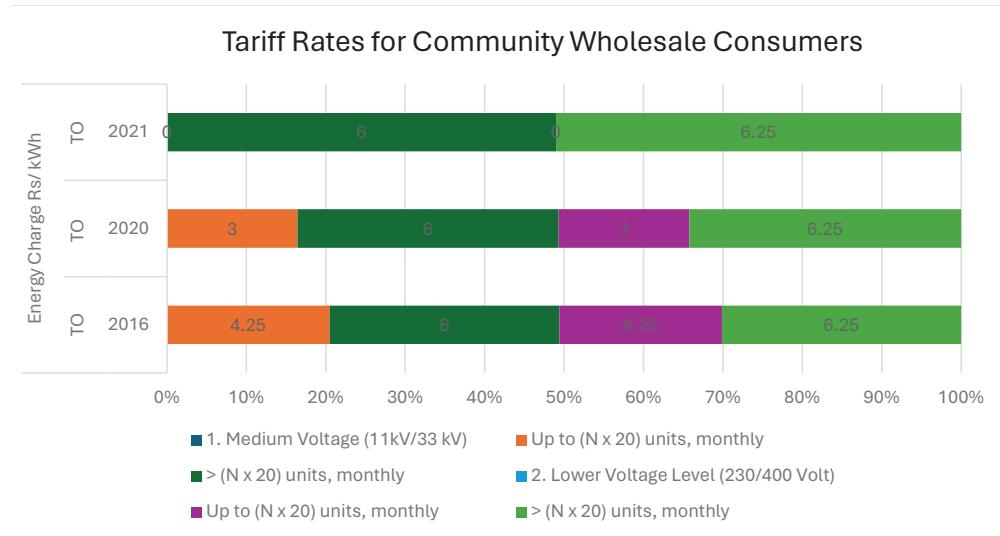
We have, if second order partial derivative with respect to inputs is negative, then it will show the diminishing marginal productivity .




Finally, From the descriptive statistics, a comparison has been conducted between CREE-managed distribution areas and those directly managed by NEA to identify key differences in financial sustainability . Given the time constraints of the study, it has not been feasible to assess all CREEs across Nepal . Instead, the analysis has been conducted on a sample of five CREEs, including those visited during the field study, as well as one NEA-managed distribution center . This approach has provided representative insights while maintaining feasibility within the study timeline .

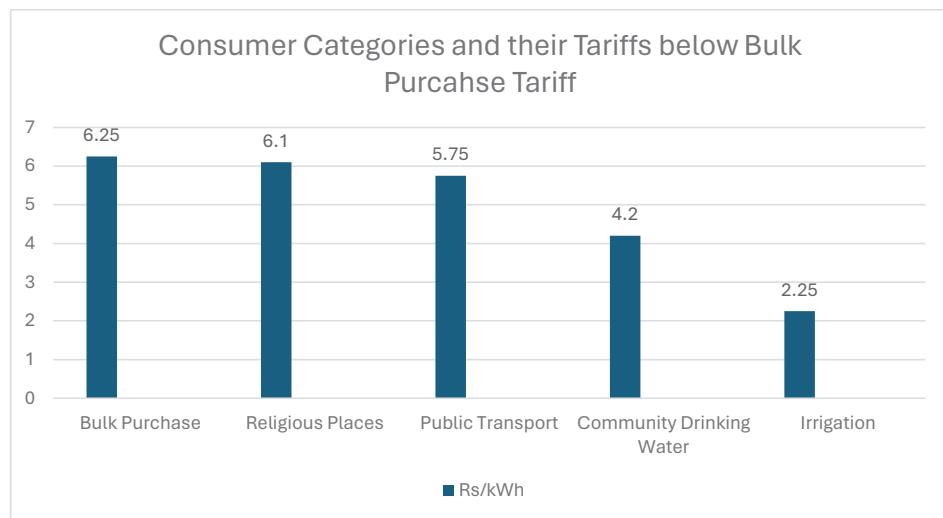
3. Findings from Literature Review and Case Study Analysis

3 .1 Tariff Orders imposed to Consumer of Different Category

Official publications of Ministry of Energy, Water Resources and Irrigation (MOEWRI), the then Electricity Tariff Fixation Commission (ETFC) and Electricity Regulatory Commission (ERC), Nepal Electricity Authority Literature were reviewed under the study and relevant secondary information was extracted for analysis . But however, the extracted secondary information gives the impression that the detrimental tariff structure is being imposed on the CREEs as an intended policy drive to oust the CREEs from their operations . Accordingly, Tariff Orders of 2020 and 2021 double axed the financial health of CREEs through purchase and sales tariff . It is self-explanatory from following depictions:


- a) Trend of Retail Tariff Rates for Domestic Category of Consumers
Following graphs depict comparison on tariff rates under TO 2016, 2020 and 2021:

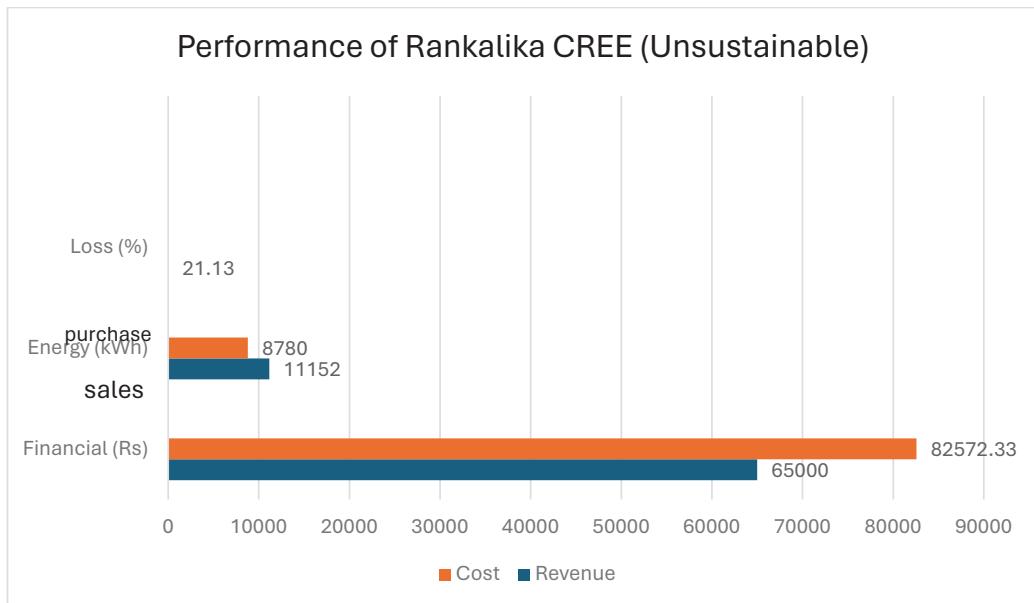
b) Trend of Tariff Rate for Community Wholesale Consumers i.e. CREEs


Following graph depicts the tariff rates under Tariff Order 2016, 2020 and 2021 for purchase

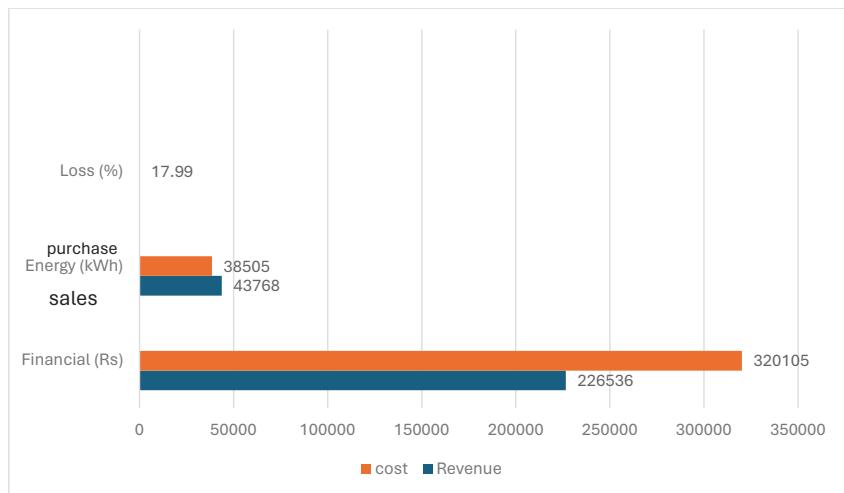
the bulk power from NEA by CREEs:

c) Consumer Categories with Tariff Rates below the Bulk Purchase Tariff of CREEs

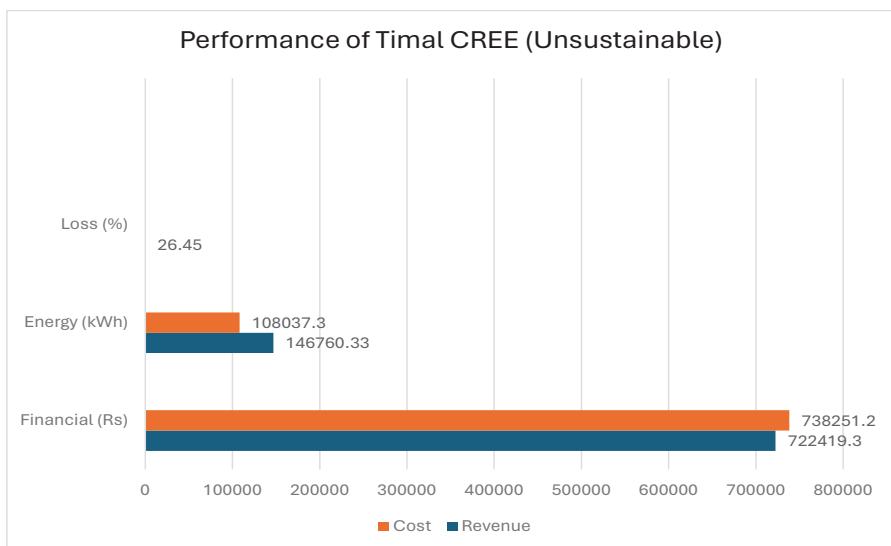
Following graph depicts consumer categories and their tariff rates that are below the rates of bulk purchase by CREEs from NEA . This exposes a direct loss to CREEs due to lower selling rates than purchase rate . On top of this, CREEs will bear the losses in their distribution system .

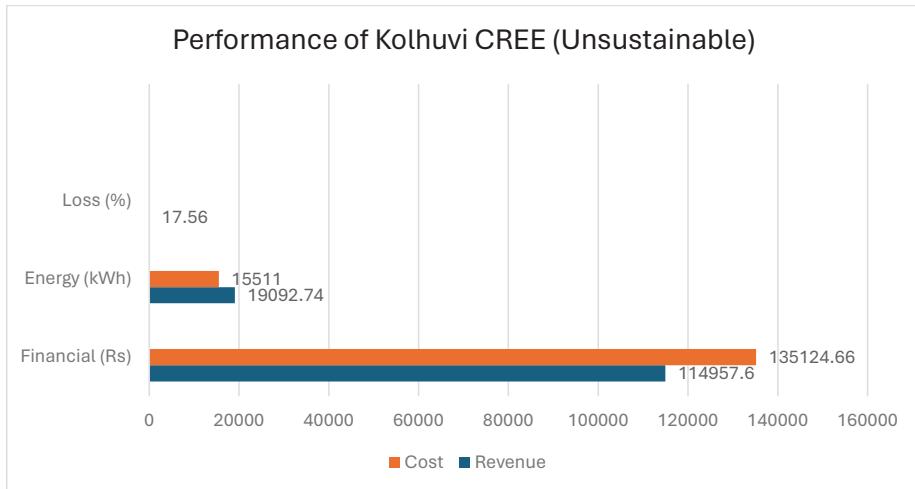


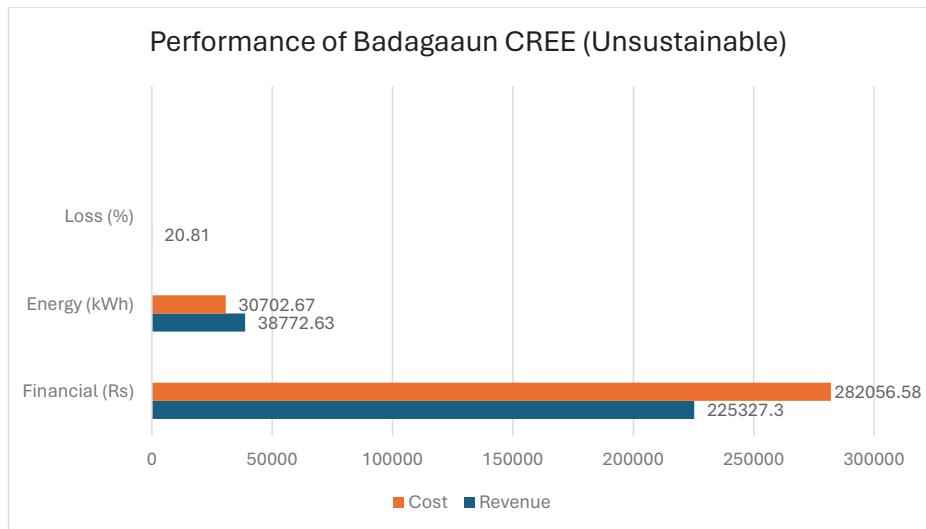
3 .2 Exploring and Analyzing CREEs Data: A Descriptive Approach


The study collected and compiled data on energy purchase and sale volumes, costs, revenues, and other relevant indicators through a combination of literature review, stakeholder consulta-

tions, field visits, and direct mail communications with CREEs . A cost-revenue balance analysis was employed as the primary tool for assessing the financial sustainability of CREEs . For field data collection, Rankalika CREE (Dhading), Samudayik Gramin Vidyutikaran Baluwa (Kabhre), and Timal Samudayik Gramin Vidyutikaran (Kabhre) were visited through random selection to represent CREEs with varying consumer bases . Additionally, relevant financial and operational information from Jan Jyoti Vidyut Upbhokta Samiti (Bara) and Badagaun Samudayik Vidyutikaran (Gulmi) was obtained through email correspondence . The Nuwakot Distribution Centre of NEA was also visited to gather comparative insights on NEA's distribution operations related to CREEs .

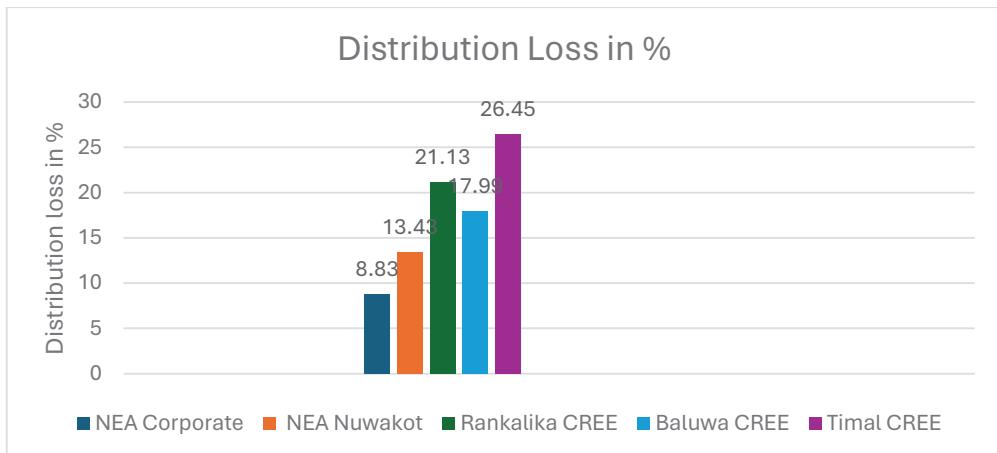

a) Ran Kalika Samudayik Samiti, Galchhi RM, Dhading


b) Samudayik Gramin Vidyutikaran Samiti, Panchkhal Municipality -9 Baluwa


c) Timal Samudayik Gramin Vidyutikaran Sahkari Sanstha, Thulo Parsel .

d) Jan Jyoti Vidyut Upbhokta Samiti, Kolhavi-1, Khaira, Bara

e) Badagaun Samudayik Vidyutikaran Upbhokta Samuh, Musikot-3, Gulmi



Above review has indicated that none of the five sample CREEs has positive differential of revenue against cost and hence none of them is financially sustainable .

3 .3 Rationalization of Distribution Loss and Cost of Service/consumer

(a) Distribution Loss of entities

Following graph depicts the average distribution loss of 3 CREEs visited during study, corporate distribution loss of NEA and distribution loss of Nuwakot distribution center of NEA

Rationalized distribution loss to be considered for tariff determination of CREEs is 17.57% as grand average of above depictions. The rationalized loss figure of 17.57% cannot be considered abnormal as it is close to provincial loss figure 15.29 % of Madhesh Province and 21.79 % of Karnali Province.

(b) Cost of Distribution Services/Consumer per month

Cost of distribution services/consumer per month for 3 CREEs visited during study, NEA at corporate level, Nuwakot distribution center NEA and cost of distribution services as proposed by NEA for tariff determination are depicted below:

Rationalized cost of distribution services/consumer per month to be considered for tariff analysis of CREEs is Rs 110.13 as grand average of above depictions. In case CREEs were legally entitled to file their own tariff case, they might propose minimum charge per consumer as Rs 110.31.

In conclusion:

current practice of determination of tariff of electricity; Under the current tariff determination process, only licensed distribution operators can file a tariff case in ERC for determination of electricity tariff for their consumers. Accordingly, CREEs being non-licensed distribution operators, cannot file a tariff case for their consumers. Since CREEs are franchisee operators of licensed distributor NEA, tariff determined by ERC for consumers of NEA is also applicable to consumers of CREEs.

NEA as a licensed distributor files tariff case on the principle of its revenue requirement. NEA submits its estimation of volume of self-generation, purchases from domestic IPPs and import of energy and costs associated with this management of energy. Now estimated costs associated with transmission and distribution of electricity are topped up to costs of management of energy to calculate the total pancaked costs of services of NEA. With additional margin for working capital over the pancaked costs, final revenue requirement of NEA is estimated. This revenue requirement is then divided by estimated sales to calculate a common tariff rate for all consumers without discrimination. Now, to introduce social justice on economic disparity basis, tariff rates for a few consumer categories are subsidized and tariff rates for remaining categories are

subjected to cross subsidy as per government policy . Accordingly, consumer category specific tariff rates such that these tariff rates yield the same revenue as the common tariff rate would have yielded are submitted to ERC as intended tariff rates by NEA .

ERC scrutinizes the tariff case filed by NEA along with the supplementary documents of estimation of purchase, sales, costs, system loss etc . After scrutinizing the NEA proposal, ERC approves the proposal or rejects the proposal or approves with correction and issues the tariff order .

Current Tariff for Community Wholesale Consumers; CREEs sell electricity to their consumers at the tariff rates applicable to all other consumers of NEA and tariff rates specific for consumers of CREEs is not possible . So, discussing tariff rates for consumers of CREE with the intention of review does not make sense . But however, tariff rates for Community Wholesale Consumers i .e . tariff rates for bulk purchase of electricity from NEA are specific to CREEs and reviewing the current tariff rates for possible correction makes sense . ERC, under Tariff Order 2021, has issued following tariff rate for Community Wholesale Consumers:

Particulars	Minimum Charge (Rs)	Energy Charge Rs/ kWh
1 . Medium Voltage (11kV/33 kV)		
Up to (N* x 20) units, monthly	N*30	00 .00
> (N x 20) units, monthly		6 .00
2 . Lower Voltage Level (230/400 Volt)		
Up to (N x 20) units, monthly	N*30	00 .00
> (N x 20) units, monthly		6 .25

*N = number of consumers of CREE

The fixed component of above tariff rate termed the “Minimum Charge” is essentially a minimum charge that every community wholesale consumer (CREE) must pay, regardless of their actual energy consumption . It is meant to recover the costs associated with distribution and consumer services .

The variable component of above tariff rate, also known as the “Energy Charge”, is based on the rate per unit (Rs/kWh) of bulk energy drawn by the CREE . This charge is calculated by multiplying the rate per kWh by the energy drawl by CREE during the month . The variable component is intended to recover the cost of generating or purchasing electricity, the cost of transmission, distribution to the point of drawl by CREE and any other relevant costs .

Exploring and Analyzing CREEs through an Econometrical Approach

The estimation presented in this analysis has been based on three months of performance data from five Community Rural Electrification Entities (CREEs) and one Distribution Centre . Due to the limited sample size, the results may not fully capture the broader operational and financial trends across all distribution entities .

Multivariate regression has been used to examine the relationship between a dependent variable and one or more independent variables . It helps to understand how changes in independent variables influence the dependent variable, enabling prediction and explanation of outcomes . Regression is a critical tool across fields such as economics, finance, and social sciences for forecasting trends, identifying key factors, testing hypotheses about causal relationships, and determining the strength and direction of associations between variables .

Table 1: Regression output showing the performances of CREEs

Source	SS	df	MS	Number of obs	=	9.00
	-----+-----			F(3, 5)	=	55.79
Model	1.5296e+10	3	5.0986e+09	Prob > F	=	0.0003
Residual	456961952	5	91392390.4	R-squared	=	0.9710
	-----+-----			Adj R-squared	=	0.9536
Total	1.5753e+10	8	1.9691e+09	Root MSE	=	9559.9
y	Coefficient	Std. err.	t	P> t	[95% conf. interval]	
	-----+-----					
k	.1401267	.1017867	1.38	0.227	-.1215243	.4017778
d	-261.3363	602.6885	-0.43	0.683	-1810.597	1287.924
o	.1633583	.0908298	1.80	0.132	-.0701271	.3968437
_cons	-1221.881	10840.58	-0.11	0.915	-29088.48	26644.72

The regression analysis shows a significant overall model with an F-statistic of 55.79 and a p-value of 0.0003, indicating that the model explains a significant portion of the variation in Y. The R-squared value of 0.9710 suggests that approximately 97.1% of the variance in the dependent variable is explained by the independent variables (K, D, and O). This indicates a good fit for the model, with the Adjusted R-squared of 0.9536 confirming the robustness of the model after considering the number of predictors.

However, when looking at the individual coefficients, none of the independent variables are statistically significant at the 5% level. The coefficients for K (0.1401, p = 0.227), D (-261.3363, p = 0.683), and O (0.1634, p = 0.132) all have p-values greater than 0.05, suggesting that these variables do not have a meaningful impact on Y in this model. Thus, while the model fits well, further research with a larger sample or additional variables may be necessary.

4. Drivers of Financial Distress in Nepal's CREEs

The study has uncovered that there are several intrinsic and extrinsic factors responsible for financial distress of CREEs. Intrinsic factors include:

(a) **Weak Legal Status**

Weak legal status of CREEs as non-licensed distribution operators disables them to file their own tariff case to meet their revenue requirement. They must operate their business with tariff rates determined for consumers of NEA to meet the revenue requirement of NEA and these tariff rates do not guarantee revenue requirement of CREEs.

(b) **Incongruity of Consumer Portfolio with NEA**

Unlike NEA, consumer portfolio of CREEs is dominated by consumer categories with highly subsidized tariff rates. Consumer categories to offset the subsidy through cross subsidized tariff rate are rarely present in the consumer portfolio of CREEs. Such portfolio of consumers incongruent with that of NEA is also an impeding factor for CREEs for not meeting their revenue requirement.

Similarly, the study has identified following regulatory overlooks in the determination of tariff for Community Wholesale Consumers as extrinsic factors that have unjustifiably pushed the CREEs towards financial distress:

(a) Minimum Charge N*30 applicable to Community Wholesale Consumers is irrational

Tariff order 2021 has set minimum charge for Community Wholesale Consumers as Rs Nx30 where N is the number of consumers served by the CREE. Same Tariff order has set Rs 30 per month as minimum charge for low voltage single phase domestic consumers of NEA and CREEs with 5A meter and monthly consumption up to 20 units. The minimum charge successively increases with increasing meter capacity and slab of electricity consumption. Since the consumer portfolio of CREEs is predominated by consumers with very low consumption, the total minimum charge collected by CREEs is insignificantly higher than Rs Nx30. In other words, Tariff Order requires CREEs to pay to NEA almost all the minimum charge collected from their consumers. Since minimum charge is meant for recovery of cost of distribution service to individual retail consumer and CREEs are providing service to individual consumers, the N*30 minimum charge collected by CREEs from their N number of consumers should have been allowed to be retained by the CREEs. But the tariff order unfairly mandates NEA to take away this N*30 minimum charge from CREEs without providing service to individual retail consumer. Conclusively, imposing N*30 minimum charge to Community Wholesale Consumers is irrational and unjustifiable regulatory overlook.

(b) Energy Charge Exempted Quantum of Energy (N*20) to CREEs not Justifiable

Tariff Order 2021 has exempted the energy charge component of tariff @20 units per month for low voltage single phase domestic consumers with 5A meter that applies to consumers of CREEs as well. If a CREE has N consumers, then CREEs must exempt total Nx20 units consumption of consumers from energy charge. To supply these Nx20 units of energy to retail consumers, CREE must have received N*20 + Distribution losses in the distribution system of CREE. If tariff does not allow an exemption of N*20+Distribution losses, then CREE will have to bear the cost of energy lost in serving the exempted energy to retail consumers. Exempting only N*20 units energy charge to CREEs without considering the distribution loss in serving exempted energy to end consumers is an irrational and unjustifiable regulatory overlook. This has significantly contributed to financial distress of CREEs.

(c) Distribution losses charged Twice through different tariff for MV and LV Consumers

Tariff order has set Rs 6 per unit as energy charge for MV Community Wholesale Consumers and Rs 6 .25 per unit for LV Community Wholesale Consumers. The differentiation in energy charges for MV and LV consumers is meant to address the distribution losses. But in case of CREEs, NEA tops up 3% on the bill to CREEs as transformer loss and the distribution losses in the distribution lines up to consumers' premises are borne by CREEs. The franchisee business model of CREEs in practice shifts liability of loss in distribution transformers and LT distribution lines to CREEs brings MV and LV consumers at equal footing and setting higher energy charge for LV Community Wholesale Consumers compared to MV ones is a double penalty to LV CREEs. A higher tariff rate for LV Community Wholesale Consumers compared to MV consumers is also a regulatory overlook contributing to financial distress of CREEs.

(d) Inconsistent Interpretation and Implementation of Tariff Order

The tariff order considers every CREE as one consumer irrespective of the number of

metered offtake points associated with it. The energy received as metered by all bulk meters at the offtake points is summed up for billing by NEA. But while segregating the energy charge exempted quantum of energy, NEA calculates it at offtake point basis not considering the CREE as one consumer. Such calculation is inconsistent with the spirit of the tariff order and deprives CREEs of getting energy charge exemption on the rightful quantum of received energy. It indicates that on top of the regulatory overlooks, inconsistency in implementation of tariff order is also an extrinsic factor for financial upheaval of CREEs.

5. Conclusion and Recommendation

This study highlights the critical role of Community Rural Electrification Entities (CREEs) in promoting rural electrification, local economic development, and community empowerment in Nepal. While CREEs have made notable contributions by generating employment, encouraging entrepreneurship, enhancing transparency, and reducing outward migration, their financial sustainability remains a pressing challenge. The findings indicate that CREEs managed by local human resources provide more reliable, cost-effective, and community-responsive services compared to centralized public utilities. Strengthening CREEs not only preserves community-based management and good governance but also aligns with Nepal's federal structure, supporting decentralized service delivery and enhancing rural participation in the electricity sector.

To address the financial and operational challenges faced by CREEs, the study recommends several key interventions. First, extrinsic factors must be corrected: the minimum charge for CREEs should be calculated based on the number of bulk metered offtake points (Rs "n × 30"), the energy charge exemption should be revised to "N × 25" units, and a flat Rs 6/kWh energy charge should apply beyond the exempted volume for both MV and LV consumers. The Electricity Regulatory Commission (ERC) should issue directives ensuring consolidated billing practices for CREEs. Additionally, intrinsic factors must be addressed by offering struggling CREEs the option to shift from a Franchisee Model to a Service Contract Model. If a CREE remains financially unsustainable even after these interventions, it should be advised to exit the business and transfer operations to NEA. Over the longer term, the establishment of a dedicated Rural Electrification Board (REB) is recommended to manage rural distribution separately, with a distinct tariff structure to promote rural electricity consumption, drawing inspiration from models such as Thailand's.

Finally, the study recommends developing a structured framework to systematically measure the social welfare impacts of CREEs, beyond financial metrics. Capturing contributions to employment, entrepreneurship, and community empowerment will allow policymakers to fully appreciate the value of CREEs, support evidence-based policy decisions, and guide future investments. Given the limited sample size of this study, these findings should be treated as preliminary insights. As more data becomes available, expanded econometric and mathematical modeling, informed by experiences of similar economies, should be undertaken to produce robust and representative results. This will help in better forecasting, addressing sector-specific challenges, and strengthening Nepal's drive towards efficient, sustainable, and inclusive rural electrification.

For policymaking purposes, the findings of this study, based on a limited sample of CREEs, should be considered a pilot study offering preliminary insights rather than a definitive basis for revising the 2021 tariff order. As more comprehensive station-level data becomes available, a larger and more representative dataset should be analyzed to provide stronger, evidence-backed conclusions. Additionally, adopting proven econometric and mathematical models used in similar economies can enhance the precision of financial sustainability and social welfare assessments. Such approaches will improve forecasting capabilities, help address operational challenges, and

contribute to more effective and sustainable policy strategies for advancing rural electrification and inclusive economic growth in Nepal .

References:

- Bernard, T ., and M . Torero . (2009) . “Impact of Rural Electrification on Poorer Households in Ethiopia .” Report for the World Bank, Washington, DC .
- Hulme, D . & Mosley, P . (1996) . Finance against poverty . Vol . 1 . London: Routledge .
- Johnston, J ., and DiNardo,J .,(1997) . Econometric Methods, Fourth Edition, The McGraw-Hill Companies,Inc .
- MOLJPA (2018) . The Constitution of Nepal 2015 .
- NPC (2017) . Nepal Sustainable Development Goals: Status and Roadmap between 2016 to 2030, Government of Nepal .
- NPC (2024) . Sixteen Periodic Plan, Government of Nepal .
- Oladokun, V.O ., Asemota, O .C ., (2015) . Unit cost of electricity in Nigeria: a cost model for captive diesel powered generating system . Renew . Sustain . Energy Rev . 52, 35–40 .
- Robinson, M . (2003) .The microfinance revolution: Sustainable finance for the poor . Vol . 1 . Washington D .C .: World Bank .
- Rahman, M .M ., Paatero, J .V ., Lahdelma, R ., (2013) . Evaluation of choices for sustainable rural electrification in developing countries: a multi-criteria approach . Energy Policy 59, 589–599 .

नेपाल विद्युत प्राधिकरणको डेडिकेटेड फिडर र ट्रंकला ईनको बक्यौता महसुल विवादको नालीबैली

-रामेश्वर प्रसाद कलवार ९

विवादको पृष्ठभूमि:

आजभोलि संचार माध्यमहरूमा बहुतै चर्चामा आइरहेको विद्युत प्राधिकरणको डेडिकेटेड फिडर र ट्रंकलाईनको बक्यौता महसुल विवाद सार्वजनिक चासोको विषय बनेको छ । त्यसैले विष्ववस्तुको उठान गर्दा सर्वप्रथम डेडिकेटेड फिडर र ट्रंकलाईन के हो भने बरेमा प्रकाश पार्नु उचित हुनेछ र डेडिकेटेड लाइन र ट्रंकलाईन विद्युत प्राधिकरणको सबस्टेशन (३३, ६६ वा १३२ केबी वा जुनसुकै भोल्टेजको) बाट निश्चित एक ग्राहकको लागि नयाँ लाइन निर्माण गरी उक्त लाइनबाट अन्य कुनै ग्राहकले सेवा नपाउने गरी विद्युत वितरण गरिएको छ भने त्यस्तो सेवा उपभोग गरेको ग्राहकलाई डेडिकेटेड लाइनबाट विद्युत लिएको ग्राहक भनिन्छ । यस्तो ग्राहकले सो सेवा उपभोग गरे बापत विद्युतको नियमित मासिक शुल्कको अलावा त्यस्तो शुल्कमा निश्चित प्रतिशत थप रकम पनि बुझाउनुपर्ने हुन्छ र यसैलाई डेडिकेटेड फिडर महसुल भनिन्छ । त्यसैगरी विद्युत प्राधिकरणको सबस्टेशन (३३, ६६ वा १३२ केबी वा जुनसुकै भोल्टेजको) बाट अर्को सबस्टेशन (३३, ६६ वा १३२ केबी वा जुनसुकै भोल्टेजको) जोड्ने लाइनबाट निश्चित एक ग्राहकको लागि उक्त लाइन द्रायापिंग गरी विद्युत आपूर्ति गरिएको छ भने त्यस्तो सेवा उपभोग गरेको ग्राहकलाई ट्रंकलाईनबाट विद्युत लिएको ग्राहक भनिन्छ । यस्तो ग्राहकले सो सेवा उपभोग गरे बापत विद्युतको नियमित मासिक शुल्कको अलावा त्यस्तो शुल्कमा निश्चित प्रतिशत थप रकम पनि बुझाउनुपर्ने हुन्छ र यसैलाई ट्रंकलाईन महसुल भनिन्छ । लोडसेडिंग भएका बेलामा उद्योगहरूको काममा अवरोध नहोस् भनेर यस्तो सेवा उपलब्ध गराइएको थियो ।

लामो समयदेखि बढ्दै गएको लोडसेडिंगको कारण व्यापारिक, औद्योगिक र गैर व्यापारिक ग्राहकले आ-आफ्नो उद्योग (प्रतिष्ठान) को विद्युत आवश्यकताको पूर्ति तुलनात्मक रूपमा धेरै महंगो डिजेल,जेनेरेटर वा अन्य बैकल्पिक व्यवस्थाबाट सम्बोधन गरी रहेका अवस्थामा उद्योग प्रतिष्ठान पिच्छे स्थापना हुने बैकल्पिक व्यवस्था महंगो पर्नुको साथै राष्ट्रको समग्र अर्थतन्त्रमा नकारात्मक प्रभाव परी रहेको र वातावरणीय रूपमा पनि अनुकुल नभएको जस्ता विषयहरूलाई मध्यनजर राख्दै तुलनात्मक रूपमा बढी ऊर्जा उपभोग गर्ने व्यापारिक ग्राहकलाई निर्वाधरूपमा विद्युत सेवा (Dedicated Supply) उपलब्ध गराउनको लागि नेपाल विद्युत प्राधिकरणबाट तत्कालीन विद्युत महसुल निर्धारण आयोगको सहमतिमा नितिगत व्यवस्था गरी Dedicated feeder Line भएको Dedicated उपभोक्ताको विद्युत सप्लाईलाई व्यवस्थित बनाउन र अन्य उपभोक्ताहरूलाई विद्युत कटौतीमा थप असर नपर्ने कुरा समेतलाई हृदयंगम गरी नेपाल विद्युत प्राधिकरणको प्रणालीबाट निरन्तर विद्युत (Dedicated Supply) लिन चाहने औद्योगिक, व्यापारिक एवं गैर व्यापारिक वर्गका ग्राहकहरूले तोकिएको ढाँचा (Format)मा खामबन्दी प्रस्ताव मिति २०७० १०७ १९४ गते सम्म कार्यालय समय भित्र नियम अनुसार

^१ लेखक विद्युत नियमन आयोगको पूर्वसदस्य हुनुहुन्छ । - सम्पादक

दर्ता गराई सक्न आह्वान गरी सर्वप्रथम मिति २०७० १०७ ।३ मा उपरोक्त आशयको सूचना प्रकाशित भएको थियो । त्यसपछि नेपाल विद्युत प्राधिकरणको संचालक समितिको ६९९औं बैठकको मिति २०७१ १० ।२५ गतेको निर्णय अनुसार संचालक श्री मनोज कुमार मिश्रको संयोजकत्वमा Dedicated Feeder मार्फत विद्युत गर्ने विषयमा मापदण्ड (Criteria) बनाई राय सिफारिस सहित प्रतिवेदन पेश गर्ने उप-समिति गठन भएको थियो ।

उक्त उपसमितिले निर्वाधरूपमा विद्युत लिने ग्राहकलाई नीतिगत रूपमा व्यवस्थित गर्दा नेपाल विद्युत प्राधिकरणले लोडसेडिङ गर्ने नीति अनुसार लोडसेडिङ हुने Seperate Feeder र निर्वाधरूपमा २४ सै घण्टा विद्युत आपूर्ति गर्न Dedicated Feeder गरी जम्मा दुई प्रणालीमा विभाजन गर्नुपर्ने एवं Dedicated Feeder मार्फत निरन्तर रूपमा दैनिक २४ सै घण्टा विद्युत आपूर्ति हुने औद्योगिक तथा व्यापारिक वर्गका ग्राहकहरूलाई Dedicated Feeder वर्गमा राख्नुपर्ने राय पेश भएका थियो । नेपाल विद्युत प्राधिकरण संचालक समितिको २०७२ १०३ ।१२ को ७१० औं बैठकबाट उपरोक्त समितिको डेडिकेटेड फिडरबाट विद्युत लिने ग्राहकहरूबाट लिनुपर्ने प्रिमियम शुल्क सहितको नयाँ महसुल दर सहितको प्रतिवेदन स्वीकृत गरी २०७२ श्रावणको विद्युत खपत (२०७२ भाद्रको मिटर रिडिङ) देखि लागू हुने गरी विद्युत महसुल उठाउने स्वीकृति प्रदान गरिएका थियो । सो सम्बन्धमा तत्कालीन विद्युत महसुल निर्धारण आयोगको २०७२ १०९ ।२९ को १०३ औं बैठकबाट डेडिकेटेड फिडरको महसुल दर कायम नहुदाँ सम्म सरकारी अस्पताल वाहेकका डेडिकेटेड फिडरका उपभोक्ताको हकमा नेपाल विद्युत प्राधिकरण संचालक समितिले २०७२ १०३ ।१२ मा गरेको निर्णयलाई स्वीकृत गर्ने निर्णय भयो । त्यसपछि सो आयोगको मिति २०७२ ।१० ।१० को १०४ औं बैठकको निर्णयानुसार नेपाल विद्युत प्राधिकरणबाट डेडिकेटेड फिडर मार्फत निरन्तर रूपमा विद्युत हुने औद्योगिक, व्यापारिक तथा गैर व्यापारिक वर्गका ग्राहकको लागि नेपाल विद्युत प्राधिकरण संचालक समितिको मिति २०७२ ।०३ ।१२ को निर्णयानुसार माग भएको व्यहोरा विद्युत महसुल निर्धारण नियमावली २०५० को नियम १० अनुसार जानकारीको लागि २०७२ ।१० ।१४ मा सार्वजनिक सूचना प्रकाशित गरी मिति २०७२ ।१० ।१४ मा नेपाल विद्युत प्राधिकरणलाई पत्र लेखी अवगत गराएको थियो ।

विद्युत महसुल संकलन विनियमावली, २०७३ को विनियम २ (ग) बमोजिम ट्रॅकलाईन (Trunk Line) भन्नाले प्राप्ति धकरणको एक सवरस्टेशनबाट अर्को सवरस्टेशनसँग जोड्ने ३३ के.धि वा सोभन्दा माथिको लाईनलाई सम्बन्धित भनी गरेको परिभाषालाई आधार लिई मिति २०७३ ।३ ।१६ को विद्युत महसुल निर्धारण आयोगको १०८ औं बैठकबाट लोडसेडिङ ६ घण्टा वा सोभन्दा बढी कायम भएको अवस्थामा २० घण्टा वा सोभन्दा बढी समय Trunk Line बाट निरन्तर विद्युत लिने ग्राहकको महसुल Dedicated ग्राहकको सरह कायम गर्ने निर्णय भएको थियो ।

नेपाल विद्युत प्राधिकरण र डेडिकेटेड (Dedicated) तथा ट्रॅक (Trunk) लाईन मार्फत विद्युत सप्लाई लिएको उपभोक्ता बिच डेडिकेटेड तथा ट्रॅक लाईनको लागि निर्धारित Premium विद्युत महसुल तिर्न निम्न कारणले गर्दा विवाद उत्पन्न भएको थियो ।

विद्युत ऐन, २०४९ को दफा १७ अनुसार महसुल निर्धारण गर्ने निकाय विद्युत महसुल निर्धारण आयोग भएकोमा नेपाल विद्युत प्राधिकरण संचालक समितिको मिति २०७२ ।३ ।१२ को ७१० औं बैठकबाट २०७२ साल श्रावण महिनाको खपत लाई २०७२ भाद्र महिनाको मिटर रिडिङ बिलबाट नै Dedicated Feeder को महसुल निर्धारण गरी निर्णय

गरिएकोमा सो निर्णय आयोगको मिति २०७२।९।२९ को १०३ औं र मिति २०७२।१०।१० को १०४ औं बैठकबाट मात्र भएको थियो ।

नेपाल विद्युत प्राधिकरण संचालक समितिले आफैले Dedicated Feeder बाट विद्युत सप्लाई लिएको ग्राह(कको विलिङ्ग २०७२ भाद्र महिनाबाट गर्ने निर्णय गरेता पनि निर्णय कार्यान्वयनको लागि आफ्नो आठ वटा क्षेत्रीय कार्यालयहरूलाई मिति २०७२।७।१५ मा मात्र पत्राचार गरेको र नेपाल विद्युत प्राधिकरणले २०७३ श्रावण १ गतेदेखि लागू भएको विद्युत संकलन विनियमावलीले निर्धारित गरेको ट्रॅक लाईन र डिडिकेटेड फिडरको महसुल लागू गर्नेतर्फ लामो समय उदासिन रही सम्बन्धित नियमावली बमोजिम समयमा विलिङ्ग नगरी विलिङ्ग छुट भएको भनी २०७५ फागुनमा मात्र उक्त महसुल अनुसारको विलिङ्ग गर्दा सम्बन्धित ग्राहकमा अन्यौलको अवस्था सृजना भएको देखिन्छ ।

विवादसँग सम्बन्धित मुख्य विषय भनेको २०७२ श्रावण देखि २०७७ आषाढसम्ममा लोडसेडिडताका सम्बन्धित औद्योगिक ग्राहकहरूलाई नेपाल विद्युत प्राधिकरणद्वारा डेडिकेटेड तथा ट्रॅक लाईन मार्फत आपूर्ति भएका विद्युतमध्ये बिल ढिलो पठाएका कारणले थप शुल्क बुझाउन बिलम्ब भएका ग्राहकहरूको बक्यौता महसुल नै हो । नेपाल विद्युत प्राधिकरणका सबै औद्योगिक ग्राहकहरूले उद्योगहरूलाई नियमित लाग्ने सबै सामान्य (Normal) शुल्कहरू भने साम(अन्यतया बुझाइ सकेकै छन् ।

विद्युत महसुल संकलन विनियमावली २०७३ को विनियम ५ (५) अनुसार ३३ के.भि. ट्रॅक लाईन तथा ११ के.भि. रिंग मेन फिडरबाट नयाँ ग्राहकलाई विद्युत वितरण गरिने छैन भनी उल्लेख गरिएको साथै अर्को व्यवस्था नभएसम्मको लागि हाल ट्रॅक लाईनबाट आपूर्ति लिई रहेका कुनै ग्राहकले उक्त लाईनबाट २० घण्टा वा सो भन्दा बढी समय डेडिकेटेड फिडर सरह विद्युत लिन चाहेमा डेडिकेटेड फिडरको महसुल तिरी लिन सक्नेछन्, यस्तो सेवा लिने स्वीकृतिको लागि निवेदन पर्न आएमा डेडिकेटेड लाईन सरह प्राधिकरण संचालक समितिबाट स्वीकृति लिनुपर्नेछ, यदि कुनै ग्राहकले स्वीकृति नलिई नेपाल विद्युत प्राधिकरणले निर्धारण गरेको लोडसेडिड समयमा मेन फिडरबाट विद्युत लिएको पाइएमा लाइन कट्टा गरी विद्युत चोरी नियन्त्रण ऐन, २०५८ अनुसार कारवाही गरिनेछ भन्ने व्यवस्था रहेको छ ।

डेडिकेटेड फिडर तथा ट्रॅक लाईनको विद्युत महसुलको विवादसँग सम्बन्धित पक्षहरूमा एउटा पक्ष नेपाल विद्युत प्रा(धकरण तथा अर्का पक्षहरूमा त्यसका सम्बन्धित औद्योगिक ग्राहकहरू हुन् । नेपालको अर्थतन्त्रको विकासमा यी दुबै पक्षहरूको अहम् भूमिका हुनुको साथै यी पक्षहरू धेरै हदसम्म एक अर्कामा अन्योन्याक्षित पनि छन् । यी पक्षहरूका हितहरू एक अर्कासँग जोडिएका पनि छन् । दुबै पक्षहरू एक अर्काको प्रतिपक्षी वा प्रतिस्पर्धीका रूपमा नरही एक आपसमा समन्वयकारी भूमिकामा रही सदूभावपूर्ण व्यवहार हुनु दुबै पक्षका हितमा छ । तसर्थ उक्त महसुल सम्बन्धी विवादको समाधान शीघ्र न्यायोचित रूपमा हुनुपर्नेछ ।

२०७२ श्रावणदेखि ने. वि. प्रा. द्वारा गरिएको महसुल वृद्धि विरुद्ध शिवम् सिमेन्टले प्रकृयागत त्रुटि भएको भन्ने दाबीका साथ सर्वोच्च अदालतमा दायर गरेको रिटमा उपर तत्कालीन महसुल निर्धारण आयोगको २०७२ पौष २९ र २०७२ माघ १० को निर्णय पश्चात् मात्र वृद्धि भएको महसुल लागू गर्न मिल्ने, भूतलक्षी निर्णय महसुलका सवालमा लागू हुन नसक्ने भन्ने आशयसहित सर्वोच्च अदालतले मिति २०७५।७।२० मा शिवम् सिमेन्टका हकमा आदेश जारी गरेको थियो । तर बाँकी अन्य ग्राहकका सम्बन्धमा सो विवाद यथावत् नै छँदैछ ।

विवाद समाधानको लागि नेपाल विद्युत प्राधिकरण संचालक समिति, नेपाल सरकार तथा संसदीय लेखा समितिबाट यी

विवादका समाधानको लागि पटक पटक विभिन्न सहाहनीय प्रयास भए पनि पूर्ण रूपमा विवाद समाधान भई सकेको अवस्था छैन । ग्राहकहरूबाट पनि विभिन्न अदालतमा विवाद समाधानको लागि निवेदन दिँदा सम्मानित अदालतबाट भएको आदेश समेतबाट डेडिकेटेड तथा ट्रूक लाईन सम्बन्धी विवादको समाधान हुन सकेको छैन ।

विवादको विषयबारे वर्तमान अवस्थामा डेडिकेटेड तथा ट्रूक लाईनको विद्युत महसुल सम्बन्धमा विवाद लामो समय सम्म कानून अनुसार तोकिएको निकाय तथा सम्बन्धित उपभोक्ताको सामान्य पहलमा समाधान हुन नसकेको अवस्थामा उपभोक्ताहरूबाट माग भए अनुसार नै नेपाल सरकार मन्त्रिपरिषद्को मिति २०८० १९ ।२४ र २०८० १० ।३ को नि(र्णय अनुसार जाँच बुझ आयोग ऐन, २०२६ को दफा (३) बमोजिम सर्वोच्च अदालतका पूर्व न्यायाधीश गिरीशचन्द्र लालको अध्यक्षतामा तीन सदस्यीय जाँचबुझ आयोग गठन भएको थियो ।

आयोगले डेडिकेटेड तथा ट्रूकलाईन सम्बन्धी छुट महसुल विवाद सम्बन्धी डेडिकेटेड फिडर तथा ट्रूकलाईनको विद्युत महसुल सम्बन्धमा भएका ऐन नियम, विनियम, कार्यविधि निर्देशिका, मापदण्ड, विभिन्न मितिमा सम्मानित सर्वोच्च अदालत, उच्च अदालतहरूबाट भएका फैसलाहरू, प्रतिनिधिसभाको सार्वजनिक लेखा समितिका प्रतिवेदन तथा सुभ(ावहरू, अछितयार दुरुपयोग अनुसन्धान आयोग तथा महालेखा परीक्षकको कार्यालयका निर्देशन तथा सुभावहरू, सोही विषयमा अध्ययन गर्ने विभिन्न समयमा गठन गरिएका समिति/उपसमितिका प्रतिवेदन, नेपाल विद्युत प्राधिकरणका संचालक समितिका निर्णयहरू, नेपाल विद्युत प्राधिकरणले विभिन्न मितिमा प्रकाशन गरेका सूचनाहरू तथा विभिन्न कार्यालयहरूबाट भएका पत्राचार समेतको अध्ययन गरी करिब साढे तीन महिना पछि नेपाल सरकार समक्ष प्रतिवेदन पेश गरेको छ । अध्यक्ष सर्वोच्च अदालतका पूर्व न्यायाधीश गिरीश चन्द्रलाल, सदस्य वाणिज्य तथा आपूर्ति सचिव श्री दिनेश कुमार धिमिरे र अर्का सदस्य जलस्रोत तथा सिंचाइ सचिव सरिता दवाडी भएको लाल आयोग भनिने उक्त तीन सदस्यीय आयोगबाट समग्ररूपमा अध्ययन गरी नेपाल विद्युत प्राधिकरण र उद्योगी व्यवसायीहरूबीचमा विशेष गरी निम्न अवधिहरूको विद्युत महसुलको विवाद यकिन गरी नेपाल विद्युत प्राधिकरणले दाबी गरेका उक्त समयावधिहरूको छुट बिलहरू सम्बन्धमा आफ्नो राय सुभाव सहितको प्रतिवेदन प्रस्तुत भएको छ । बिल सम्बन्धी विवादित समयावारी(धलाई निम्न बमोजिम (क) (ख) र (ग) गरी तीन भागमा विभाजित गरी समयावधि अनुसारको राय प्रस्तुत भएको छ ।

(क) डेडिकेटेड फिडर तथा ट्रूक लाईनको विद्युत महसुल निर्धारण भएको अवधि २०७२ साउन देखि २०७२ पुस सम्मको अवधि जसमा महसुल निर्धारण आयोगबाट महसुल निर्धारण भै सकेको थिएन ।

(ख) नेपालमा लोडसेडिड अन्त्य हुनु अघिको अवधि अर्थात् २०७२ माघ देखि २०७७ आषाढ सम्मको अवधि ।

(ग) नेपालमा लोड सेडिड अन्त्य भएपछिको २०७५ जेष्ठ देखि २०७७ आषाढ सम्मको अवधि ।

माथि (क) मा उल्लेखित समयावधिको लागि आयोगबाट डेडिकेटेड फिडर लाईनको महसुल सम्बन्धमा विद्युत महसुल निर्धारण आयोगको मिति २०७२/९/२९ को १०३ औं बैठकको निर्णय पछि र ट्रूक लाईनको महसुल सम्बन्धमा सोही आयोगबाट मिति २०७३/३/१६को १०८ औं बैठकबाट भएको निर्णय पछि मात्र ती महसुल लागू हुनुपर्ने, निर्णय मितिभन्दा पहिलेदेखि लागू गर्न नमिल्ने भन्ने आशयको लाल आयोगको राय प्रस्तुत भएको छ ।

माथि (ख) मा उल्लेखित समयावधिभित्र नेपाल विद्युत प्राधिकरणबाट औद्योगिक ग्राहकहरूलाई लोडसेडिडको समयमा समेत काबु बाहिरका परिस्थितिहरू अर्थात मर्मत सुधारका लागि आपूर्ति नहुन सक्ने अनिवार्य परिस्थिति

बाहेक महसुल निर्धारणको लागि महसुल निर्धारण आयोग र प्राधिकरण स्वयमले निर्धारण गरेका डेडिकेटेड लाईनका मापदण्डहरूमा निरन्तर अर्थात २४ घण्टा आपूर्ति हुनुपन शर्तमा कायम रही निरन्तर विद्युत भएको दिन तथा अवधि यकिन गरी डेडिकेटेड लाईनका महसुल असुल हुनुपर्ने भन्ने आशयको लाल आयोगको राय प्रस्तुत भएको छ । यस सम्बन्धमा प्राधिकरण स्वयमले जारी गरेको लोडसेडिड सम्बन्धी सूचनाहरू समेतलाई ध्यानमा राखी डेडिकेटेड लाईन मार्फत सम्बन्धित ग्राहकहरूलाई विद्युत उपभोग भएको दिन तथा अवधि यकिन गरी पुनः हिसाब गरी छुट महसुल लिन पर्दछ भन्ने समेत लाल आयोगबाट राय प्रस्तुत भएको छ ।

त्यस्तै यसै समयावधिको ट्रूक लाईन सम्बन्धमा समेत नेपाल विद्युत प्राधिकरण र तत्कालीन महसुल निर्धारण आयोग समेतले तोकेको ट्रूक लाईनको मापदण्ड अर्थात कम्तिमा निरन्तर २० घण्टा विद्युत आपूर्ति भएको अवस्था देखिए त्यस्तो दिन तथा अवधिलाई यकिन गरी सो समयावधिमा उपयोग भएको विद्युतलाई ट्रूक लाईनका मापदण्ड अनुसार विद्युत उपभोग भएको मानी छुट महसुल लिन पाउने नै हुँदा यस सम्बन्धमा समेत प्राधिकरण स्वयमले जारी गरेका लोड सेडिड सम्बन्धी सूचनाहरूलाई ध्यानमा राखी सम्बन्धित ग्राहकहरूलाई ट्रूकलाईनको मापदण्ड अनुसार विद्युत आपूर्ति भएको दिन तथा अवधि यकिन गरी पुनः हिसाब गरी छुट महसुल लिनु पर्दछ भन्ने आशयको राय लाल आयोगबाट प्रस्तुत भएको छ ।

माथि (ग) मा उल्लेखित समयावधिको हकमा सो अवधिको नियमित महसुल यी ग्राहकहरूले बुझाई सकेकै देखिनाले सो अवधि लोडसेडिड कायम नरहेको अवधि भएको हुनाले थप महसुल लिनु मुनासिव देखिदैन भन्ने आशयको राय लाल आयोगबाट प्रस्तुत भएको छ ।

त्यसपछिको परिदृश्य

लाल आयोगले तीन थरिको अवधि वर्गीकरण गरेर अवधि (ख) को महसुल उठाउन मिल्ने तर अवधि (क) र अवधि (ग) को महसुल उठाउन नमिल्ने आशयको प्रतिवेदन दिएकोमा सो विषयमा अदालतमा अझै मुद्दा परेर विचाराधीन रहेको आधारसमेत लिँदै प्राधिकरणले उक्त तीनैवटा अवधिको महसुल आफ्नो बासलातमा आमदानी जनाएर मुनाफा समेत देखाई विधिवत् लेखापरीक्षण समेत गराई बक्यौता असुलीको कारवाही चलाएको अवस्था र ग्राहकहरूले त्यसमा आपत्ति जनाई सो बिल गलत भएको भन्ने दाबीका साथ रकम तिर्न आनाकानी गरेको अवस्था नै अहिलेको परिदृश्य हो । हाल संचार माध्यममा आएको उक्त विवादित तीनवटै अवधिको बक्यौता रकम कूल रु २२ अर्बको पृष्ठभूमि यही हो ।

माथि उल्लेखित २२ अर्बमध्ये अवधि (क) को रकम १ अर्ब ६ करोडमा प्राधिकरणले लगाएको जरिमाना समेत जोडा १ अर्ब ४१ करोड हुन्छ, सो रकम लाल आयोगले उठाउन नमिल्नेमा राखेको छ । त्यस्तै अवधि (ग) को रकम ९ अर्बमा प्राधिकरणले लगाएको जरिमाना समेत जोडा १२ अर्ब ४३ करोडमा प्राधिकरणले लगाएको जरिमाना समेत जोडा ८ अर्ब ४० करोड हुन्छ, सो रकम पनि टीओडी मिटर अनुसार नभएको भन्दै ग्राहकहरूले तिर्न आनाकानी गरिरहेका छन् ।

नेपाल सरकार (मन्त्रिपरिषद्) बाट मिति २०८०।९।२४ को निर्णयले सर्वोच्च अदालतका पूर्वन्यायाधीश श्री गिरिशचन्द्र लालको संयोजकत्वमा गठित जाँचबुझ आयोगले पेश गरेको डेडिकेटेड फीडर र ट्रॉकलाइनको बक्यौता विद्युत महसुल विवाद समाधानसम्बन्धी प्रतिवेदन नेपाल सरकार (मन्त्रिपरिषद्) को मिति २०८१।७।२५ को निर्णयबाट सार्वजनिक

भैसकेको छ ।

यो विषयमा हालसम्म कुनै पनि ग्राहक विद्युत नियमन आयोग ऐन, २०७४ को प्रकृया अपनाएर विवाद समाधानको मुद्दा लिई विद्युत नियमन आयोगमा उजुर गर्न गएको अवस्था छैन, मुद्दाको रूपमा प्रकृयागतरूपमा नआएको अवस्थामा विद्युत नियमन आयोगले त्यसमा आफैले हस्तक्षेप गरेर निर्णय दिन कानूनतः मिल्दैन । यति हुँदाहुँदै पनि विद्युत नियमन आयोगले बेलाबेलामा सरोकारवाला निकायको अनुरोधमा प्राधिकरण र ग्राहकहरूलाई सरलीकृत तरीकाले आपसी समझदारी कायम गरेर समस्याको समाधान गराउन सहजीकरण गरिरहेको तर त्यसबाट वाँछित उपलब्धि हुन नसकेको अवस्था छ ।

उल्लेखित उद्योगीहरूलाई सो विवादको निराकरणका लागि तीनवटा मार्गहरू छन् । उनीहरूले या त प्राधिकरणमा प्रकृयागतरूपले निवेदन दिएर पुनरावलोकनको प्रकृयामा जानुपर्ने हुन्छ या त विद्युत नियमन आयोगमा प्रकृयागतरूपले मुद्दा दायर गरेर आफ्नो दाबी प्रमाणित गर्नुपर्ने हुन्छ या त अदालतमा दाबी सहित जानुपर्ने हुन्छ । तर उनीहरूले ती कुनै पनि प्रकृयामा नगएर महसुल बुझाउने कुरा कसरी टालटमोल गर्न सकिन्छ भन्ने ध्येयले प्रचारबाजी गर्ने, मिडियाबाजी गर्ने, बिभिन्न लिबिङ गरी हिँडनेदेखि लिएर शक्तिकेन्द्र धाउने सम्मका कृत्यहरू मात्र गरिरहेका छन् भन्ने जनमानसमा चर्चा छ । त्यसो त पछिल्ला दिनहरूमा पनि केही उद्योगीहरूले बक्यौता महसुल तिर्न थालेकाले हाल त्यस्ता बक्यौता बुझाउनुपर्ने उद्योगीको संख्या ५५ बाट घटेर २८ मात्र बाँकी रहेको र ती सबै ठूला ग्राहक भएको भन्ने पनि सुन्नमा आएको छ । तथापि हालसालै सुन्नमा आए अनुसार ठूलो रकम बक्यौता भएका ग्राहकहरू प्राधिकरणबाटै सो रकमको पुनरावलोकन गराउने कानूनी प्रकृयामा जान सहमत भएका छन् भन्ने पनि चर्चा छ यद्यपि यसको नतिजा के आउने हो भन्ने थाहा पाउन केही समयको प्रतिक्षा गर्नेपर्ने भएको छ ।

Strengthening of Electricity Regulator: Challenges and Way Forward

Santosh Parajuli¹

Introduction

Generally, the concept of regulation refers to a process where a designated government entity establishes rules and acts as an oversight or watchdog agency in order to govern/regulate a specific industry-sector. That designated government entity principally remains an independent and autonomous sectoral "Regulator" faraway from any governmental or political interventions. Regulation takes place in the form of constraining the behavior of business entities, firms or industries, establishing good or bad incentives to protect and promote the sector, and also exercise the power to address issues that are politically contentious.

Regulators, in order to ensure service availability, system expansion and improve cost efficiency to attract capital in the sector, are focused on controlling the market along with facilitating market competition. Regulators around the world usually are conferred with the following legislative powers: (i) Legislative, (ii) Executive, and (iii) Judicial. That means, regulators have the power to frame and implement regulations, give directions to relevant authorities to make them obligated, and simultaneously, adjudicate the dispute between the parties under its jurisdiction. So, decision-making and regulation-making functions are both assigned to a regulator.

Guiding Principles of a regulator

Law comes into being not only through legislation but also by regulation and litigation. Laws from these sources are binding. According to Professor Wade, "between legislative and administrative functions we have regulatory functions". A statutory instrument, such as a rule or regulation, emanates from the exercise of delegated legislative power which is a part of administrative process resembling enactment of law by the legislature whereas a quasi-judicial order comes from adjudication which is also part of administrative process resembling a judicial decision by a court of law².

The basic role of the regulator is to strike a balance in the interest of the following three primary stakeholders, i.e., Service provider, Consumer and Government Policy. Along with maintaining the balance, regulators are also supposed to instill confidence and encourage investment in sector while aligning itself with the broader government policy. Regulator cannot sustain itself without the credibility and legitimacy from above stakeholders.

Theories of regulations can be broadly classified in two categories: (i) Positive Theory, and (ii) Normative Theory. The positive theory of regulation investigates why regulation occurs and includes theories of market power, interest group, and government opportunism. Market power refers to the ability of the service provider to raise the price of commodity or service beyond the

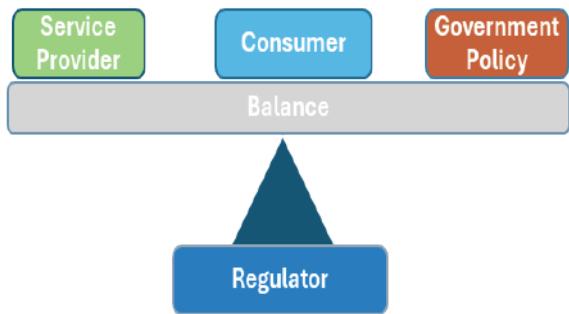
1 Adv. Santosh Parajuli specializes in legal, policy and regulatory affairs.

2 Sitaram Sugar Co. Ltd. Vs. Union of India and Ors.

competitive level due to lack of substitute of such product. Interest group theory studies the interest of stakeholders in the sector, whereas government opportunism theory describes why restriction on government interference is required to enhance sector efficiency in providing its service to the people. In doing so, regulators should bind the following key principles for its effective and efficient functioning.

Key Principles for an effective regulatory body

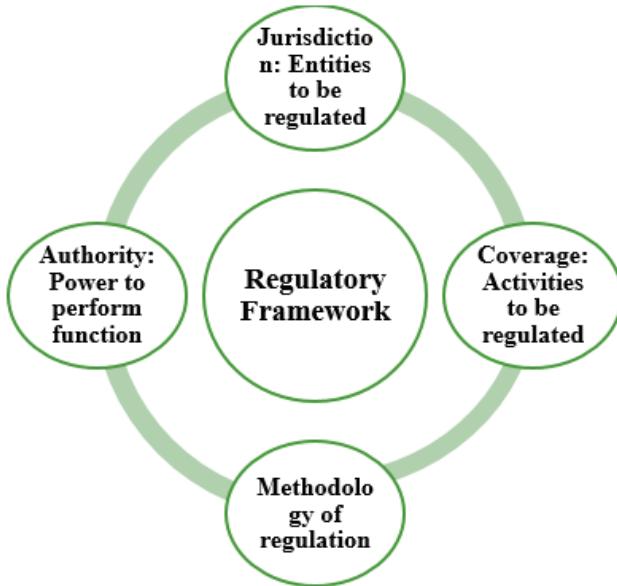
One of the key principles that a regulator should hold is autonomy and independence, in terms of organizational, financial and managerial aspects. This principle ensures that a regulator is


organizationally separate from ministries or departments and should have non-profit based self-sustaining financing model and lastly, should have its own employees and administration. Similarly, clear oversight mechanisms should be in position to evaluate the activities of regulation, which in turn shall make regulator more accountable towards its stakeholders. A regulator's role should be clearly defined. Regulator's role should not be established in a way which may overlap or duplicate the efforts consequently exhausting the country's resource.

Clear role of regulator should be

defined in following basic criterion, i.e., Jurisdiction, Coverage of regulation, Method of regulation, and Authority to perform function. On the other hand, regulators should always work towards gaining the trust and legitimacy of the stakeholders and consumers. At the end, the credibility of a regulator lies with the people – those who must feel that at least there is a regulator who will protect them from possible exploitative and monopolistic market. Similarly, even minor decisions of a regulator impact the very common people. Therefore, it is the foremost duty of a regulator to make public its major decision and engage public participation in its decision-making process. Regulatory decisions should be predictable and consistent, providing certainty in their future action.

Evolution of Regulation in Nepal


Central Bank of Nepal which was established in 1956 as per the Nepal Rastra Bank Act, 1955 is

considered the oldest sectoral regulator of Nepal . Similarly, the Insurance Board (Beema Samiti), now converted to Insurance Authority, was established in 1969 with mandate to regulate the insurance sector . In reference to the aforementioned instances, the notion of regulation in Nepal is not a new concept but electricity regulation is certainly a new one . Initially, Government of Nepal via Hydropower Development Policy, 2049 recognized the need of independent electricity tariff regulator in form of Electricity Tariff Commission . The Electricity Act, 2049 codified the same policy document, which provisioned for establishment of Electricity Tariff Fixation Commission .

After a decade, Nepal Government issued another Hydropower Development Policy, 2058 where a regulatory body envisioned to be established with various functions including, tariff fixation, supervising and monitoring the quality and standards of electricity, and protecting the interest of the consumers

. After more than two decades of efforts, in August 2017, the act establishing the Electricity Regulatory Commission (ERC) was enacted which paved a new era for hydropower development and electricity regulation in Nepal .

Challenges faced by regulator in power market reform

Reform in the power markets of developing countries evolves from a market structure that is dominated by state-owned power utility, which is generally legally backed and assumes the role of Generation, Distribution, Transmission and Trade as well . Since the 1990s worldwide government policy and public attitude has changed in terms of power market . Electricity has been recognized as a tradeable commodity, which is now traded globally .

The development of capabilities and institutions to regulate power market is an important part, however it is unrealistic to expect that a newly established regulatory system will be fully functioning and credible after it is formally created . Regulator of the developing countries have had to initiate sectoral reform technically and financially with less efficient electricity system, underdeveloped private sector, weak economic and political institutions, shortage of skilled human resources, and lack of regulatory experience . Power market reform is a process not a conclusive event with significant challenges to be faced by regulators . Initially, the ERC seems to have faced the following challenges:

Challenges and Implementable Solutions for Nepal Electricity Regulatory Commission

1. ERC's Role as a Sectoral Advisor to the Government:

Section 16 of the Electricity Regulatory Commission Act, 2017 mandates the ERC to serve as an

expert advisory body to the Government of Nepal (GoN) on matters related to electricity sector reforms and development. However, despite this clear legal provision, ERC has not yet established a structured internal mechanism to systematically deliver expert opinions, policy advice, and technical recommendations to the Government. Simultaneously, the Government lacks an institutionalized process to proactively seek, utilize, or formally integrate ERC's sectoral expertise into its decision-making. This gap in coordination and operational practice has led to the underutilization of ERC's expertise, limiting the Commission's visibility, diminishing its strategic influence, and weakening public and institutional trust in its role.

S.N.	Proposed Solution	Objectives	Result
1.	Establish an Internal "Sectoral Advisory Cell" within ERC comprising small team of legal, economic, technical and policy experts.	To prepare and issue briefing papers, policy notes, advice in anticipation and technical advisories on electricity and regulatory matters on periodic manner.	<ul style="list-style-type: none"> - Institutionalize ERC as expert advisory body - Also serve as knowledge management and capacity building unit
2.	Formalize coordination with Government through MOU or working protocol	To create a formal and recurring engagement mechanism with the Ministry of Energy, Water Resources and Irrigation (MoEWRI) and other relevant ministries.	<ul style="list-style-type: none"> - Frequent engagement - Better coordination
3.	Publish an Annual "State of the Electricity Sector" Report	To showcase ERC's expertise and signal thought leadership to GoN and stakeholders by publishing report which must address Analysis of electricity market performance, regulatory insights, and policy level recommendations.	<ul style="list-style-type: none"> - Boosts ERC's visibility and position - Enhance public trust
4.	Engage Parliamentarians and Development Partners	To build wider recognition of ERC's role as a sectoral expert engaging parliamentarians, committees and development partners by including them in consultations.	<ul style="list-style-type: none"> - Amplify ERC's influence - Enhance Credibility

2. Strengthening the Enforcement of Inspection and Monitoring Functions Under Section 17 of the ERC Act, 2017

Although the ERC conducts inspections of licensed entities — including utilities, independent power producers (IPPs), and transmission operators — the absence of a structured enforcement and follow-up mechanism has severely limited the effectiveness of these activities. Key issues arising from this gap include:

Non-compliance with directives: Licensees frequently disregard ERC's recommendations and instructions without facing consequences .

Lack of accountability for violations: Incidents such as safety breaches, financial mismanagement, and operational non-compliance often go unpenalized .

Erosion of regulatory authority: Over time, ERC risks being perceived merely as an advisory body, undermining its credibility as an enforcement agency .

Without robust compliance oversight, ERC's inspections risk being reduced to a "visit-and-advise" exercise rather than fulfilling their intended regulatory purpose .

S .N .	Proposed Solution	Objectives	Result
1 .	Adopt a Formal "Inspection and Compliance Monitoring Framework (ICMF)"	Institutionalize how inspections are conducted, reported, and followed up by developing SOPs, KPIs, etc .	<ul style="list-style-type: none"> - Formal regulatory instrument created - Classification of violations - Defined key parameters for quality, safety and reliability
2 .	Establish a "Compliance Tracking Unit" Inside ERC	To ensure follow-up after inspections and enforce consequences	<ul style="list-style-type: none"> - Establishment of Monitoring, Evaluation and Learning (MEL) platform - Digital dashboard for tracking and monitoring licensees
3 .	Link Non-Compliance with License Penalties	Build legal and financial consequences for ignoring ERC's directions .	<ul style="list-style-type: none"> - Performance incentive model established - Introduction of escalating penalties for non-compliance
4 .	Create Annual "Licensee Compliance Scorecard"	Build reputation-based compliance and make performance public .	<ul style="list-style-type: none"> - Rank licensees/ utilities in the basis of time-bound compliance, repeated violations - Public dissemination of such information to pressure through reputation and visibility

3. Addressing the challenge in Tariff Determination under Section 13 of the ERC Act, 2017

ERC Act, 2017 provides the statutory mandate to the commission to determine tariff as pursuant to section 13 . Commission has the responsibility to determine consumer tariff and regulate the sale and purchase of electricity on the basis of grounds as such operation cost, depreciation, revenue requirement, etc . Meanwhile, in the absence of a well-defined and binding tariff policy, tariff setting can often be influenced by political pressures and public demands, rather than cost-reflective principles . Key issues arising from this gap include:

- **Absence of a Clear Electricity Tariff Policy:** Lack of clear Tariff Policy results in financial imbalances for utilities, undermining their operational sustainability and discouraging private investment in the sector .
- **Inefficient Cross-Subsidization:** Current tariff structures impose higher rates on domestic consumers compared to industrial consumers or electricity exported to third countries . This

form of cross-subsidization distorts market efficiency, places an unfair burden on household consumers, and creates socio-political tensions .

- **Disincentives for Efficiency and Increased Consumption:** The existing slab-based tariff design penalizes higher consumption by charging progressively higher rates as usage increases . This structure contradicts national policies aimed at promoting higher electricity consumption for economic development and discourages the shift towards electrification of industries, transportation, and households .

S.N.	Proposed Solution	Objectives	Result
1 .	Develop and Adopt a Clear, Long term and Transparent “Electricity Tariff Policy”	To establish principles and criteria for tariff determination insulated from ad hoc pressure .	<ul style="list-style-type: none"> - Establishing proper and adequate Tariff Policy with collaboration of MOEWRI - Tariff principles identified and adopted
2 .	Introduce a Multi-Year Tariff Framework (MYTF)	To move away from annual tariff lobbying to a predictable, long-term structure .	<ul style="list-style-type: none"> - Tariff approved for 3-5 years - Performance based adjustment
3 .	Undertake a Tariff Restructuring Study (Cost of Supply and Tariff Rationalization)	To align tariff structure with policy goals (domestic consumption vs . export)	<ul style="list-style-type: none"> - Enhanced evidence Generation, data driven reform - TOD Pricing, Seasonal Tariff and progressive tariff reform adopted
4 .	Create a “Tariff Advisory Panel” (TAP)	Insulate ERC from direct political lobbying and include expert views in tariff decisions by involving Legal, Regulatory, Economists, Utilities, experts	<ul style="list-style-type: none"> - Avoid arbitrary political pressure - Improves transparency and enhanced authority of ERC

4. ERC burdened with Transactional Approvals (Section 14 Mandate vs . Reality)

While the Electricity Regulatory Commission Act, 2017 grants the ERC a broad mandate to drive sectoral reforms — including promoting competition, facilitating mergers and acquisitions, and encouraging innovation — in practice, the Commission’s operations are heavily dominated by transactional regulatory approvals . Stakeholders have consistently raised concerns that ERC’s time and institutional focus are disproportionately absorbed by routine tasks such as approving share issuances, right shares, RCOD and Power Purchase Agreements (PPAs) . As a result, core strategic functions, such as fostering market competition, enabling new market entrants, supporting sector restructuring, and encouraging innovation, are often overshadowed, contrary to the original intent of Section 14 . In order to address the challenge, following solution is proposed:

S.N.	Proposed Solution	Objectives	Result
1 .	Creation of “Transaction Approval Desk” (TAD)	To separate routine transaction approvals from strategic regulatory functions .	<ul style="list-style-type: none"> - Fast track approvals - Isolates administrative burdens from commissioner freeing them for reform activities
2 .	Develop and Adopt Standardized Approval Guidelines	Make approvals procedural rather than judgment-based, reducing time and confusion .	<ul style="list-style-type: none"> - minimizes “file-by-file” deliberations - reduces room for political lobbying
3 .	Delegate Approval Authority to the Secretariat Level	Allow Secretariat (staff level) to approve routine transactions under pre-set thresholds . (Share issuance below certain threshold can be delegated to Secretary, Divisions Head)	<ul style="list-style-type: none"> - Only complex or high-risk transactions goes to board approvals
4 .	Digitize Transactional Workflows	Improve efficiency and transparency by implementing DMS, RIMS	<ul style="list-style-type: none"> - Implementation of Digitize transactional workflows - Increased efficiency and transparency

5. Overlapping Jurisdiction between ERC and Water and Energy Commission Secretariat (WECS)

There is overlapping jurisdiction between the Electricity Regulatory Commission (ERC) and the Water and Energy Commission Secretariat (WECS) . Both institutions are involved in drafting laws, policies, and strategies related to energy and water resources . This overlap leads to, confusion among stakeholders (government, licensees, and investors), duplicated or conflicting rules and policies, delays in regulatory approvals and strategy implementation, and turf disputes that weaken the credibility and effectiveness of both institutions .

S.N.	Proposed Solution	Objectives	Result
1 .	Develop a “Functional Boundary Document”	Jointly define and publish a list of responsibilities	<ul style="list-style-type: none"> - Functions and responsibilities defined
2 .	Advocate for a High-Level Coordination Legislation	Request Nepal Government (MoE-WRI) to issue a formal decision or directive segregating roles and duties of both agencies	<ul style="list-style-type: none"> - Better coordination and cooperation
3 .	Propose legal harmonization	Lobby for amendments in ERC act and WECS Regulations	<ul style="list-style-type: none"> - Harmonization of conflicting laws

6. Poor Enforcement of Regulatory Instruments:

ERC has been empowered and actively issuing regulatory instruments, but it suffers from poor enforcement mechanisms, which has critically weakened its regulatory authority and effectiveness. Since its establishment, ERC has issued approximately dozen of key regulatory instruments, including frameworks related to Power Purchase Agreements (PPA), Consumer Tariff Determination, Consumer Protection Directives, the Nepal Electricity Grid Code, and Key Performance Indicators (KPIs) for licensees. However, in practice, the implementation of these instruments has been extremely weak. The following solution is proposed to address the challenge:

S.N.	Proposed Solution	Objectives	Result
1.	Operationalize ERC's Existing Quasi-Judicial Powers More Strongly	Formalize processes for issuing binding compliance orders and adjudicating violations	- Making licensees more compliant backed by sanctions
2.	Establish a "Regulatory Enforcement Division (RED)" Within ERC	Create an independent division tasked with: Monitoring licensee behavior, investigating breaches, and preparing cases for the Commission's formal adjudication and penalties.	- Establishment of separate division with mandate to monitor, and inspect
3.	Introduce a Penalty and Blacklisting Framework through Byelaws	Prepare and issue Byelaws that define offenses and corresponding financial penalties, provide for blacklisting of habitual offenders from future licensing and bidding opportunities.	- Issuing penalty and blacklisting framework discourage violations of licensees. - Regulatory Predictability

Conclusion and Way Forward

Nepal's electricity sector is on the cusp of transformation—regional electricity trade, increased renewable integration, and private sector participation demand a capable and independent regulator. ERC has made significant strides since its establishment, but challenges remain.

Strategic Actions for ERC

- **Functional Independence:** Secure legal, financial, and functional independence through targeted amendments.
- **Institutional Strengthening:** Institutionalize regulatory training programs and retain sector experts.
- **Financial Autonomy:** Establish sustainable financing mechanisms through regulatory fees

and levies .

- **Public Outreach:** Deepen public engagement with structured outreach and participatory rulemaking .
- **Regulatory Enforcement:** Strengthen enforcement mechanisms through legal reform and dedicated capacity .
- **Coordination and cooperation:** Enhance inter-agency coordination for coherent sector governance . ERC must evolve from a traditional regulator into a strategic facilitator of Nepal's energy transition—balancing consumer welfare, market development, and policy alignment in a rapidly changing regional power landscape .

Reference:

- World Bank, John E . Besant-Jones, Reforming Power Markets in Developing Countries: What Have We Learned?
- USAID Nepal Hydropower Development Program, ERC Bill: Principles of Effective regulator, 2017
- USAID Nepal Hydropower Development Program, Gap Analysis ERC Act, 2017
- USAID Nepal Hydropower Development Program, Power Sector reforms and restructuring experience in South Asia, 2017
- Electrification and Regulation: Principles and a Model Law
- NARUC (2017) . Effective Regulatory Governance Manual .
- African Development Bank (2023) . Electricity Regulatory Index for Africa .
- ERC Act 2017

- ERC Regulation 2018
- ERC Annual Report for FY 2078, 2079, 2080
- www.erc.gov.np
- <https://regulationbodyofknowledge.org/>

The Indian Experience in Electricity Regulations: Lessons and Insights for ERC-Nepal

-Samrat Roy

Introduction

Electricity regulation in India is a complex and evolving field shaped by the country's unique socio-economic landscape, technological advancements and environmental concerns . As one of the fastest-growing economies in the world, India's demand for electricity has exponentially increased, necessitating a robust regulatory framework that ensures sustainable, equitable and efficient electricity supply .

Electricity regulation lies at the heart of sustainable development, economic progress, and social equity in any modern nation . For developing countries like India and Nepal, managing this vital sector effectively is not merely a technical exercise but also a socio-political imperative . India's journey in electricity regulation has been both tumultuous and transformative, with milestones that offer critical insights for its neighbours, including Nepal . This article delves into the Indian experience in electricity regulations, dissecting its historical evolution, the role of regulatory bodies, major policy reforms, persistent challenges, and future pathways . It is tailored for the Electricity Regulatory Commission of Nepal (ERC-Nepal) to aid in strategic planning and institutional development .

Historical Background

India's tryst with electricity dates back to the late 19th century, with the first demonstration of electric light in Kolkata in 1879 and the commissioning of the first hydroelectric power plant in Darjeeling in 1897 . During the colonial period, electricity development was sporadic and mostly confined to urban centers .

The Electricity Act of 1910 marked a significant milestone, introducing provisions for power generation, distribution, and regulation . However, the lack of a cohesive regulatory framework meant that numerous challenges persisted, including tariff inconsistencies and inadequate supply reliability .

Post-independence, the Indian government took a centralized approach to electricity development, considering it a critical input for national planning . The Electricity (Supply) Act of 1948 laid the foundation for state-owned generation, transmission, and distribution under State Electricity Boards (SEBs) . These boards were expected to operate based on commercial principles, but political interference and cross-subsidization severely impacted their efficiency .

The 1970s and 1980s saw a significant increase in demand, but poor financial health, inadequate investments, and operational inefficiencies plagued the SEBs . By the early 1990s, it was evident that comprehensive reforms were necessary .

Emergence of Regulatory Bodies

The need for independent regulation was recognized as a cornerstone of reform. The liberalization of the Indian economy in the 1990s necessitated a re-evaluation of the electricity sector. The turning point came with the enactment of the Electricity Regulatory Commissions Act in 1998. This law created the Central Electricity Regulatory Commission (CERC) and enabled the establishment of State Electricity Regulatory Commissions (SERCs). These bodies were tasked with tariff determination, licensing, grid standards, and dispute resolution. These regulatory bodies were tasked with ensuring transparency, efficiency, and fairness in the electricity market. Their establishment marked a significant shift towards a more market-driven approach, providing the groundwork for a competitive electricity market in India.

The Electricity Act of 2003 consolidated the regulatory framework and superseded previous legislation. It gave more powers to CERC and SERCs, promoted open access, allowed multiple players in generation and distribution, and emphasized consumer protection. It marked a shift from a command-and-control regime to a market-oriented structure.

Major Policy Reforms

Several key policy reforms have shaped electricity regulation in India. The National Electricity Policy (NEP) of 2005 aimed at providing access to electricity for all and promoting the development of a power market. It emphasized the need for investment in generating capacity, strengthening transmission networks, and improving distribution systems.

The Electricity Act of 2003 was another landmark reform that redefined the electricity sector's structure. It introduced provisions for competition, unbundling of services, and the establishment of Open Access provisions, allowing consumers to choose their electricity supplier. Additionally, the act emphasized renewable energy integration, enabling the growth of solar and wind energy sectors.

The introduction of the Ujjwala Yojana and Saubhagya Scheme further underscored the government's commitment to enhancing energy access and electrification in rural areas. These schemes not only focused on expanding the reach of electricity but also aimed to promote energy efficiency and sustainability.

India's electricity sector reforms have been multi-dimensional. Key policy and regulatory reforms include:

- Electricity Act, 2003:** A comprehensive piece of legislation, it focused on promoting competition, protecting consumer interests, and ensuring supply of electricity to all areas.
- National Electricity Policy (2005) and Tariff Policy (2006, amended in 2016):** These guided the implementation of the Electricity Act, emphasizing affordability, efficiency, and financial viability.
- Unbundling of SEBs:** Functional separation of generation, transmission, and distribution improved transparency and accountability.
- Introduction of Power Exchanges:** Indian Energy Exchange (IEX) and Power Exchange India Limited (PXIL) enabled transparent, competitive, and market-driven electricity trading.
- Renewable Energy Promotion:** Through policies like the National Solar Mission and Renewable Energy Certificates (RECs), India aimed to meet growing demand sustainably.

6. **UDAY Scheme:** Launched in 2015, it aimed to improve the financial health of distribution companies (DISCOMs) through debt restructuring and performance-linked incentives .

Challenges in Electricity Regulations

Despite significant strides in electricity regulation, India faces several challenges that impede the sector's growth . One of the primary issues is the financial instability of distribution companies (DISCOMs) . Many DISCOMs operate at a loss due to a combination of factors, including high operational costs, escalated power procurement costs, and tariff subsidies . This financial strain undermines their ability to invest in infrastructure improvements and limits access to electricity for consumers .

Another challenge is the need for effective integration of renewable energy sources into the grid . As India aims to achieve ambitious renewable energy targets under the Paris Agreement, integrating intermittent sources like solar and wind power presents significant regulatory and operational hurdles . Ensuring grid stability while achieving a diversified energy mix remains a critical challenge .

Furthermore, regulatory inconsistencies across states create barriers to the smooth functioning of the electricity market . Varied tariff structures and regulatory frameworks often lead to confusion and disputes, inhibiting competition and private sector investment .

Thus, despite significant reforms, India's electricity sector continues to grapple with several challenges:

1. **Financial Health of DISCOMs:** Many DISCOMs remain financially unviable due to high AT&C losses, subsidy burdens, and poor tariff realization .
2. **Cross-subsidization:** Industrial consumers bear higher tariffs to subsidize agricultural and residential sectors, distorting the market .
3. **Regulatory Independence:** Political pressures often influence tariff setting and policy decisions, compromising the autonomy of regulators .
4. **Open Access Issues:** While legally enabled, open access has not been fully implemented due to cross-subsidy surcharges and infrastructure constraints .
5. **Dispute Resolution Delays:** Although SERCs and CERC have adjudicatory powers, legal challenges and delays hamper effective dispute resolution .
6. **Integration of Renewables:** Variability and grid integration of renewable energy sources pose new regulatory and technical challenges .

Future Directions in Electricity Regulations

The Indian government has recognized the need for reforming electricity regulation and has initiated several measures to address the existing challenges . Moving forward, key focus areas include:

Strengthening DISCOM Financial Health : Addressing the financial distress of DISCOMs is critical . This can be achieved through measures such as promoting tariff rationalization, decreasing transmission and distribution losses, and adopting innovative financial models to attract investments .

Enhancing Grid Infrastructure: Investment in smart grid technology and strengthening the

transmission network is essential for accommodating increased renewable energy generation . Smart grids can help enhance grid reliability and facilitate better demand-side management .

Promoting Consumer Participation: Empowering consumers through awareness and education will foster a more competitive market . The introduction of net metering policies and peer-to-peer energy trading can enhance consumer engagement .

Streamlining Regulatory Frameworks: Establishing uniform regulatory guidelines across states can eliminate barriers to market entry, streamline the approval process for new projects, and simplify tariff structures .

Fostering Renewable Energy Development: Continued support for renewable energy through policy incentives, subsidies, and initiatives will play a crucial role in ensuring energy security while mitigating climate change impacts .

In addition, India is also entering a new phase of regulatory evolution driven by decarbonization, decentralization, and digitalization . Key future directions include:

- 1. Regulatory Sandbox Frameworks:** Encouraging innovation by allowing pilot projects with relaxed regulations .
- 2. Time-of-Day Tariffs:** Promoting demand-side management through dynamic pricing mechanisms .
- 3. Smart Grids and Meters:** Enhancing transparency, efficiency, and consumer participation .
- 4. Energy Storage Regulations:** Developing clear policies for battery storage to support renewable integration .
- 5. Carbon Markets:** Aligning electricity regulations with India's net-zero goals .
- 6. Consumer-Centric Reforms:** Empowering consumers through prosumer models, net metering, and grievance redressal mechanisms .

Key Suggestions and Lessons for ERC-Nepal

India's regulatory journey underscores the importance of clarity, capacity, competition, and consumer focus . For Nepal, the replication of such reforms—adapted to its unique scale, governance capacity, and market maturity—can pave the way for a reliable, inclusive, and future-ready power sector . Strategic, phased, and participatory regulatory evolution is the need of the hour .

Nepal, with growing surplus generation and regional trade aspirations, must align regulatory reforms with its current maturity while planning for the future .

1. Cross-Border Electricity Trade:

India's recent cross-border electricity trade regulations have enabled Nepal to access India's market and trade power . Nepal can learn from this experience to facilitate smoother and more efficient cross-border power transactions .

2. Independent Electricity Regulator:

Nepal has established an independent electricity regulator, crucial for sector reform . India's experience with state and central electricity regulatory commissions (SERCs and CERC) can be a valuable model for Nepal to ensure regulatory independence and accountability .

3. Competition in Generation and Distribution:

Nepal's new Electricity Act aims to enable competition in electricity generation and establish power trade as a licensed activity. India's experience with reforms, including deregulation and delicensing, can provide valuable insights for Nepal on how to foster competition and attract private investment.

4. Regulatory Independence and Transparency:

Nepal needs to establish a regulatory framework that is transparent, autonomous, and accountable. India's experience with independent regulators, like the SERCs and CERC, can offer valuable lessons on ensuring regulatory independence and transparency.

5. Power Purchase Agreements (PPAs):

Nepal's success in signing PPAs for new projects demonstrates the importance of having a robust regulatory framework for attracting private investment. India's experience with PPAs and tariff policies can offer valuable insights for Nepal on how to develop a more competitive and investor-friendly environment.

6. Tariff Reforms and Market Operations:

India's experience with tariff reforms and market operations can provide valuable lessons for Nepal on how to create a more efficient and transparent electricity market.

7. Financial Viability of State-Owned Utilities:

Nepal's Nepal Electricity Authority (NEA) needs to improve its financial viability, and India's experience with reforms to improve the financial performance of distribution companies (DISCOMs) can be a valuable model.

8. Grid Codes and Transmission Planning:

India's experience with grid codes and transmission planning can help Nepal develop a more reliable and secure power system, especially for cross-border electricity trade.

9. Coordination between National Policy, Regulation, and Power System Planning:

Nepal needs to strategically coordinate its national policy, regulation, and power system planning to maximize the benefits of cross-border electricity trade.

10. Energy Banking:

Nepal and India have agreed on energy banking through power traders, which can help Nepal manage its hydropower resources more effectively and enhance regional cooperation.

11. Investment and Financing:

Nepal needs to increase investment in the electricity sector beyond existing pipelines and explore various financing mechanisms, including public and private sector partnerships.

Conclusion

India's electricity regulation journey is a powerful narrative of reform, resilience, and reinvention. It underscores the importance of a robust legal framework, independent institutions, stakeholder involvement, and a forward-looking policy vision.

The Indian experience in electricity regulation underscores the importance of a balanced approach that combines liberalization with robust oversight. While significant progress has been

made, ongoing reforms are essential to address the multifaceted challenges within the sector. As India continues to evolve into a global energy leader, the lessons learned from her regulatory journey can serve as a valuable guide for other nations grappling with similar issues. By fostering a transparent, resilient, and consumer-centric electricity market, India can ensure sustainable energy access for all her citizens while contributing to global climate goals.

To sum up, the following key regulatory strategy for Nepal may be considered:

- 1. Foundational Legislation:** Nepal should revisit and strengthen her Electricity Act to clearly define roles, encourage competition, and facilitate unbundling where needed—drawing from India's 2003 Act.
- 2. Independent and Capable Regulator:** Empowering the Electricity Regulatory Commission (ERC) of Nepal with broader authority and technical capacity is vital for credible tariff setting, dispute resolution, and investment climate.
- 3. Open Access & Market Frameworks:** Begin phased implementation of open access regulations to allow large consumers and traders to buy directly. Develop a Nepali power exchange model with regional integration potential.
- 4. MYT and Cost-Reflective Tariffs:** Adopt MYT principles in tariff regulation to encourage utility efficiency, predictability, and cost recovery, with targeted subsidies for vulnerable groups.
- 5. Renewable Energy Obligations:** Institutionalize RPOs for large consumers and utilities with compliance mechanisms to scale up Nepal's clean energy transition.
- 6. Grid Code & Ancillary Services:** Formulate a Nepal Electricity Grid Code aligned with regional standards, and initiate a roadmap for ancillary services to ensure secure and flexible grid operation.
- 7. Consumer Empowerment:** Introduce consumer-centric reforms, including service quality standards, consumer forums, and demand-side management programs to modernize utility-consumer interface.
- 8. Capacity Building:** Invest in human capital and technical training to enhance regulatory capabilities.
- 9. Stakeholder Engagement:** Regular consultations with consumers, utilities, and government agencies improve transparency and buy-in.
- 10. Data and Digitalization:** Use digital platforms for real-time data collection, analysis, and decision-making.
- 11. Regional Cooperation:** Engage with India and other SAARC nations for cross-border electricity trade and regulatory harmonization.
- 12. Pilot Programs:** Start with pilot regulatory reforms in selected areas before full-scale implementation.
- 13. Strengthening Infrastructure:** Invest in robust transmission and distribution infrastructure to support reliable and uninterrupted power supply.

As Nepal embarks on her own regulatory path, the Indian experience offers both cautionary tales and exemplary practices. By learning from India's successes and setbacks,

ERC-Nepal can chart a customized, sustainable, and inclusive roadmap for electricity regulation that empowers consumers, attracts investment, and accelerates national development .

विद्युत सेवा बन्द गर्ने अवस्थाहरू, आधार र प्राथमिकताको सम्बन्धमा अन्तर्राष्ट्रिय अभ्यासहरू

सरोज कोइराला १

विद्युत नियमन आयोग ऐन, २०७४ को दफा १२ (ड) ले विद्युत नियमन आयोगलाई विद्युत सेवा बन्द गर्ने अवस्था, आधार तथा प्राथमिकता निर्धारण गर्ने अधिकार दिएको छ । २०८० असारमा विद्युत नियमन आयोगद्वारा जारी गरिएको विद्युत उपभोक्ता हित संरक्षणसम्बन्ध निर्देशिका, २०८० ले पनि विद्युत वितरण अनुमति पत्र प्राप्त व्यक्तिको लागि निर्देशनात्मक व्यवस्था गरेको छ जसमा विद्युत सेवा नियोजित र अनियोजित रूपमा बन्द हुँदा सो सम्बन्धी जानकारी प्रदान एवम् त्यसरी बन्द गरे पश्चात करि अवधिभित्र सेवा सुचारु गर्नुपर्छ भन्ने उल्लेख छ । यद्यपि, नेपालमा विद्युत सेवा बन्द गर्ने अवस्था, आधार र प्राथमिकताको सम्बन्धमा सैद्धान्तिक प्रारूपको अभावका साथै कानूनमा दोहोरोपन पनि देखन सकिन्छ ।

विकसित देशहरूको अभ्यास हेर्ने हो भने सामान्य अवस्थामा विद्युत सेवा बन्द हुने कल्पना गरिएँदैन । विद्युत सेवा बन्द गर्ने विषयमा अन्तर्राष्ट्रिय रूपमा हेर्दा अन्तिम विकल्पको रूपमा लिइन्छ र विद्युत सेवा बन्द गर्दा उपभोक्ताको हितलाई विशेष संवेदनशीलताका साथ हेरिन्छ । हाम्रो विद्युत चोरी नियन्त्रण ऐन, २०५८, विद्युत चोरी नियन्त्रण नियमावली, २०५९ र नेपाल विद्युत प्राधिकरणको विद्युत वितरण विनियमावली, २०७८ को व्यवस्था हेर्दा चोरीलाई निरुत्साहित गर्न कडा प्रावधानहरू त देखिन्छन् तर विद्युत सेवा बन्द गर्दा उपभोक्ताको कोणबाट विश्लेषण गरी समग्रमा आर्थिक-साम(ाजिक प्रभाव कम गर्ने हेतुले ती कानूनहरू निर्माण भएको पाइँदैन । यसै सन्दर्भमा, यस लेखमा केही देशहरूको नीतिगत एवम् नियामकीय व्यवस्थाहरू छलफल गरी नेपालले सो सम्बन्धमा चालन सक्ने कदमको विषयमा संक्षेपमा छलफल समेत गरिएको छ ।

संयुक्त अधिराज्य

बेलायतको विद्युत क्षेत्रको नियामक निकायको रूपमा रहेको ग्यास तथा विद्युत बजारसम्बन्धी कार्यालय (Office of Gas and Electricity Markets – OFGEM) ले उपभोक्तालाई विद्युत आपूर्ति गर्ने कम्पनीहरूको नियमनका लागि जारी गरेको Standard Conditions of Electricity Supply License ले देहायबमोजिमको व्यवस्था गरेको छ^१:

क. विद्युतको महसुल नरिर्ने ग्राहस्थ उपभोक्ता यदि एकलै बस्ने वृद्ध (Pensionable Age) व्यक्ति भएमा वा अन्य वृद्ध व्यक्तिसंग बस्ने वृद्ध व्यक्ति भएमा अथवा १८ वर्ष मुनिको व्यक्तिसंग वृद्ध व्यक्ति भएमा अनुमतिपत्र प्राप्त व्यक्तिले जाडोको समयमा कुनै पनि हालतमा विद्युत सेवा बन्द नगर्ने ।

^१ लेखक नियामकीय मामिला परामर्शदाता हुनुहन्छ । - सम्पादक

^२ <https://www.ofgem.gov.uk/sites/default/files/2023-03/Electricity%20Supply%20Standard%20Consolidated%20Licence%20Conditions%20-%20Current.pdf>

ख. उल्लेखित अवस्था (क) लागु नहुने अवस्थामा पनि यदि ग्राहस्थ उपभोक्ता अथवा उक्त उपभोक्ताको परिसरमा बस्ने व्यक्ति अशक्त, दर्घ रोगी अथवा वृद्ध (Pensionable Age) भएको र सम्बन्धित उपभोक्ताले विद्युत महसुल नतिरेको भएको अवस्थामा समेत अनुमतिपत्र प्राप्त व्यक्तिले जाडोको समयमा सकेसम्म विद्युत बन्द नहोस् भन्ने हेतुले सबै उपयुक्त कदमहरु चल्नु पर्ने ।

ग. ग्राहस्थ उपभोक्ताले विद्युतको महसुल नतिरेको अवस्थामा सर्वप्रथम महसुल असुलउपर गर्न सबै तर्कसङ्गत कदमहरु चल्नुपर्ने र विद्युत सेवा बन्द गर्ने कार्य अन्तिम विकल्पका रूपमा लिनुपर्ने ।

संयुक्त राज्य अमेरिका

संयुक्त राज्य अमेरिकाका राज्यपिच्छे नै विद्युत वितरणको नियामक निकाय फरक हुने भएका कारण सबै राज्यमा एकै व्यवस्था पाइदैन । तसर्थ, विद्युत सेवा बन्द गर्ने विषयमा समेत राज्यपिच्छे सामान्य भिन्नता देख्न सकिन्छ । उदाहरणको लागि, न्यु-योर्क राज्यको विद्युतको नियामक न्यु-योर्क सार्वजनिक सेवा आयोग (New York Public Service Commission) ले ग्राहस्थ उपभोक्ताको विद्युत लाइन कटौती गर्ने सम्बन्धमा देहायको व्यवस्था गरेको छ^३ :

- उपभोक्ताले आफ्नो विद्युतको बिल समयमा नतिरेमा विद्युत सेवा प्रदायकले उपभोक्तालाई विद्युत सेवा बन्द गर्ने लिखित सूचना दिएर उपभोक्तालाई विद्युतको महसुल तिर्नु अथवा तिर्नु पर्ने रकम भुक्तानी गर्ने सम्बन्धी सम्भौता गर्न १५ दिनको म्याद दिई विद्युत सेवा बन्द गर्न सक्ने ।
- उल्लेखित सूचनामा विद्युत सेवा प्रदायकले विद्युत बन्द गर्ने सूचना दिँदा के कारणले विद्युत सेवा बन्द गर्न लागिएको हो भन्ने सम्बन्धी विवरण र विद्युत सेवा बन्द हुन सक्ने सम्भावित मिति तथा समय र विद्युत सेवा प्रदायकको ठेगाना र फोन नम्बर लगायत विवरण संलग्न गर्नु पर्नेछ । यस्तो सूचना विद्युत महसुल तिर्नु पर्ने मितिको २० दिन पश्चात पठाउन सकिने ।
- विद्युत सेवा बन्द गर्दा विद्युत सेवा सोमबारदेखि बिहिबार बिहान ८ बजे देखि ४ बजेका बीचमा मात्र सेवा बन्द गर्न पाइनेछ ।

देहायको अवस्थामा भने विद्युत सेवा बन्द गर्न नमिल्ने:

- तिर्नु पर्ने रकम एक बर्ष अघि नै बिलिङ गरिएको र सो समयदेखि नै तिर्नु पर्ने रहेको यद्यपि विद्युत सेवा प्रदायकले त्यतिवेला विद्युत सेवा बन्द नगरेको ।
- यदि कुनै चिकित्सकले उपभोक्तालाई मेडिकल इमर्जेन्सी भएको प्रमाणित गरेमा ।
- यदि सेवा प्रदायकले उठाउनु पर्ने रकमका सम्बन्धमा उपभोक्ताले सेवा प्रदायक अथवा सार्वजनिक सेवा आयोगसमक्ष विवादसम्बन्धी मुद्दा दायर गरेको तर विवाद नरहेको रकम भने समयमै बुझाएको भएमा ।
- सेवा प्रदायकको प्रतिनिधि विद्युत सेवा बन्द गर्न आउँदाको अवस्थासम्म उपभोक्ताले तिर्नु पर्ने सम्पूर्ण रकम ति(रिसकेको भएमा ।
- त्यसै गरी, सार्वजनिक बिदाको दिन, बिदाको एक दिन अघि, क्रिशमस र नयाँ बर्ष पर्ने दुई हप्ताको अवधिभित्र

^३ <https://dps.ny.gov/consumer-guide-your-rights-residential-gas-electric-or-steam-customer-under-hefpa>

अथवा सेवा प्रदायकको कार्यालय बन्द रहने दिन भने महसुल नतिरेका कारण विद्युत सेवा बन्द गर्न नपाइने ।

यसका अतिरिक्त, यदि विद्युत सेवा प्रदायकले उपभोक्ताको चिकित्सक मार्फत अथवा स्थानीय स्वास्थ्य बोर्ड मार्फत उपभोक्तालाई स्वास्थ्य समस्या भएको र विद्युत सेवाको अभावमा निजको स्वास्थ्य अवस्था खस्किने भने सम्बन्धमा सूचना प्राप्त गरेमा सेवा प्रदायकले ३० दिनसम्म सेवा सुचारू राख्नु पर्नेछ । यदि चिकित्सकले विद्युत सेवा नहुँदा स्वास्थ्य किन खस्कन्छ भन्ने सम्बन्धमा विवरण उल्लेख गरिदिएमा तथा त्यस्तो स्वास्थ्य अवस्थामा कति अवधिसम्म रहने तोकेमा र उपभोक्ताले समेत आफूले किन महसुल तिर्न नसकेको हो उल्लेख गरेमा थप त्यस्तो अवधि ३० दिनको लागि थप सकिन्छ । यदि उपभोक्ताको स्वास्थ्य अवस्था दीर्घकालीन भएमा अझै लामो अवधि समेत स्वीकार्य हुनेछ । यदि स्वास्थ्य समस्या रहेको उपभोक्ताको जीवन सहायता प्रणाली (Life Support System) संचालन गर्न विद्युत आवश्यक रहेमा सार्वजनिक सेवा आयोगले प्रमाणपत्र खारेज नगर्दासम्मको अवधिका लागि चिकित्सकको स्वीकृति कायम रहने छ । यद्यपि, हरेक तीन महिनामा त्यस्ता उपभोक्ताले निजले किन विद्युतको महसुल तिर्न नसक्ने हो, खुलाउनु पर्नेछ । यस्तो स्वास्थ्य समस्या रहेको अवधिभरि सम्भव भएसम्म उपभोक्ताले विद्युतको महसुल तिर्ने प्रयत्न गर्नुपर्नेछ । सार्वजनिक सेवा आयोगका कर्मचारीले त्यस्ता उपभोक्ताहरूको लागि उपयुक्त भुक्तानी व्यवस्था निर्माण गर्ने जसका कारण उपभोक्ता स्वास्थ्य समस्या टुँगिएको अवस्थामा एकौचोटी ठुलो राशी तिर्नुबाट जोगिने उल्लेख छ ।

३. फ्रान्स

फ्रान्समा १९९० जुलाई ५ मा जारी एक आदेशले विद्युत प्रणालीमा लोडसेडिङ गराउँदा पालना गर्नुपर्ने सामान्य निर्देशनहरूमा एक विभाग (Department), जुन फ्रान्सका प्रशासकीय क्षेत्रलाई भनिन्छ, भित्र विद्युत सेवा बन्द गर्दा प्राथमिकता अनुसार विद्युत प्राप्त गर्ने उपभोक्ताको सूची निर्माण उक्त विभागका प्रशासकीय प्रमुख (Prefect) ले गर्न पाउने व्यवस्था छ । उक्त आदेशको दफा १ ले राष्ट्रको विद्युतको अत्यावश्यक आवश्यकताहरु पूर्ति भएको अवस्थामा देहायका अवस्थामा लोडसेडिङ गराउन सकिने उल्लेख छ:

- क. विद्युत प्रणालीको फ्रिक्वेन्सी ४९ हर्ज भन्दा कम भएमा ।
- ख. ४०० के.भी. तथा २२५ के.भी. भोल्टको प्रसारण प्रणालीको भोल्टेज क्रमशः ३८० के.भी. र २१० के.भी. भन्दा तल भरेमा ।
- ग. प्रसारण तथा वितरण संरचनाको अत्यधिक ओभरलोड भएको र त्यस स्थानमा विद्युत आयात गर्ने अन्य विकल्प नभएमा ।
- घ. प्रणालीको सामान्य संचालन अवस्था (Normal Operating Condition) सुनिश्चित गर्न सम्भव नभएमा ।

त्यसै आदेशको दफा २ मा उल्लेख गरे अनुसार, निम्नबोमोजिमका विद्युत प्रयोगकर्तालाई उक्त विभागका प्रमुखले विद्युत सेवा बन्द नहुने गरी अग्राधिकार प्रदान गर्न सक्नेछन्:

- क. अस्पताल, क्लिनिक तथा प्रयोगशालाहरु जसमा विद्युत बन्द वा कटौती गर्दा मानव जीवन जोखिममा पर्न सक्दछ अथवा मानव जीवनमाथि ठुलो खतरा उत्पन्न हुन्छ ।

ख. सुरक्षाका लागि अत्यावश्यक सार्वजनिक सडकमा जडान भएका बत्ती तथा संकेतहरु ।

ग. औद्योगिक क्षेत्रहरु जसको सञ्चालन अवरुद्ध हुँदा ठूलो क्षति हुन जान्छ, विशेष गरी राष्ट्रिय सुरक्षाको विन्दुबाट महत्वपूर्ण उद्योगहरु ।

घ. विद्युत उपलब्ध भएसम्म अन्य किसिमका प्रयोगकर्तालाई पनि अवस्था अनुसार प्राथमिकतामा राख्न सकिने ।

फ्रान्सको ऊर्जा बजारको नियामक निकाय Commission de régulation de l'énergie (CRE) को २०१३ को गतिविधि प्रतिवेदनले २०१३ मा पास भएको Brotte's Law ले उपभोक्ताले विद्युतको महसुल नर्तिरेको अवस्थामा समेत नोभेम्बर १ देखि मार्च १५ सम्म विद्युत सेवा बन्द गर्न नमिल्ने व्यवस्था गरेको उल्लेख गरेको छ । यद्यपि, उक्त कानूनले उपभोक्ताले प्रयोग गर्ने विद्युतको क्षमता घटाउने छुट दिएको भने देखिन्छ ।

४. जर्मनी

विद्युतको सङ्कट आइपर्ने देखिएमा अथवा नजिकिएको अवस्थामा सर्वप्रथम “बजारमा आधारित उपायहरु” (Market Based Measures) अपनाइन्छ । बजारमा आधारित उपायहरुमा राज्यको संलग्नता हुँदैन र प्रसारण प्रणाली सञ्चालक एवम् विद्युत सेवा प्रदायकहरुको मूल भूमिका हुन्छ । यसमा पावर एक्सचेन्जमा विद्युत खरिद गर्नु, रिजर्भह(रुको प्रयोग गर्नु, विद्युत कटौती गर्न पूर्व-सहमति दिएका विद्युत प्रयोगकर्ताहरुको विद्युत काट्नु (Load Curtailment), छिमेकी प्रणालीहरुबाट Emergency Reserves को रुपमा रहेका विद्युत आयात गर्नु, आदि रहेको छ । यदि Market Based Measures मात्रैले परिस्थितिको निदान गर्न नसक्ने अवस्थामा Non-Market Based Measures अपनाइन्छ जसको प्रयोजन विद्युत सङ्कटलाई न्यूनीकरण गर्नु हो र जसमा लोडसेडिङ पनि पर्दछ ।

विद्युत सङ्कटको अवस्थामा सम्बन्धित सर्वसाधारणलाई सूचित गरिनुपर्ने व्यवस्था उल्लेख छ । सर्वसाधारण भन्नाले देशका जनता, कम्पनीहरु तथा तिनका व्यावसायिक संघ-संगठन बुझ्नु पर्छ । यसरी योजनाबद्ध तथा योजना बिनै विद्युत सेवा बन्द गर्दा सूचना वा जानकारी दिने कार्यमा सम्बन्धित प्रसारण प्रणाली सञ्चालक, वितरण प्रणाली सञ्चालक अथवा विद्युत सेवा प्रदायक एवम् स्थानीय तहको भूमिका हुने उल्लेख छ । जटिल एवम् देशव्यापी रूपमा विद्युत सङ्कट भए संघीय सरकारको मन्त्रालयको पनि भूमिका आकर्षित हुन्छ । यसरी सूचना प्रदान गर्ने तरिका, समयावधि तथा स्वरूप, विद्युत बन्द गरिने अवधि, विद्युत सङ्कटको गम्भीरता र प्रकृतिका आधारमा तय गरिनुपर्ने उल्लेख छ । यसका अतिरिक्त, विद्युत उपभोक्ताहरुलाई यस्तो परिस्थितिमा कसरी सामना गर्ने उपायहरुका बारेमा समेत जानकारी दिनुपर्ने व्यवस्था रहेको छ ।

विद्युत सङ्कटको अवस्थामा कुनै पनि उपभोक्ता वा उपभोक्ता वर्गको अग्राधिकर हुने कुनै विशेष कानूनी व्यवस्था छैन । यद्यपि, सङ्कटको अवस्थामा प्राविधिक सम्भाव्यताका आधारमा प्रणाली सञ्चालक तथा अधिकारीहरुले प्राथमिकीकरण गर्न भने सक्नेछन । सामान्यतया, विद्युत वितरण सञ्जाललाई विभिन्न समूह (Disconnection Group) मा भाग लगाइएको हुन्छ । यस्ता समूह निर्धारण गर्दा सम्बन्धित प्रणाली सञ्चालकको केही तजबिजी अधिकार भने रहन्छ । अवस्थाको विश्लेषण पश्चात, प्राविधिक रूपमा सम्भव भएमा तथा आवश्यक भएको अवस्थामा निश्चित किसिमका उपभोक्ताहरुलाई प्राथमिकतामा राखी विद्युत आपूर्ति कटौती गर्न सकिने व्यवस्था छ ।

विद्युत सेवा बन्द गर्नु परेको अवस्थामा प्रणाली सञ्चालकले विद्युत सेवा बन्द गर्ने कार्य विद्युत उपभोक्ताहरुमा सकेसम्म

पक्षपात र भेदभाव बिना होस् भने सुनिश्चित गर्ने परिस्थितिले अनुकुल बनाएसम्म पालो-पालो गरी (Rolling System) विद्युत कटौती गर्ने पद्धति अनुसरण गरिन्छ ।

४. भारत

भारतको केन्द्रीय सरकारले जारी गरेको विद्युत (उपभोक्ताको अधिकार) नियमावली, २०२० को नियम ८ (१) ले विद्युत वितरण अनुमतिप्राप्त व्यक्तिले सबै उपभोक्ताका लागि चौबिसै घण्टा र सातै दिन विद्युत आपूर्ति गराउनु पर्ने उल्लेख गरेको छ । यसका अतिरिक्त, भारतका विभिन्न प्रादेशिक विद्युत नियमन आयोग (State Electricity Regulatory Commission) हरूले विद्युत सेवा सुनियोजित अथवा आकस्मिक रूपमा बन्द गर्दाको अवस्थामा पालना गर्नु पर्ने विभिन्न नियामकीय प्रावधानहरू तोकेका छन्, जस्तै: मर्मत-सम्भारजस्ता गतिविधिहरूको लागि विद्युत सेवा सुनियोजित रूपमा बन्द गर्ने आवश्यकता देखिएमा कमितमा निश्चित घण्टा अगावै प्रभावित उपभोक्ताहरूलाई सूचना दिने तथा आकस्मिक रूपमा सेवा अवरुद्ध गर्नुपरेमा निश्चित घण्टाभित्र विद्युत आपूर्ति सुचारू गरिसक्नुपर्ने, आदि ।

उदाहरणका लागि भारतको दिल्ली राज्यको विद्युत नियमन आयोग अर्थात्, दिल्ली विद्युत नियमन आयोग (Delhi Electricity Regulatory Commission – DERC) ले विद्युत आपूर्ति बन्द गर्ने सम्बन्धमा गरेका केही व्यवस्थ (हरु देहायबमोजिम छन् :

- मर्मत सम्भारको लागि सुनियोजित रूपमा विद्युत सेवा बन्द गर्नु परेमा कमितमा ४८ घण्टा अगावै उपभोक्तालाई सूचना प्रदान गरिनु पर्नेछ ।
- सुनियोजित रूपमा गरिएको सेवा बन्द (लोडसेडिङ्को अवस्थामा बाहेक) दिनमा १२ घण्टा भन्दा अधिक हुने छैन र यसरी सेवा बन्द गरिएमा बेलुकी ६ बजे सम्ममा सेवा सुचारू गर्नु पर्नेछ ।
- आकस्मिक रूपमा सेवा अवरुद्ध भई वितरण ट्रान्सफरमर (Distribution Transformer) नै फेर्नु पर्ने अवस्थामा ६ घण्टा भित्र विद्युत आपूर्ति सुचारू गर्नु पर्ने, र त्यो अवधि भित्र विद्युत सूचारू नभए त्यसपछिको अवधिको लागि प्रति घण्टाको दरले क्षतिपूर्ति दिनु पर्ने ।
- उपभोक्ताको मिटर चोरी भएको अथवा जलेको अवस्थामा ३ घण्टाभित्र अस्थायी मिटर राखी अथवा मिटर बिना नै भए पनि विद्युत आपूर्ति सुचारू गर्नुपर्ने ।

समग्रमा, नेपालले अनुकरण गर्न लायक अन्तर्राष्ट्रिय रूपमा प्रचलित अभ्यास देहायबमोजिमका रहेका छन्:

- सेवा प्रदायकले कुनै पनि उपभोक्ताको विद्युत सेवा सकेसम्म बन्द हुन नदिने । विद्युत सेवा बन्द गर्नु पूर्व, विद्युत कटौती हुने अवधि तोकी लिखित सूचना दिनुपर्ने । सो अवधिको अन्तिमसम्म पनि विद्युतको महसुल तिरेमा विद्युत सेवा बन्द नगर्ने ।
- नियन्त्रण बाहिरका अवस्था बाहेक सामान्य अवस्थामा विद्युत बन्द गर्दा वा हुँदा निश्चित अवधि भन्दा बढी अवधि विद्युत बन्द नगर्ने । यस्तो अवस्थामा, तोकिएको अवधि भन्दा अधिक समय विद्युत सेवा बन्द भए प्रभावित व्यक्तिले क्षतिपूर्ति पाउनु पर्ने ।
- कुनै क्षेत्रमा विद्युत सङ्कटका कारण विद्युत सेवा बन्द गर्दा सार्वजनिक सूचना प्रेषित गरी समयावधि तथा स्वरूप,

विद्युत बन्द गरिने अवधि, विद्युत सङ्कटको गम्भीरता र प्रकृति उल्लेख गर्ने । यसका अतिरिक्त, विद्युत उपभोक्ताह(रुलाई यस्तो परिस्थितिको कसरी सामना गर्ने उपायहरूका बारेमा समेत जानकारी दिनसक्ने ।

- कुनै क्षेत्रमा नियमित रूपमा विद्युत सेवा बन्द गर्नु पर्ने भएको अवस्थामा एकै क्षेत्र एवम् एकै उपभोक्तालाई बारम्बार असर गर्ने गरी विद्युत सेवा बन्द नगर्ने । यद्यपि, नियामकले सार्वजनिक हितका केही क्षेत्रहरूमा प्राथमिकताका क्षेत्र तोकी विद्युत प्राप्तिमा अग्राधिकार दिन सक्ने । त्यस्तो अग्राधिकारको विषयमा समयमै सबै सरोकारवालाहरूलाई जानकारी दिनु पर्ने ।
- प्रतिकुल मौसम भएको अवस्थामा वृद्ध, दीर्घ रोगी, नाबालिक तथा रोगीसँगै भएका घरहरू वा विद्युतमा निर्भर संवेदनशील स्वास्थ्य उपकरण प्रयोग गर्ने भएमा उपभोक्ताको घरमा विद्युत बन्द गर्ने सम्बन्धमा विशेष व्यवस्था गर्ने ।
- उपभोक्ताले चाहे पनि विद्युत महसुल तिरी विद्युत सुचारू गर्न नसक्ने भएको कारण चाडबाड तथा लामा विदाहरूको लगतै अगाडि विद्युत सेवा बन्द नगर्ने ।

यसरी, अन्तर्राष्ट्रिय रूपमा प्रचलित व्यवस्थाहरूको अध्ययन गर्दा विद्युत बन्द गर्ने सम्बन्धमा उपभोक्ताप्रति उच्च जवाफदेहीता र पारदर्शिता एवम् समग्रमा उपभोक्ताको हित तथा आवश्यकताप्रति अत्यधिक संवेदनशीलता देखिन्छ । विशेष गरी, जोखिमपूर्ण अवस्थामा रहेका विद्युत उपभोक्ताका लागि विशेष व्यवस्था पनि गरिँदो रहेछ । निश्चित अवस्थाहरूमा केही रणनीतिक महत्वका क्षेत्रलाई विद्युत प्राप्तिमा अग्राधिकार समेत प्रदान गरिन्छ तर हरेक अवस्थामा विद्युतको शत-प्रतिशत सुनिश्चितता भने नगरेको देखियो । तसर्थ, विमानस्थल तथा अस्पताल जस्ता अति संवेदनशील स्थानमा विद्युतको वैकल्पिक स्रोत, जस्तै डिजेल जेनेरेटर राख्नु कानूनी रूपमा बाध्यकारी बनाइदो रहेछ । अन्तर्राष्ट्रिय रूपमा विद्युत सेवा बन्दगर्ने व्यवस्था अध्ययन गर्दा नेपालका लागि सुधारका अवसरहरू प्रशस्त नै छन् । फेरि, नेपाल जस्तो विद्युत उत्पादन सम्भावना उच्च भएको देशमा विद्युतको सुलभता तथा विश्वशनीयता अपेक्षित नै हुन्छ । त्यस माथि नेपालको संविधानले परिकल्पना गरेको सेवा प्रवाहमा जवाफदेहिता एवम् पारदर्शिता सम्बन्धी अवधारणाले समेत नेपालमा विद्युत सेवा बन्द गर्ने विषय लगायत सम्पूर्ण विद्युत सेवा प्रवाहको स्तरमा सुधार गर्नुपर्ने देखिन्छ ।

उपभोक्ता हित सम्बन्धी रूपान्तरित दृष्टिकोण हेर्ने हो भने विद्युत क्षेत्रका सबै व्यावसायिक निकायहरू जस्तै, उत्पादनकर्ता, प्रसारण कम्पनी तथा वितरणकर्ताले प्राप्त गर्ने सम्पूर्ण आय विद्युत उपभोक्ताले तिरेको महसुलबाट प्राप्त हुने भएकाले यो समग्र विद्युत प्रणालीको संरक्षकत्व विद्युतका उपभोक्तामा हुन्छ । तसर्थ, अब निर्माण गर्नु पर्ने विद्युतसम्बन्धी नीति, कानून तथा नियामकीय उपकरणहरूमा उपभोक्ताकोन्द्रित दृष्टिकोणबाट प्रेरित हुनु पर्दछ । विद्युत सेवा बन्दसम्बन्धी विषय विद्युत उपभोक्ताको मूल चासोको विषय भएकाले उपभोक्ताप्रति उच्च जवाफदेहिता तथा पारदर्शिता प्रवर्द्धन गर्ने तर्फ आयोगले गृहकार्य गर्नु जरुरी छ । त्यसका लागि, माथि उल्लेखित देशहरू लगायत अन्य देशहरूका उत्कृष्ट अभ्यासह(रुको अध्ययन विश्लेषण गरी त्यस्ता अभ्यासहरू नेपालको अवस्था अनुकूल नीतिगत एवम् नियामकीय तहबाट कार्यान्वयन जरुरी हुन्छ । विद्युत सेवा बन्द गर्ने अवस्था, आधार तथा प्राथमिकताको निर्धारण गर्ने कार्य आयोगको आफ्नो क्षेत्राधिकारभित्र रहेको विषयभएकाले प्रचलित कानूनको अधीनमा रही यस सम्बन्धमा उपयुक्त नियामकीय व्यवस्था समेत निर्माण गर्न सक्दछ भने यस सम्बन्धका कानूनमा रहेको दोहोरोपना हटाउन आवश्यक सुझाव नेपाल सरकारलाई दिन सक्छ । त्यसका अतिरिक्त, आयोगले अन्तर्राष्ट्रिय पद्धतिहरूको अध्ययन गरी कस्ता विषयले प्रेरित भएर त्यस्ता पद्धतिहरू निर्माण हुन पुगेका हुन् विश्लेषण गरी आफ्नै मौलिक पद्धतिहरू निर्माण गर्न सक्दछ । नेपाल क्षेत्रफलमा सानो

Regulatory Perspectives on Grid-Connected and Isolated Distributed Electricity Generation in Nepal

Suman Basnet

Introduction

Nepal's electricity sector is slowly but surely witnessing a shift with a growing emphasis also on non-hydro renewable energy and decentralized electricity generation. Distributed electricity generation (DG)—both grid-connected and isolated—has emerged as a key strategy to address rural energy poverty by providing reliable, high quality and affordable last mile electricity supply, diversify urban energy sources to reduce electricity costs and reduce fossil fuel consumption, help reduce investments in transmission and distribution infrastructure and strengthen energy security and climate resilience. DG refers to the generation of electricity from small-scale technologies located close to the point of use at the household or community level, often utilizing solar, micro or mini hydro, wind energy, renewable biomass or other appropriate renewable energy resources.

This development is in line with international trends and practices. Many countries are now integrating grid connected DG to increase supply of renewable energy, accelerate transition to net zero pathway, improve resilience and lower costs for customers. More importantly, grid connected DG can offer simultaneous co-benefits such that countries can realize multiple advantages of DG at the same time.

This article explores the evolving regulatory landscape that governs grid-connected and isolated DG systems in Nepal, highlighting institutional arrangements, regulatory mechanisms, and implementation challenges.

Distributed Generation in Nepal: An Overview

The geographical, infrastructural and socio-economic challenges of extending the national grid across Nepal's mountainous terrain have made DG systems crucial, especially in rural and off-grid areas. While micro-hydro and solar home systems historically dominated isolated DG, the introduction of net metering and policy incentives has fostered the growth of grid-connected rooftop solar and small-scale hydropower systems in urban and semi-urban areas to supplement electricity generation and replace diesel gensets. Therefore, DG, in addition to energy access goals, can also significantly contribute to our clean energy transition and energy security aspirations.

Institutional and Regulatory Framework

Nepal's regulatory structure for DG is shaped by a combination of centralized policies and emerging subnational roles under federalism. The main legal instruments include:

- Electricity Act 1992 and Electricity Regulations 1993: They set the framework and procedures for licensing, electricity tariffs, and safety regarding electricity generation, transmission, and distribution in Nepal.
- Electricity Regulatory Commission (ERC) Act 2017 and ERC Rules 2018: Establishes ERC as Nepal's electricity sector regulator and establishes procedures for regulation of the sector to ensure transparency, efficiency, fair competition and consumer protection.
- Ministry of Energy Water Resources and Irrigation's (MOEWRI's) Working Procedure on the

Development of Grid Connected Alternative Electricity

- ERC's Bylaws for terms and conditions to be followed for sale or purchase of electricity
- Nepal Electricity Authority's (NEA's) Working Procedure on Energy Obtained from Solar PV systems
- NEA's various Board Decisions on net metering
- Alternative Energy Promotion Centre's (AEPC's) Renewable Energy Subsidy Policy and Delivery Mechanism

The major institutional players include:

- MOEWRI: the nodal Ministry for formulating policies, laws, standards and regulations related to the sustainable development, conservation, use and distribution of electricity .
- ERC: The independent regulator for licensing, tariff-setting, and dispute resolution .
- NEA: The national utility responsible for generation, transmission and distribution of electricity .
- AEPC: The nodal agency for promotion of renewable energy and energy efficiency
- Provincial and Local Governments, empowered by Nepal's Constitution to engage in electricity generation and service delivery .

However, the regulatory roles among these institutions often still overlap or lack coordination, especially with the shift toward federalism .

Regulatory Perspective on Grid-Connected Distributed Generation

Grid-connected DG systems, especially rooftop solar PV and small hydropower projects, have seen incremental growth . The regulatory environment for such systems involves licensing, grid interconnection, tariff determination, and operational compliance .

Licensing and Interconnection

Projects up to 1 MW capacity follow simplified registration, while those above 1 MW require generation licenses from the MOEWRI . NEA is responsible for grid connection agreements and technical assessments . However, procedural complexities and delays have generally discouraged small private investors .

Net Metering Regulation

NEA introduced a policy on net metering for solar rooftop systems in 2018 and revised it in 2022 . As per the policy, consumers can offset their electricity bills by feeding excess power into the grid . However, despite the policy, uptake remains limited due to poor consumer awareness, lack of financing, and hesitancy from NEA to accept decentralized injections .

Tariffs and Incentives

While viability gap funding, net metering etc . provides some financial relief, there is still no comprehensive feed-in tariff mechanism for small producers . The absence of standardized power purchase and net metering agreements and uncertainty around long-term tariffs limits private

sector engagement in the DG sector .

Regulatory Perspective on Isolated Distributed Generation

Isolated systems—off-grid micro-hydro, solar mini-grids, and home systems—remain vital for electrifying remote communities . These systems are primarily promoted by AEPC and supported through subsidy policies and donor programs . AEPC’s Sustainable Energy Challenge Fund also has windows like system improvement and reverse auction that will help to accelerate this effort .

Subsidy, Viability Gap Funding and Policy Support

The Renewable Energy Subsidy Policy makes provision for providing capital subsidies and technical support for community-based and private-led projects . The emphasis is on social inclusion, productive end use, and sustainability . A viability gap funding mechanism through the Sustainable Energy Challenge Fund (SECF) is being implemented by the Central Renewable Energy Fund, a financial mechanism of AEPC, with technical assistance of the Nepal Renewable Energy Programme¹ . SECF has eight different windows to support both on-grid and off-grid DG projects

Licensing and Governance

Small-scale isolated systems (typically under 100 kW) are exempt from licensing . Larger commercial systems or mini-grids require more formal procedures . The role of local governments has grown significantly in initiating and co-financing such projects .

Transition Challenges

One of the key regulatory challenges is managing the transition from isolated to grid-connected status when the national grid arrives . Clear frameworks for integration, asset ownership, and compensation are lacking, often leading to underutilization or abandonment of systems .

Regulatory Gaps and Recommendations

Several gaps hinder the effective governance of both grid-connected and isolated DG systems in Nepal . These include:

- Fragmented Jurisdiction: Overlapping roles among NEA, ERC, AEPC, and subnational governments create confusion and inefficiencies .
- Lack of Tariff Certainty: Small producers lack clarity on tariffs, PPAs, and return on investment, limiting market growth .
- Insufficient Hybrid Regulation: Policies are underdeveloped for hybrid models that combine grid and off-grid systems .
- Data and Monitoring Weakness: Absence of a centralized DG database restricts planning and monitoring .
- Capacity Deficits: Subnational governments and regulatory agencies often lack technical expertise and human resources .

1 The Nepal Renewable Energy Programme was a Government of Nepal programme supported by the British Embassy, Kathmandu and implemented by the Alternative Energy Promotion Centre from 2019 to 2025 with technical assistance of a consortium led by DAI Global UK and including Winrock International .

Given the above challenges, the following recommendations can be made to make regulation of DG systems more effective and efficient:

- Clarify institutional roles through a coordinated regulatory framework aligned with federalism
- Develop standardized tariffs and PPAs for small-scale producers and community systems .
- Introduce grid integration protocols for transitioning off-grid systems into grid connected systems .
- Strengthen Subnational capacity with training, budgetary support, and technical backstopping
- Promote further private sector participation by de-risking investment through financial instruments and guarantee schemes . The viability gap funding through SECF is a prime example of a proven innovative de-risking mechanism in Nepal .
- Institute a strong legal provision that articulates the right of consumers to install and operate grid connected DG in their premises . This legal provision can then enable consumers to seek legal recourse if any agency adopts policies, rules or practices that impinge on these rights .

Conclusion

Distributed electricity generation—both grid-connected and isolated—holds transformative potential for Nepal’s energy future . It supports energy access as well as clean energy transition and enhances resilience, and it also aligns with Nepal’s sustainable energy development goals . However, realizing this potential requires a coherent and inclusive regulatory environment that enables coordination across governance levels, incentivizes innovation, and ensures the long-term sustainability of projects . As Nepal navigates federalism and energy transition simultaneously, rethinking the regulatory paradigm for DG is not only timely but essential .

विद्युत उत्पादन, प्रशारण र आन्तरिक विद्युत व्यापारमा देखिएका समस्याहरूमा नियमन आयोगले गर्नुपर्ने हस्त तक्षेपयुक्त कार्यहरूको विश्लेषण

ई. सूर्यप्रसाद अधिकारी,
एम.एस्सी.(जर्जी); वि.ई.(इंडिया)^१

१. परिचय

उर्जा विकासलाई नेपाल सरकारका हरेक आवधिक योजनाहरूमा प्राथमिकता प्राप्त क्षेत्रकोरूपमा उल्लेख गरिएको छ । विद्युत उत्पादन प्रशारण र वितरणलाई दिगो भरपर्दो र सर्वसुलभ बनाउन नेपाल विद्युत प्राधिकरण ऐन, २०४१ जारी गरी विद्युत उत्पादन प्रशारण र वितरणको सम्पूर्ण कार्यभार नेपाल विद्युत प्राधिकरणलाई सुमिपाएको थियो । तत्पश्चात विद्युत ऐन, २०४९; विद्युत नियमावली, २०५०; जलश्रोत विकास नीति, २०५८; जलश्रोत रणनीति, २०५८; राष्ट्रिय जल योजना, २०६२ तर्जुमा गरिए । त्यसै गरी विद्युत क्षेत्रमा भएको विकासलाई नियमन र समस्याहरूलाई सहजीकरण गर्न विद्युत नियमन आयोग ऐन, २०७४ र विद्युत नियमन आयोग नियमावली, २०७५ तथा जलश्रोतको बहुउपयोगवाट आर्थिक समृद्धि र सामाजिक रूपान्तरण गर्न राष्ट्रिय जलश्रोत नीति, २०७७ लगायत नवीकरणीय उर्जाका क्षेत्रमा अन्य नीतिगत तथा कानूनी प्रवन्धहरू गरिएका छन । विद्युत नियमन आयोग ऐन, २०७४ ले देहायबमोजिम उद्देश्यहरू राखी विद्युत क्षेत्रलाई नियमन गर्न निर्देशित गरेको छ ।

१. विद्युतको उत्पादन, प्रसारण, वितरण तथा व्यापारलाई सरल, नियमित, व्यवस्थित र पारदर्शी बनाउने,
२. विद्युतको माग आपूर्तिमा सन्तुलन कायम राख्ने,
३. विद्युत महसुल नियमन गर्ने,
४. विद्युत उपभोक्ताको हकहित संरक्षण गर्ने,
५. विद्युतको बजारलाई प्रतिस्पर्धात्मक बनाउने, तथा
६. विद्युत सेवालाई भरपर्दो, सर्वसुलभ, गुणस्तरयुक्त र सुरक्षित बनाउने ।

यस लेखमा नेपालको विद्युत क्षेत्रको अवस्था बारे विद्युत नियमन आयोगले हेक्का राख्नु पर्ने र नियमन गर्नुपर्ने विषयहरूमा केंद्रित रहेर नेपालको विद्युत क्षेत्रको एक अविच्छिन्न उत्तराधिकारवाला, स्वशासित र सञ्चित नियामकीय निकायकोरूपमा स्थापित हुन आग्रह गरिएको छ ।

^१ लेखक: अध्यक्ष, (GREEN), ग्रीन ईनर्जी अन्टरप्रेनर नेपाल (Green Energy Entrepreneur Nepal)

उर्जा विकासमा लागेका प्रवर्द्धक, कम्पनी, परामर्शदाता, बैंक तथा वित्तीय संस्था र सम्बन्धित सबै सरोकारवाला व्यक्ति/संघसंस्थाको हितका लागि कार्य गर्न र जल तथा अन्य नवीकरणीय उर्जा उत्पादन, प्रसारण, वितरण र व्यापारमा निजी क्षेत्रको संलग्नतालाई व्यवसायीकरण गर्दै लगानी संरक्षण तथा प्रवर्द्धकहरूको लागि लगानी योग्य वातावरण तयार गर्न पहल गर्ने उद्देश्यका लागि स्थापना भएको गैर नाकामुलक संस्था हो ।

२. जलविद्युत आयोजना निर्माण र उर्जा अर्थशास्त्र

विद्युत ऐन, २०४९; विद्युत नियमावली, २०५०; जलश्रोत विकास नीति, २०५८^२; जलश्रोत रणनीति, २०५८ र राष्ट्रिय जल योजना, २०६२ कार्यान्वयनमा आएपश्चात निजी क्षेत्रले २०५५ देखि आजको मितिसम्म आईपुदा करिव नौ खर्ब लगानी गरिसकेको छ भने निर्माणाधिन आयोजनाहरूमा करिब पन्ध खर्ब बराबरको लगानी गर्न सकिने आयोजनाहरूको अनुमतिपत्र प्राप्त गरेको छ । २०६५ देखि उर्जा क्षेत्रमा देखिएको अन्यौललाई चिर्दै २०७३ मा आइपुदा निजी क्षेत्रबाट उत्पादन भएको विद्युतले देशलाई अन्धकारबाट मुक्त गराएको हो । त्यसैगरी २०७५ र ०७६ देखि जगेडा विद्युत भारत निकाशी भएको यथार्थ सबै सामु जगाजाहेर छ ।

हालको विद्युत उत्पादनको क्षमता करिब ३२४३ मे.वा^३ पुगेको छ जसमा निजी क्षेत्रको योगदान करिब ८० प्रतिशत र सरकारको लगानी भएको नेविप्राको योगदान २० प्रतिशत छ । निजी क्षेत्रबाट मात्र करिव ७,५०० मेवा बराबरका आयोजना निर्माणका चरणमा छन् । निजी क्षेत्रको योगदानले करिव ९० प्रतिशत जनताले केन्द्रीय प्रणालीबाट विद्युत उपभोग गर्न पाएका छन् । निस्वार्थ टिप्पणी गर्ने हो भने नेपालका उर्जा उद्यमीहरू नै उज्यालो नेपालका संवाहक हुन । उज्यालो नेपालको रणनीतिक नायक र योजनाकार सुश्री शैलजा आचार्य र लक्ष्मण अर्याल हुन भनेर खुल्ला दिलले सबैले उजागर गर्ने गर्दछन् । वि.स २०६२/१०६३ को राजनैतिक परिवर्तन निजी क्षेत्रलाई कमाई खाने स्रोत बनाएको पाइँछ । समाजवादी चिन्तनका कर्मचारीतन्त्र र नेतृत्वबाट उर्जा क्षेत्रमा लागेका लगानीकर्ता र उद्यमीहरूलाई भोक र गरिबी बढाउने, वातावरण बिनास गर्ने, आर्थिक तथा वित्तिय संकट निम्त्याउने, नाफामुखी संयन्त्रको विकास गर्ने र राजनीतिक पार्टीहरूका लागि आर्थिक एजेण्डा तयार गर्ने दलालको रूपमा चित्रण गरेका कारण यो क्षेत्र तहसनहस बन्न पुगेको छ ।

निजी क्षेत्रका उर्जा उद्यमीहरूले करिब २,६०० मे.वा. बराबरका जडित क्षमता निर्माण सम्पन्न गर्दा देश उर्जा क्षेत्रमा आत्मनिर्भर उन्मुख भएको छ । प्रत्यक्ष र अप्रत्यक्ष गरी करिब सात लाख रोजगारी सृजना भएको छ । प्रत्यक्ष हिसाबले विद्युत उत्पादनबाट प्राप्त हुने रोयल्टी मार्फत वार्षिक ३ अर्ब र आयोजना निर्माण/खरिदगर्दा करिब ७५ अर्ब बराबरको राजस्वमा योगदान गरेको छ । त्यसैगरी अनुमतिपत्र बापत निजी क्षेत्रको राजश्वमा योगदान ६० अर्ब बराबर भएको अनुमानित तथ्याङ्क देखिन्छ । स्थानीय आर्थिक सामाजिक क्षेत्रमा गरको योगदान, वातावरण संरक्षण र पुर्वाधार निर्माणमा निजी क्षेत्रको लगानी ४० अर्बभन्दा बढि रहेको अनुमान गरिएको छ । कल्पना गरौ, यदि निजी क्षेत्रले आफुले पाएको अनुमतिपत्र अनुसार विद्युत उत्पादन गर्ने वातावरण बन्यो भने माथि उल्लेखित गरिएका तथ्याङ्कहरूमा ५ देखि ७ गुणाले बढाने निश्चित छ । आगामी २०८५/८६ सम्म जडित क्षमता ११,७३९ मेवा हुने सरकारी प्रक्षेपण रहेको छ^४ ।

उर्जा क्षेत्रको निरन्तर विकास र त्यसको उपयोग/परिप्रयोग आर्थिक विकासको सुचक हो । औसत रु १० रुपैया ५० पैसा प्रतियुनिट विद्युतको उपयोगले करिब ८४ रुपैया बराबरको आर्थिक क्रियाकलापको निर्धारण गर्ने अनुमान छ । त्यसैले विद्युत उत्पादनबाट हुने प्रत्यक्ष फाइदा भन्दा ८ गुणाको आर्थिक फाईदा राज्यलाई हुने गर्दछ । निर्माणाधिन आयोजनाहरू सम्पन्न भएको अवस्थामा उर्जा तथा जलविद्युत क्षेत्रमा १२ देखि १५ लाखको हाराहारीमा प्रत्यक्ष

^२ जलश्रोत विकास नीति, २०४९, लाई परिमार्जन गरिएको

^३ नेपाल सरकार, उर्जा विकास मार्गचित्र, २०८१

^४ नेपाल सरकार, उर्जा विकास मार्गचित्र, २०८१

रोजगारी सृजना हुने आँकलन गर्न सकिन्छ ।

३. उर्जा सुरक्षा

विगतमा जेजस्ता नीतिगत तथा कानुनी प्रवन्धहरू गरिएता पनि, उर्जा सुरक्षाका दृष्टिकोणवाट नेपाल अत्यन्तै नाजुक अवस्थामा रहेको छ । विद्युत ऐन, २०४९ र विद्युत नियमावली, २०५० जारी गरिएपश्चात निजी क्षेत्रले जडित क्ष(मता प्रयाप्त फड्को मारेको छ । फलस्वरूप बिजुली उत्पादन हुने ठाउँमा बिजुली खेर गएको छ भने बिजुली खपत हुने ठाउँमा बिजुली पुर्याउन सकिएको छैन । उद्योग तथा कलकारखानाहरूमा प्रयाप्त विद्युत दिन सकिएको छैन । उपभोक्ताहरूले इच्छा अनुसारको गुणस्तरीय बिजुली उपभोग गर्न पाएका छैनन् । उद्योग तथा कलकारखाना, व्यापारिक भवनहरू, बैंक, होटेल, विद्यालय, हस्पिटल लगायतका उर्जाको माग बढी भएका संरचनाहरूमा प्रयाप्त गुणस्तरीय विद्युत उपलब्ध गराउन नसकदा उल्लेखित संघसस्थाहरूले आफ्नो ब्यापार ब्यवशायलाई निरन्तरता दिन डिजेल जेनरेटरहरू जडान गरेका छन् । डिजेल जेनरेटरहरूको जडान क्षमता देशको कुल जडित क्षमता (जलविद्युत, सोलार, बायोमास आदि) बराबर भएको प्रारम्भिक अनुमान देखिन्छ । समग्र देशको माग र उत्पादनको अवस्था हेर्दा भन्डै वार्षिक मागको २०% जति उर्जा आयात गर्नुपर्ने अवस्था छ । हिउदमा भारतवाट उच्च माग भएको समयमा ८०० मेवा भन्दा बढीको बिजुली खरिद गर्नुपर्ने वाध्यता छ । सन् २०२४ को तथ्यांडक हेर्दा वर्षात्मा १.९४ अर्ब युनिट बिजुली निर्यात गर्दा रु. १७.०७ अर्ब कमाएको छ भने सुख्खा मौसममा १.८५ अर्ब युनिट आयात गरेर रु. १६.९ अर्ब ^५ खर्चेको छ । जसअनुसार आयातको मात्रा हिउदमा उत्पादित विद्युतको करिब करिब ८०% बराबर हुन आउँछ । आयात र निर्यातको रकम बराबर तर मात्रा फरक हुँदा नेपालले भन्डै दश करोड युनिट (kWh) बराबरको उत्पादनलाई गुमाउनु परेको देखिन्छ । वर्षात्मा ५०० मेवा भन्दा बढीको बिजुली (दैनिक करिब १६ घण्टा) खेर गईराखेको छ ।

४. प्रशारण प्रणाली

विद्यमान प्रशारण प्रणालीको न्युन क्षमता र प्रशारण लाईन तथा ग्रीड सब-स्टेशनहरू निर्धारित समयमा सम्पन्न हुन नसकेका कारण विद्युत सप्लाईको गुणस्तर नाजुक (Lack of System Security and Adequacy) अवस्थामा छ ^६ । ग्रामिण क्षेत्रमा रहेका तल्लो भोल्टेजका प्रशारण प्रणालीको विच्छेदन वार्षिक करिब ११३ दिन अर्थात २७४५ घण्टा छ भने उच्च भोल्टेजका शाखा प्रशारण प्रणालीको विच्छेदन वार्षिक करिब ७७ दिन अर्थात १८४० घण्टा रहेको छ । उच्च भोल्टेजका राष्ट्रिय प्रणाली (INPS) मा विद्युतको विच्छेदन ^७ वार्षिक ३-५% अर्थात ११ देखि १८ दिन (२६३-४३८ घण्टा) रहेको अनुमान छ ^८ । सामान्य गणितिय हिसाब गर्दा प्रशारण प्रणालीमा हुने विद्युतीय विच्छेदनलेद साना जलविद्युत आयोजनाहरूले २१-३०% सम्म आफ्नो आम्दानी गुमाएका छन् भने ठुला आयोजन(

^५ नेविप्राको वार्षिक प्रतिवेदन २०२३/०२४

^६ सरकारी निकायहरूको समन्वयको अभावले निर्माण प्रक्रिया र निर्माण व्यवस्थापन कमजौर भएका छन्

^७ लेखक स्वयमले ग्रामिण सब-स्टेशनहरूमा जोडिएका साना जलविद्युत आयोजनाहरूवारू लिएको विवरण अनुसार ३३ र ११ केमीका प्रशारण र वितरण लाइनहरूमा हुने गरेको विच्छेदन तथा आर्थिकरूपमा संकटग्रस्थ आयोजनाहरूको अध्ययन प्रतिवेदन २०७६/०७७, नेपाल सरकार उर्जा मन्त्रालय

^८ मुख्य लाईन (२२० KV /१३२ KV Backbone) मा < ३% र अन्य १३२ KV र ६६ KV का शाखा लाइनहरूमा < ५% सम्म मापन गरिएको

^९ लेखक स्वयमले ग्रिड सब-स्टेशनहरूमा जोडिएका जलविद्युत आयोजनाहरूवाट लिएको विवरण अनुसार ६६ र १३२

हारुले ३-५% आम्दानी गुमाएका छन् । जसमा कारण विद्युत उत्पादनमा मात्र हास ल्याएको नभै वितरण प्रणालीमा पनि एकैसाथ विच्छेदन हुने भएकोले वितरण प्रणाली समेत प्रभावित भएको छ ।

५. विद्युत खपतको अवस्था

सप्लाईको गुणस्तर नाजुक (Lack of System Security and Adequacy) हुनु भनेको खपतमा प्रभाव पर्नु हो । प्रशारण प्रणालीको विच्छेदनले वितरण प्रणालीलाई प्रत्यक्ष प्रभाव प्रादृष्ट । प्रशारण प्रणाली लाईभ(Live) रहँदा पनि वितरण प्रणालीका अन्य अबयवहरूमा स्थानीय समस्याहरू(Local Faults) भई रहेका हुन्छन र तल्लो भोल्टेज स्तरका प्रणालीहरूमा प्रशारण प्रणालीको भन्दा अधिक विच्छेदन हुने गर्छ । यस लेखको प्रकरण ४ मा उल्लेख भए बमोजिम ^{१०} प्रशारण तथा वितरण प्रणालीमा हुने विच्छेदनले ग्रामीण क्षेत्रमा प्रतिव्यक्ति विद्युत खपतमा १०% कमी आएको छ भने उद्योगहरूमा प्रयाप्त विजुली दिन नसकदा प्रतिव्यक्ति खपतमा अर्को १०-१५% ले कमी आएको सहजै अनुमान गर्न सकिन्छ । अझै पनि केन्द्रीय प्रशारण प्रणालीमा नजोडिएका करिब १४ लाख घराधुरीहरूमा बैकल्पिक उर्जाका श्रोतहरू (जडित क्षमता ९० मेवा) मार्फत विद्युतीकरण गरिएको छ । करिब १००-२०० घराधुरी भएका १० हजार साना खपत इकाईहरू (Rural Load Centres) केन्द्रीय प्रशारण प्रणालीमा जोड्न नसकिने र सदाका लागि पृथक विद्युतिय संरचना(Isolated Electrical Grid) बनाएर बैकल्पिक उर्जाका श्रोतहरूवाट विद्युतीकरण गर्ने प्रतिवेदन नेविप्राले तयार पारेको छ ।

वि.स २०६७ देखि २०८१ सम्म आईपुदा उर्जा खपत औसत ४ गुणाले बढको देखिन्छ । काठदाउरा तथा अन्य स्थानीय इन्धनयुक्त पदार्थहरू (जस्तै गक्कुइठा, पराल, ढोड आदि), पेट्रोलियम पदार्थ, कोइला र विजुलीको खपतको अवस्था हेर्ने हो भने हाम्रो वार्षिक प्रतिव्यक्ति विद्युत खपत ५,००० युनिट (kWh) बराबर देखिन्छ । तर विद्युतको मात्र खपत हेर्ने हो भने वार्षिक प्रतिव्यक्ति विद्युत खपत ५०० युनिट भन्दा तल छ । विगत १२ वर्षहरूको ने.वि.प्रा.को तथ्याङ्क हेर्ने हो भने उर्जा खपत वार्षिक १३.५ % ले वृद्धि भएको देखिन्छ । प्रशारण तथा वितरण प्रणालीमा हुने विच्छेदन काम गर्ने, प्रशारण तथा वितरण प्रणाली सुदृनिकरण तथा निर्माण गर्ने, मागको प्रक्षेपणको आधारमा जलाशय युक्त आयोजना निर्माण गर्ने र उद्योग तथा व्यवशायिक ग्राहकहरूलाई प्रयाप्त गुणस्तरीय विजुली उपलब्ध गराउन सके आगामी दश वर्ष भित्र विद्युत खपत भुटानको जति करिब ३५०० युनिट (kWh) पुन्याउन सजिलै सकिने अवस्था देखिएको छ ।

६. माग तथा उत्पादन प्रक्षेपण

नेपाल सरकार राष्ट्रीय योजना आयोगको सोहौं योजना (२०८१/०८२ देखि २०८५/०८६) मा प्रक्षेपण गरिए अनुसार आव २०८५/०८६ विद्युत उत्पादनको आंकडा ११,७३९ रहेको छ । जल तथा उर्जा आयोगको माग प्रक्षेपण न्युनतम

केमी तथा सो भन्दा उपल्लो प्रशारण लाइनहरूमा हुने गरेको विच्छेदन; नेविप्राको वार्षिक प्रतिवेदनहरू ^{१०} ग्रामिण क्षेत्रमा प्रशारण प्रणालीको विच्छेदनले वार्षिक करिब ११३ दिन अर्थात २७१५ घण्टा र शहरी क्षेत्रमा उपभोक्ताहरूले वर्षको करिब ७७ दिन अर्थात १८४० घण्टा विद्युत कटौतीको मारमा परेका छन् / उच्च भोल्टेजका राष्ट्रिय प्रणाली (INPS) मा विद्युतको विच्छेदन वार्षिक ३-५% अर्थात ११ देखि १८ दिन (२६३-४३८ घण्टा) रहेको अनुमान छ / उच्च भोल्टेजका राष्ट्रिय प्रणाली (क्लर्क) मा हुने विद्युतको विच्छेदनले विद्युत उत्पादनमा मात्र हास ल्याएको नभै वितरण प्रणालीमा पनि एकैसाथ विच्छेदन हुने भएकोले विद्युत खपतमा १६-२०%ले हास ल्याएको छ ।

६,६४१ मेवा^{११} र अधिकतम ९८८० मेवा^{१२} रहेको छ । बर्तमान अवस्थामा उच्च मागमा जम्मा ४.५% र उर्जा खपतमा १३.५% को वृद्धि देखिन्छ । जसअनुसार उच्च माग करिब २७५० मेवा हुने अवस्था छ । आगामी ५ वर्षभित्र १४० मेवाको तनहु सेती जलाशय युक्त आयोजना बाहेक अन्य कुनै पनि आयोजनाहरूले विद्युत उत्पादन गर्न सम्भावना छैन । ८०% भन्दा बढी जलविद्युत आयोजनाहरू च्यच प्रकृतिका हुने हुनाले आगामी ५ वर्ष (आव २०८५/०८६) भित्र कथकदाचित निर्माणाधीन ३,९०६ मेवा बराबरका आयोजनाहरू केन्द्रीय प्रशारण प्रणालीमा आवद्ध भए पनि हिउदमा करिब १२०० देखि १५०० मेवा (दैनिक करिब ८ घण्टा उच्चा माग हुने समयमा) र ८०० मेवा बराबर अन्य समयमा बराबरको विजुली भारतवाट आयात गर्नुपर्ने देखिन्छ । त्यसैगरी वर्षातको करिब ४ महिना २२५० मेवा बराबरको विजुली निर्यात गर्नुपर्ने अवस्था आउनेछ ।

७. केन्द्रीय प्रणालीमा आवद्ध आयोजनाहरूको जडित क्षमताको विश्लेषण

आ.व. २०८०/०८१ सम्म केन्द्रीय प्रणालीमा आवद्ध सबै श्रोतका उर्जा उत्पादन गर्ने आयोजनाहरूको जडित क्षमता ३२४३ मेवा रहेको छ । ५११ मेवा बराबर जडित क्षमता भएका ११० वटा १० मेवा भन्दा साना जलाविद्युत आयोजन(हरूको संचालनमा रहेका छन् भने १४६१ मेवा बराबरका २६८ वटा आयोजना अध्ययन र निर्माणका विभिन्न चरणमा रहेका छन् । त्यसै गरी ११७० मेवा बराबरका १३७ वटा २५ मेवा भन्दा साना जलाविद्युत आयोजनाहरू संचालनमा रहेका र ३२२३ मेवा बराबरका ३३५ वटा आयोजना अध्ययन र निर्माणका विभिन्न चरणमा रहेका छन्^{१३} । अहिलेको जडित क्षमतामा २५ मेवा भन्दा साना जलाविद्युत आयोजनाहरूको शेयर करिब ३६% भन्दा बढी रहेको छ । निर्माणको चरणमा गएका आयोजनाहरूको प्रगति विश्लेषण गर्दा आगामी ३ वर्ष भित्र २५ मेवा भन्दा साना जलाविद्युत आयोजनाहरूको शेयर करिब ६०% पुग्नसक्ने अनुमान गर्न सकिन्छ । १० मेवा भन्दा साना जलाविद्युत आयोजनाहरूको शेयर जडित क्षमताको करिब ४२% हुन सक्ने आँकलन गर्न सकिन्छ ।

८. विद्युत खरिद विक्रीका सर्तहरू

वित्तीय व्यवस्थापनाका लागि विद्युत खरिद विक्रीको सम्भौता एक अनिवार्य सर्त हो । विद्युत खरिद विक्रीका व्यवस्थ(हरू वित्तीय लगानी योग्य हुने भएमा मात्र वित्तीय व्यवस्थापन हुन्छ । वित्तीय व्यवस्थापनाका लागि अनिवार्य सर्तहरूमा निम्न विषयहरू पेचिलो हुँदै गएका कारण पिपिए अनुसार आयोजनाहरू लगानी योग्य हुन सकेका छैन^{१४} ।

८.१ विद्युत खरिद विक्री दर: आयोजनाको लागत अनुसार करिब ७ वर्षमा ऋण तिर्ने अवधी मानी पिपिए दर तोकिएको भन्ने अवधारणा अनुरूप आव २०५४/०५५ देखि विद्युत खरिद विक्री मूल्य तोकिएको भन्ने नेविप्राको अवधारणा रहेको पाइन्छ । जसअनुसार मिति २०७४/०१/१४ मा नेविप्राको संचालक समितिवाट स्वीकृत पिपिए दर अनुसार एक मेवा भन्दा माथि १०० मेवासम्मका आयोजनाहरूलाई विद्युत खरिद विक्रीको दर एकै प्रकारको रहेको छ । तल उल्लेखित तालिका अध्ययन गर्दा साना जलाविद्युत आयोजनाहरू निर्माण र उत्पादनको प्रति एकाइ लागतका हिसाबले अत्यन्तै न्युन दर र साधारण मुल्यबृद्धि (प्रतिवर्ष ३% दरले जम्मा ५ देखि ९ वटा) तोकिएको प्रष्ट हुन्छ । तुला र नेविप्राका भगिनी कम्पनीहरूमा सापेच्छित हिसाबले अधिक दर र साधारण तथा चक्रवर्ति मुल्यबृद्धि (प्रतिवर्ष

^{११} ४.५% को आर्थिक वृद्धि दर हुँदा

^{१२} ९.२% को आर्थिक वृद्धि दर हुँदा

^{१३} विद्युत विकास विभागको तथ्यांक २०८१

३% दरले जम्मा ९ देखि १४ वटा) तोकिएको छ ।

>५ मेवा	सुक्खा: रु ४.२५ , वर्षात: रु. ३.०० वर्षात: सुक्खाको अनुपात = ८:४ मुल्यबृद्धि: पाँचपटक २५% ; क्यु-६५	२०५५ सालदेखि कार्यन्वयनमा आएको/पाँच वर्ष पछि राष्ट्रबैंकको मुल्य वृद्धिको सुचकांक अनुसार दुवै पक्षको सहमतिमा मुल्यबृद्धि तय गर्ने
पहिलो दर ^{१४}	सुक्खा: रु ७.०० ; वर्षात: रु. ४.०० वर्षात: सुक्खा = ८:४	मुल्यबृद्धि: नौ पटक २३% ; क्यु-४०/६५ मिति २०६५/०७/०५ देखि २५ मेवा सम्मका आयोजनाहरूका लागि कार्यन्वयनमा आएका
दोश्रो दर ^{१५}	सुक्खा: रु ८.४० ; वर्षात: रु. ४.८० वर्षात: सुक्खा = ८:४ मुल्यबृद्धि: पाँच पटक २३% ; क्यु-४०	सुपर सिस्स आयोजनाहरूका लागि तोकिएको पिपिए दर (The projects includes Solu (23 MW), Lower Solu (82 MW), Maya Khola (15 MW), Khare (24 MW), Mewa Khola (50 MW) and Singati (16 MW) .
तेश्रो दर	सुक्खा: रु ८.४० ; वर्षात: रु. ४.८० वर्षात: सुक्खा = ८:४ मुल्यबृद्धि: आठपटक २३% ; क्यु-४०	नेविप्राका भगिनी संस्थाहरूका लागि बनाइएको पिपिए दर । यो दर कायम गरेपछि चौथो दर तय गरिएको
चौथो दर ^{१५}	सुक्खा : रु ८.४० ; वर्षात: रु. ४.८० वर्षात: सुक्खा = ८:६ मुल्यबृद्धि: आठपटक २३% ; क्यु श्र ४०	पीपीएको मापदण्ड बनाउने भनी मिति २०७४/०९/१४ मा नेविप्राको संचालक समितिवाट स्वीकृत पिपिए दर

८.२ लेउ वा तिर (TAKE or PAY):

विद्युत खरिद विक्री सम्झौताको दफा १० अन्तर्गत १०.१ मा “प्राधिकरणले प्रत्येक महिना आयोजनाबाट कन्ट्रायाक्ट इनर्जीको परिमाण सम्मको Availability Declaration अनुसारको इनर्जी खरीद गरी लिनेछ । यस अनुसार प्रा०(धकरणले लिनु पर्ने उर्जा Forced Outage को कारणले लिन नसकेमा वा Dispatch Instruction को कारणले नलिएमा अनुसूची ३ को प्रावधान अनुसार प्राधिकरणले कम्पनीलाई क्षतिपूर्ति तिर्नु पर्नेछ ।“ भन्ने “ लेउ वा तिर “ भन्ने प्रावधान रहेको छ ।

लेउ वा तिर को सिद्धान्त अनुसार नेविप्राले आफ्नो प्रणालीमा भएको गडबडीका कारण खेर गएको विजुलीको ३३ केबी लाईनमा जोडिएका आयोजनाहरूको हकमा साधारणतया ७५%^{१४} र सो भन्दा उपल्लो (६६ केबी, १३२ केबी वा सो भन्दा माथिल्लो) भोल्टेज स्तरको लाईनमा जोडिएका आयोजनाहरूको हकमा सत प्रतिशत (१००%) भुक्तानी गर्नुपर्ने हुन्छ । यस बाहेक PPA/Connection Agreement^{१५} मा राखिएको प्रावधान

^{१४} कुनै कुनै आयोजनाहरूमा ८०% सम्म रहेको

^{१५} अनुसूची २: Table II को Column E मा उल्लेख भए अनुसारको क्षमता भन्दा बढी नहुने गरी Availability Declaration मा उल्लेख हुने क्षमताको आधारमा मौजुदा क्षमता निर्धारण हुनेछ । तर इगतबनभ अवधिको मौजुदा क्षमता निर्धारण गर्नु पर्दा अनुसूची २ Table II को Column E मा उल्लेख भए अनुसारको वा Availability Declaration मा उल्लेख हुने क्षमता मध्ये जुन घटी छ सो भन्दा बढी नहुने गरी निम्नानुसार मौजुदा क्षमता निर्धारण

अनुसार उक्त गडबडीको प्रो-रेटेड (Pro-Rated Time in Hrs) ले खेर गएको विजुलीको भन्डै ८०% मात्र क्षतिपूर्तीको निर्धारण गर्दछ । जसअनुसार अधिकतम भुक्तानीको दावी ६०% को हाराहारी हुन आउँछ । विद्युत खरिद विक्री सम्पूर्तामा राखिएको उक्त अनिवार्य सर्त हालसम्म कार्यन्वयन भएको छैन । १६ यो दावीको भुक्तानी अझैसम्म कुनै पनि आयोजनाहरूले प्राप्त गर्न सकेका छैनन् ।

८.३ व्यापारिक उत्पादन शुरु गर्नु पर्ने मिति (RCOD)

व्यापारिक उत्पादन शुरु हुनपर्ने मिति (RCOD) एउटा कार्ययोजना हो । Connection Agreement मा राखिएका प्रस्तावहरूले यो मितिमा आयोजना सम्पन्न गर्न नेविप्रा र प्रवर्धकहरूको समन्वय आवश्यक पर्छ । यस सन्दर्भमा नेपाल विद्युत प्राधिकरणले प्रकरण ४ मा उल्लेख गरिए बमोजिम प्रशारण लाइन तथा सब-स्टेसनहरू समयमै सम्पन्न नगर्दा प्रवर्धकहरू दोहोरो मारमा पर्ने गरेका छन् । नेविप्राको वा सरकारका नालाधिकिपनका कारणले RCOD परिवर्तन हुने भएमा बाध्यतामा उक्त निर्णयलाई प्रवर्धकहरूले स्वीकार गर्नु पर्ने हुन्छ भने प्रवर्धकहरूले केही समय माग गरेमा उक्त निर्णय गराउन नीति वित्तीय प्रक्रिया र निर्देशिकाहरूको खोजी हुने गर्छ । प्रायः RCOD प्रशारण लाइन तथा सब-स्टेसनहरू समयमै नबन्ने, वित्तीय व्यवस्थापन समयमै नहुने, बाढी पर्हिरोको प्रकोप र बन तथा जग्गा उपयोगको स्वीकृति समयमै नपाउने कारणले हुने गर्दछ । व्यापारिक उत्पादन शुरु हुनपर्ने मिति (RCOD) भित्र आयोजना सम्पन्न गर्न नसकदा आइपर्ने विशेष गरी निम्न समस्याहरू समाधान गर्न जरुरी छ ।

१. RCOD पछि ब्याज पुँजीकरण गर्न नपाइने

२. प्रक्षेपित वार्षिक उत्पादनमा हर्जाना लाग्ने

३. COD ढिला भएमा विद्युत खरिद विक्रीमा पाइने मुल्यबृद्धिको सङ्ख्या घटना जाने १७

माथि उल्लेखित समस्याहरूका कारणले आयोजना निर्माण लागत प्रत्यक्ष र परोक्षरूपमा गरी करिब १०% बढाने देखिएको छ । त्यसैगरी वार्षिक संचालन घाटा ८-१२% ले वढेको देखिन्छ ।

८.४ बैकल्पिक व्यवस्था (Contingency Plan)

आयोजना विकास गर्ने कम्पनीको वित्तीय स्वास्थ्य र वित्तीय व्यवस्थापनको लागि लेउ वा तिर (Take or Pay) को सिद्धान्त अनिवार्य सुचककोरूपमा मानिएको हुन्छ । सोहि अनुसार बैंक तथा वित्तीय संस्थाहरूले आयोजनामा ऋण हुनेछ :

- Outage शुरु हुनु ठीक अगाडी र लगतै पछिको Outage अवधीकै परिमाणको समयावधीको प्रत्येक घण्टा (Clock Hour) को सामान्य अवस्थाको विद्युत डेलिभरीको औषत,

१६ पीपीएको अनुशुची ३: दफा १०.१.को लागि क्षेत्रिपूर्ति निर्धारण गर्ने सुत्र:

NEA shall pay compensation to the Company pursuant to Article 10.1 subject to the conditions specified herein and in accordance with the following formula:

Compensation Amount (Rs.) = Undelivered Energy × Purchase Price × 0.75 (३३ kV)

Compensation Amount (Rs.) = Undelivered Energy × Purchase Price × 0.75 (३२ kV)

१७ RCOD को तुलनामा COD १८ महिनासम्म ढिलो हुन गएमा जम्मा ४ वटा, १८ महिनाभन्दा बढी ३० महिनासम्म ढिलो हुन गएमा जम्मा ३ वटा, ३० महिनाभन्दा बढी ४२ महिनासम्म ढिलो हुन गएमा जम्मा २ वटा, ४२ महिनाभन्दा बढी ५४ महिनासम्म ढिलो हुन गएमा जम्मा १ वटा र ५४ महिनाभन्दा बढी ढिलो हुन गएमा मूल्यबृद्धि नपाइने ।

लगानी गरेका हुन्छन् । विद्युत खरिद विक्री सम्झौतामा आयोजनाहरूलाई बैकल्पिक व्यवस्थामा चलाउन पाइने कुनै पनि व्यवस्था छैन । यो व्यवस्था Connection Agreement मा व्यवस्था भए अनुसार नेविप्राले बनाउनु पर्ने प्रशारण लाईन तथा सब-स्टेशन समयमै नबनाएर उत्पन्न भएको समस्या हो । यो नेविप्राको नालायिकी पन हो । आयोजनाहरू निर्माण सम्पन्न हुनु तर विद्युत प्रवाह गर्ने प्रशारण लाईन तथा विद्युत उपभोग गर्ने सब-स्टेशन निर्माण सम्पन्न नहुनु नै यसको प्रमुख कारक हो । आयोजना सम्पन्न भैसकेपछि बैंकहरूको साँवा तथा ब्याज तिर्ने अवधि शुरू हुन्छ । थोरै भए पनि उत्पादन होस् भन्ने चाहना अनुरूप यो व्यवस्थालाई प्रवर्द्धकरूले वाध्यताबस स्वीकार गरेको पाइएको छ । यस व्यवस्थालाई समन्वय समिति ^{१८} को निर्णयले नया व्यवस्था सृजना गरी विद्युत खरिद विक्री सम्झौताको अधिन अङ्ग मान्ने गरिएको छ । विद्युत खरिद विक्री सम्झौताको दफा १४ अनुसार गठित समितिलाई “लेउ वा तिर” (त्वपभ यच एबथ) को सिद्धान्तलाई तोडेर “लेउ र तिर” (त्वपभ बलम एबथ) मा परिवर्तन गर्ने वा सो को सिफारिस गर्ने आ(धकार हुँदैन । विद्युत खरिद विक्री सम्झौताको दफा १४ अनुसार गठित समितिको कार्यधिकारको गलत प्रयोग मार्फत आयोजनाहरूलाई बैकल्पिक व्यवस्था (CONTINGENCY PLAN) मा संचालन गरी “लेउ वा तिर” (Take or Pay) को सिद्धान्तलाई तोडेर “लेउ र तिर” (Take and Pay) को अवस्थामा वाध्यतावस पुर्याइएको छ । यो व्यवस्थाले प्रशारण लाईन तथा सब-स्टेशन नबनुन्जेल प्रवर्द्धक एवं जलविद्युत कम्पनीहरूको आम्दानीमा १८ देखि ४८% सम्म संचालन घाटा व्यहोर्नु परेको अवस्था देखिन्छ । यस्ता आयोजनाहरू अहिले पनि ४५ वटाको हाराहारीमा रहेका छन् ।

८.५ प्रशारण क्षति व्यहोर्नु पर्ने (Transmission Line Loss):

विद्युत खरिद विक्री सम्झौताको उप-दफा ११.७(ख) मा धेरै जसो साना आयोजनाहरूको हकमा मात्र छुट्टै Line Loss लिने व्यवस्था रहेको छ । Connection Agreement को Annex-६, Line Loss Calculation वा Connection Agreement गर्दा Minutes of Meeting मा यस्ता प्रावधानहरू राखिएको छ । ठुला आयोजना र ३३ केबी भन्दा माथिल्लो स्तरको भोल्टेजमा आवद्ध भएका आयोजनाहरूको हकमा यो व्यवस्था राखिएको छैन । यस व्यवस्था अनुसार साना आयोजनाहरूलाई ०.५ % देखि १०% सम्म उत्पादित विद्युतमा कट्टा गरी भुक्तानी गर्ने गर्ने गरिएको छ ।

८.६ RCOD भन्दा पहिले आयोजना सम्पन्न गर्दा र बढी उत्पादन गर्दा लाग्ने दण्ड

विद्युत खरिद विक्री सम्झौताको उप-दफा १२.२ र १२.४ मा यदि RCOD भन्दा पहिले आयोजना सम्पन्न भै व्यापारिक उत्पादन गरेमा वा हिउदको समयमा पनि Availability Declaration गरेको परिमाण वा Contract Energy भन्दा बढी उत्पादन गरेमा दफा १२.१ को प्रावधानको ५०% मात्र भुक्तान गर्न सकिने उल्लेख गर्नु हुनसक्ने उत्पादनमा पनि दण्ड गर्नु सरह नै देखिन्छ ।

९. केन्द्रीय प्रणालीमा आवद्ध साना जलविद्युत आयोजनाहरूका समस्याहरू

हाल केन्द्रीय प्रणालीमा आवद्ध ११० वटा साना जलविद्युत आयोजनाहरू २०५८-२०७५ सम्म निर्माण भएका हुन् । २०७५ सम्म निर्माण भै संचालनमा आएका १मे वा देखि १० मेवा सम्मका आयोजनाहरूको लागत ११.५ करोड देखि ^{१९} ३६.५ करोड प्रति मेवा रहेको छ ^{१९} । यस अवधिमा साना जविआहरूले Insurgency, तराई आन्दोलन,

^{१८} विद्युत खरिद विक्री सम्झौताको दफा १४ अनुसारको नेविप्रा र प्रवर्द्धक कम्पनीका प्रतिनिधि भएको समिति

^{१९} १२-१७ करोड प्रति मेगावाट भन्दा कम लागत परेका आयोजनाहरू ७, १७ देखि २० करोड प्रति मेगावाट लागत

आम हडताल र निर्माण सामाग्रीहरूमा भएको चर्को मूल्यवृद्धिको अवस्था भोगेका हुन् । Insurgency को समयमा कहिल्यै विर्सन नसक्ने पीडा भोगेका छन् । ठुलो धनराशी खर्च गर्नुपरेको छ । तराई आन्दोलन, आम हडताल र निर्माण सामाग्रीहरूमा भएको चर्को मूल्यवृद्धिले आयोजनाहरू थला परेको बेला राज्यले ध्यान पुर्याउन नसक्ने अवस्था पनि थियो होला । २०६२/०६३ को आन्दोलन र तराई आन्दोलनले समय निर्भर खर्च अत्यधिक बढाएको थियो । यीह अवधिमा २७ वटा सुविधाहरू त घोषणा गर्यो तर कार्यान्वयन गरेन । २०७५/०७६ देखि सेवा स्पेयर्स पाट्र्स र संचालन/सम्भारमा दिईरहेका सुविधाहरू समेत कटौती गरेको छ । कानुनी र प्रशासनिक क्षेत्र निजी क्षेत्र मैत्री देखिएको छैन / ऐन नियम, निर्देशिकाहरू भन्नहटिलो, जटिल र स्वविवेकी अधिकार युक्त छन् / सामाजिक तहमा र स्थानीय स्तरको कुरा गर्दा उर्जा क्षेत्रको विकासलाई समाजले अपनत्व लिन सकेको छैन / विद्युत विकास विभागले २०७२ साल यता सेवा शुल्क र हर्जानामा ५००% भन्दा बढीको भारी वृद्धि गरेको छ । विद्युत खरिद विक्रीको आधार दर (बर्षात्मा ४.८० र हिउदमा ८.४०) भएका साना जलविद्युत आयोजनाले ऋयलतचबात भलभचनथ को ८०% भन्दा कम विद्युत उत्पादन गरेमा बैंकको साँचा(१२ वर्षे EMI) र ब्याज(१०%) नियमित गर्न सक्दैनन् । अन्य विद्युत खरिद विक्रीको आधार दर (बर्षात्मा ४.८० र हिउदमा ८.४०) भन्दा काम भएका साना जलविद्युत आयोजनाहरूले Contract Energy को ९०% भन्दा बढी विद्युत उत्पादन गर्दा पनि वार्षिक ८-१७.५% ले घाटा ब्याहोरी रहेका छन् ।

हालसम्म निर्माण भइ संचालनमा आएका ११० वटा ५०० मेवा बराबरका आयोजनाहरूको अवस्था अध्ययन गर्दा २० ५ वटा आयोजनाका मसिनरी र पाट्र्स पुर्जाहरू काम नलाने अवस्थामा (OBSOLETE) भएका छन् । ३५ वटा आयोजनाका मसिनरी र पाट्र्स पुर्जाहरू तुरन्तै ब्यापक मर्मत (Capital R&m) गर्नुपर्ने अवस्थामा छन् । ४० वटा आयोजनाहरूको वित्तीय अवस्था नाजुक रहेको छ । विद्युत उत्पादनको अवस्था विश्लेषण गर्ने हो भने:

- ४० वटा आयोजनाहरूको उत्पादन Contract Energy को ७०% भन्दा कम देखिन्छ ।
- ५० वटा आयोजनाहरूको उत्पादन Contract Energy को करिब ८०% को हाराहारी देखिन्छ
- १० वटा आयोजनाहरूको उत्पादन Contract Energy को ८०% भन्दा बढी देखिन्छ
- जम्मा ४९.९९ मेवा जडित क्षमताका (२.५ - ९.९८ मेवा) जम्मा ११ वटा आयोजनाहरूले बैंक-ऋणको ब्याज र साँचा नियमितरूपमा भुक्तान गरिरहेका छन्

२०७६/०७७ सम्मको ३५ वटा अर्थिकरूपले संकटग्रस्थ आयोजनाहरूको औषत उत्पादन अवस्था Contract Energy को ४८.०६% रहेको पाइयो । जसमा मुख्य कारक अधिक प्रशारण विच्चेदन र हाईड्रोलोजी सम्बन्धित समस्याहरू रहेको छ । अन्य विवरणहरू तल तालिकामा उल्लेख गरिएका छन् । अब यो अवस्थाको जिम्मेवारी प्रवर्धकहरूले मात्र लिनुपर्ने हो त ?

Avg . Cost Per MW (Rs . in Lakh)	Avg . Loan (Rs . in Lakh)	Avg . Annual Rate per KWh (Rs .)	Avg . Annual Energy Generation (GWh)	Avg . Annual Income (Rs . in Lakh)/ MW	Generation % of Contract Energy	Avg . AD Penalty %
2,083	1,458	4 . 96	2 . 43/MW	72 . 94	48 . 06%	6 . 01%

परेका ११, २०-२३ करोड प्रति मेगावाट लागत परेका आयोजनाहरूको संख्या ७ र २३ करोड भन्दा बढी प्रति मेगावाट लागत परेका आयोजनाहरूको संख्या ९ रहेको छ ।

२० लेखाकको स्व-अध्ययन तथा विभिन्न आयोजनाहरूको वित्तीय विवरणको विश्लेषण

साना जलविद्युत आयोजनाहरूको उत्पादन, वित्तीय अवस्था र संचालन व्यवस्थापनका विभिन्न आयामहरूलाई अध्ययन गर्दा तल उल्लेखित बुँदाहरूमा आयोजनाहरूको अवस्थालाई थप चित्रण गर्न सकिन्छ ।

९.१ दैनिक तथा मौषमी मागमा हुने उतार चढावले गर्दा Contingency Plan अन्तर्गत “लेउ र तिर” (Take and Pay) व्यवस्थामा संचालित आयोजनाहरूले वर्षातको समयमा विद्युत उत्पादन गर्नसक्ने अवस्थामा पनि आफ्नो उत्पादन नेविप्राको Dispatch Instruction अनुसार घटाएर १५-८०% मा सिमित गर्नु परेको छ ^{२१} । खोलामा पानी मात्रा घटेकाहट कारणले ९.५ - ५८% सम्म उत्पादनमा कमी भएको छ ^{२२} ।

९.२ ३३ केभी तथा १३२ केभी प्रशारण प्रणालीमा हुने विद्युतीय विच्छेदनले ३५ वटा साना जलविद्युत आयोजनाह(रुको मात्रा वार्षिक करिब ३९ करोड बराबरको उत्पादन ह्वास भएको र सो बरावरको विद्युत भारतबाट आयात गर्दा एक अर्ब बराबरको बैदेशिक रकम खर्च गर्नु परेको महालेखाको कार्यमुलक अडीट रिपोर्ट (आव २०७६/०७७) मा उल्लेख भएको पाइन्छ ।

९.३ लागत बढी भएका साना जलविद्युत आयोजनाहरूको अध्ययन गर्दा सरकारको अकर्मण्यताका कारणले ^{२४} संचालन खर्च र निर्माण लागतमा क्रमशः औषत करिब २७% र ४५% ले वृद्धि भएको देखिन्छ ।

९.४ बैंकहरूले समयमै कर्जा प्रवाह ^{२५} नगरेका कारण ७% ले लागत वृद्धि भएको देखिन्छ ।

९.५ अब्यवशायिक अध्ययनका कारण १२% ले लागत प्रत्यक्ष वृद्धि भएको देखिन्छ भने प्रवर्धकहरूको लापरवाहीका कारण अप्रत्यक्ष ^{२६} १७% सम्म लागत वृद्धि भएको देखिन्छ /

१०. साना जलविद्युत आयोजनाहरूको दिगो संचालनका चुनौतिहरू

दिगो संचालनका चुनौतिहरूमा “प्रविधी” जुन परनिर्भर र खर्चिलो छ । आफ्नो उद्योग/उत्पादन(EM/HM/Accessories) छैन । EM को सेवा दिने परामर्शदाता र उद्योग नेपालमा छैन । ११० वटा ५१० मेवा बराबरका आयोजनाहरूको सामान्य मर्मत र संभार खर्चको लागि वर्षेनी रु ३५ करोड (५४ प्रति किवा) विदेशिएको छ । पुँजीगत मर्मत/संभार (Capital R&M)^{२७} गर्दा भन्डै ३०-३५ ४ प्रति किवा खर्च हुने अनुमान गर्न सकिन्छ । सधैं विदेशीहरूको भर पर्दा उर्जा सुरक्षामा भारी चुनौती थापिएको छ । प्राविधिक समूह अनुभवी/ब्यवशायिक बनाउन सम्बन्धित उद्योग स्थापना गर्नु पर्छ । मध्यम र साना जलविद्युत आयोजनाहरूको मसिनरी र उत्पकरणहरू स्वदेशमा नै उत्पादन गर्न सके उर्जा सुरक्षामा थापिने भारी चुनौती न्यूनीकरण गर्न सकिन्छ ^{२८} ।

^{२१} Unveiling the factors affecting power generation of Small Hydropower Projects in Nepal, Er . Iliya Adhikari

^{२२} Climate Change and Multiple Use of Water from Same Source i.e . irrigation, drinking water and other industrial application

^{२३} आर्थिकरूपमा संकटग्रस्थ आयोजनाहरूको अध्ययन प्रतिवेदन २०७६/०७७, नेपाल सरकार उर्जा मन्त्रालय

^{२४} समयमै स्वीकृति नपाउनु, जग्गा अधिग्रहण, बन तथा वातावरण, नेविप्राको अधिक सेवा शुल्क आदि

^{२५} Delay in disbursement, equity first approach and interest from equity etc .

^{२६} स्थानीय समस्याका कारण निर्माण अवधि लम्बिएको, स्वपुजीको व्यवस्थापन हुन नसकेको, निर्माण व्यवस्थापनमा कार्य गर्ने ईन्जिनियर, परामर्शदाता र ठेकेदारसँग विवाद सृजना भै निर्माण कार्य रोकिएको आदि

^{२७} हरेक ५-६ वर्षमा आयोजनाहरूको मुख्य उत्पकरणहरू र सिभिल संरचनाहरूको व्यापक मर्मत तथा सुधार कार्य

^{२८} उच्चस्तरीय आर्थिक सुधार सुझाव आयोगको प्रतिवेदन : आर्थिक सुधारको मार्गचित्र चैत्र २९,२०८१

दिगो संचालनका चुनौतिहरूमा “ रोयल्टी, कर, सेवा शुल्क, वित्तीय ह्लास र हर्जना“ वर्षेनी बद्दो क्रममा रहेको छ । नेपालको कर प्रणालीमा VAT तिरेर VAT बिल जारी गर्न नपाउने क्षेत्र भनेको उर्जा क्षेत्र मात्र हो । विशेषगरी साना जलविद्युत कम्पनीहरूलाई रोयल्टी, कर, सेवा शुल्क, वित्तीय ह्लास र पेनाल्टी (कुल आम्दानीमा प्रत्यक्ष र अप्रत्यक्ष कर तथा राजश्व) मा पहिलो पन्थ वर्षसम्म २६.०५% र पन्थ वर्ष पछि ६६.५% वार्षिक भार परेको छ । उक्त वित्तीय भार निम्न अनुसार रहेको छ २९ ।

- आन्तरिक राजश्व अन्तर्गत कर, सेवा शुल्क र पेनाल्टीमा व्यापारिक उत्पादनको पहिलो बाह वर्षसम्म वार्षिक आम्दानीमा ०.०५%को भार परेको छ भने बाह वर्ष पछि २७% भन्दा बढीको भार पर्ने देखिन्छ ।
- उद्योग तथा कम्पनी रजिस्ट्रारको कार्यालय अन्तर्गत सेवा शुल्क र पेनाल्टी गरी वार्षिक आम्दानीको ०.५% भार परेको छ ।
- नेपाल विद्युत प्राधिकरण अन्तर्गत हुन आउने पेनाल्टी, वित्तीय ह्लास, प्रशारण लस, मुल्यबृद्धि लस, सब-स्टेसन भाडा लगायत अन्य सेवा शुल्कहरूमा वार्षिक आम्दानीमा ८-१५% भार परेको छ ।
- ERC/NEPSE /SEBON/CDSC अन्तर्गत सेवा शुल्कहरूमा वार्षिक आम्दानीमा २% भन्दा बढीको भार परेको छ ।
- बैंक तथा वित्तीय संस्था अन्तर्गत अन्तर्गत सेवा शुल्क, वित्तीय ह्लास र पेनाल्टी लगायतका शुल्कहरूमा वार्षिक आम्दानीमा १-८.५% भन्दा बढीको भार परेको छ ३० ।
- विद्युत विकास विभाग अन्तर्गत रोयल्टी, सेवा शुल्क र हर्जना लगायतका शुल्कहरूमा वार्षिक आम्दानीमा ३.५%(पहिलो पन्थ वर्षसम्म) देखि १६% (पन्थ वर्ष पछि) भन्दा बढीको भार परेको छ
- अन्य स्थानीय राजश्व तथा सेवा शुल्कहरू १.५% भन्दा बढीको भार परेको छ ।
- मर्मत संभार, प्रशासनिक खर्च र तलब सुविधा ३ मेवा भन्दा साना आयोजनामा कुल आम्दानीको २३% छ भने अन्य १० मेवा सम्मका आयोजनाहरूमा १३% को हाराहारी देखिन्छ ।
- वार्षिक औषत ह्लास कट्टी कुल आम्दानीको ३६% छ भने ऋण तिर्ने अवधिलाई आधार मानेर हेर्दा वित्तीय खर्च ३१ ७५% प्रतिशत सम्म रहेको छ । बीमा खर्च कुल आम्दानीको १०% सम्म हुन आउँछ ।

११. विद्युत नियमन आयोगका कार्यहरू र नियमनमा देखिएका कमजोरीहरू

प्रकरण १ मा उल्लेखित उद्देश्यको परिपूर्ति गरी नेपालको विद्युत क्षेत्रको दिगो विकास गर्नको लागि आयोगले स्वतन्त्र, पूर्वानुमान-योग्य, उपभोक्ता प्रति समर्पित, उत्तरदायी र पारदर्शी नियमन गर्दै आएको र सोही अनुरूप पहिलो कार्यकालमा आयोगले ऐन र नियम बमोजिम आवश्यक नियामकीय उपकरणहरूको तर्जुमा तथा दोश्रो कार्यकालमा समयानुकूल परिमार्जन गरेको दावी गरेको छ । आयोगले हालसम्म ११ वटा विनियमावली, निर्देशिका, संहिता तथा कार्यविधि

२९ CSR र निर्माणको समयमा लाग्ने रोयल्टी, कर, सेवा शुल्क, वित्तीय ह्लास र पेनाल्टी समावेश नभएको

३० ऋण तिर्ने अवधिभर

३१ बैंकहरूलाई बुझाउनु पर्ने सँवा तथा ब्याज

तर्जुमा गरी लागु भएका देखिन्छन् ३२ ।

विद्युत नियमन आयोग ऐनको उधेश्य आयोगले गर्नुपर्ने कार्यहरूमा उपभोक्ताको मासिक महशुल दरको स्वीकृति, नेपाल विद्युत ग्रिड कोड, २०८० (Nepal Electricity Grid Code, २०२३), विद्युत उपभोक्ता हित संरक्षण सम्बन्धी निर्देशिका, २०८०, तथा Key Performance Indicators Manual for Monitoring the Performance of Electric Utilities, २०२३ - २०८० बाहेक जारी गरेका अन्य विनियमावली, निर्देशिका, संहिता तथा कार्यविधि विद्यमान ऐन नियम बमोजिम निर्देशिका जारी गर्दा कम्पनी ऐन र धितोपत्र सम्बन्ध ऐन र नियम भन्दा आक्रामक र अव्यावहारिक निर्देशिकाहरू बनेका र सेवाग्राहीहरूले सहजता भन्दा प्रशासनिक एवं कानूनी जटिलताहरू थपिएको महसुस गरेका छन् । जसका कारण हालासंचालनमा आएका साना जलविद्युत आयोजनाहरूको आम्दानीको १.० % भन्दा बढीको भार थपिएको छ ३३ । विद्युत कम्पनीको विद्युत खरिद बिक्री दर निर्धारण तथा विद्युत सम्भौतामा सहमति प्रदान गर्दा Nepal Electricity Grid Code, २०२३, र विद्युत खरिद बिक्री तथा अनुमति प्राप्त व्यक्तिले पालना गर्नुपर्ने शर्त सम्बन्धी विनियमावली, २०७६ को सिद्धान्त र मर्मलाई आत्मसाथ गर्न सकेको देखिदैन । विद्युत खरिद बिक्री दर निर्धारण तथा विद्युत सम्भौतामा सहमति प्रदान गर्दा “विद्युत खरिद बिक्री तथा अनुमति प्राप्त व्यक्तिले पालना गर्नुपर्ने शर्त सम्बन्धी विनियमावली, २०७६” को अनुशुची ५ को २(ग) र ४(क देखि घ सम्म) का सर्तहरूलाई आयोगले नेविप्रालाई उक्त शर्तहरू पालना गर्न र सोहि अनुसार विद्युत खरिद बिक्री सम्भौता परिमार्जन गर्न निर्देशन दिन चुकेको छ । त्यसो त Nepal Electricity Grid Code, २०२३ मा सुरक्षा र मापन गर्ने उपकरणहरूको मापदण्ड र प्रशारण प्रणालीको डिजाईन तथा निर्माण मापदण्डको सैद्धान्तिक अबधारणाले प्रशारण प्रणालीको निर्माणमा अन(वश्यक मूल्य थोपर्ने मात्र नभई निर्माण व्यवस्थापन र प्रणाली संचालनमा निजी क्षेत्रलाई अनावश्यक भार थपेको छ । साना आयोजनाहरूको लागि Interconnection Facilities को लागत इलेक्ट्रो-मेकानिकलको लागत बराबर हुने र अनावश्यक ट्रान्सफरमर को लस व्यहोर्नुपर्ने अवस्थामा पुर्याएको छ । आयोगले समयमा जारी गरेका निर्देशिकाहरू सम्बन्धित निकायहरूले पालना गरे नगरेको अनुगमन गर्न सकेको पनि नदेखिएको छ । आयोगको काम उत्पादन, प्रशारण, वितरण र व्यापारको नियमन गर्नु हो । सो सम्बन्ध बनेका ऐन नियम अनुमति पत्र र करारका सम्भौताहरू कार्यान्वयनमा देखिएका समस्याहरूको समाधान दिनु पर्छ । ऐन नियम अनुमति पत्र र करारका सम्भौताहरू कार्यान्वयनमा देखिएका अव्यवहारिक पक्षको समाधान निकालन सहजीकरण गर्नु पनि हो । उर्जा क्षेत्रमा देखिएका घेरेलु समस्याहरूको समाधान गर्न विद्युत नियमन आयोग ऐन अनुसार आयोगले नेतृत्व लिनु पर्छ भन्ने कुरामा कसैको दुईमत छैन । माथि उल्लेखित समस्याहरूको पहल गर्न र निष्कर्षमा उल्लेखित विषयहरूमा सुधार (REFORM) गर्न यस क्षेत्रको विकास र अभिवृद्धि एवं लगानी प्रवर्धनको लागि आवश्यक कार्य गर्न आयोग चुक्नु हुँदैन ।

३२ विद्युत नियमन आयोगको बैठक सम्बन्धी कार्यविधि, २०७६; विद्युत खरिद बिक्री तथा अनुमति प्राप्त व्यक्तिले पालना गर्नुपर्ने शर्त सम्बन्धी विनियमावली, २०७६; विद्युत उपभोक्ता महसुल निर्धारण निर्देशिका, २०७६; विद्युत नियमन आयोग सार्वजनिक सुनुवाई सञ्चालन निर्देशिका, २०७६; विद्युत नियमन आयोग अनुमतिपत्र प्राप्त व्यक्ति आपसमा गाभिन, आपसमा मिल, शेयर खरिद, संरचनाको खरिद बिक्री वा हस्तान्तरण, प्राप्ति वा ग्रहण सम्बन्धी निर्देशिका, २०७७; विद्युत सम्बन्धी कम्पनीको शेयरको सार्वजनिक निष्कासनको पूर्वस्वीकृति तथा नियमन सम्बन्धी निर्देशिका, २०७८; आयोगको पाँच (५) वर्ष कार्यदिशा (Regulatory Roadmap, २०७९); नेपाल विद्युत ग्रिड कोड, २०८० (Nepal Electricity Grid Code, २०२३); विद्युत उपभोक्ता हित संरक्षण सम्बन्धी निर्देशिका, २०८०, तथा Key Performance Indicators Manual for Monitoring the Performance of Electric Utilities, २०२३ - २०८०

३३ तुला जविआहरूमा खर्चको बार कति पर्छ भन्ने अध्ययन गरिएको छैन ।

१२. निश्कर्ष

माथि उल्लेखित नीतिगत प्रविधिक समस्याहरु तथा वित्तीय खर्चहरुको आधारमा हेदा पहिलो पन्थ वर्षसम्म जलविद्युत कम्पनीहरुको आम्दानी वार्षिक आम्दानीको ५२.०५% ले ऋणात्मक देखिन्छ ^{३४} । पन्थ वर्ष पछि उक्त आम्दानी ९५.५% ले ऋणात्मक देखिन्छ । यस अवस्थालाई वित्तीय तथा आर्थिक व्यवस्थापन गर्न IPO/RIGHT CALL मार्फत र प्राइभेट कम्पनीहरुको हकमा प्रवर्धकहरुले विगत ५ देखि १० वर्षको अवधिमा २ देखि ६ करोड प्रति मेवा थप स्वपुँजी कम्पनीमा राखेको देखिन्छ । साना जलविद्युत आयोजनाहरुको यो अवस्थालाई सुधार गर्न ऐन नियम र निर्दीशिकाहरुमा ब्यापक सुधार (Complete Reform) गर्नुपर्ने देखिएको छ । अबको आर्थिक विधेयक र विद्युत विधेयक लगायत नेविप्रासँग हुने पिपिए र Connection Agreement मा देहाय बमोजिमको सुधार आवश्यक छ :

(क) आर्थिक/विद्युत विधेयकमा समेटन पर्ने विषयहरु:

१. जलविद्युत आयोजनाहरुमा प्रयोग हुने हरेक उपकरणहरु तथा स्पेयर पार्ट्सहरुमा सुन्य भन्सार तथा करको सुविधा ।
२. जलविद्युत आयोजनाहरुलाई प्रति मेवा पचास लाख छब्त अनुदान दिने वा छब्त बिल जारी गर्न पाउने व्यवस्था गर्ने ।
३. १० मे वा भन्दा साना जलविद्युत आयोजनाहरुलाई ऋण तिर्ने अवाधीसम्मका लागि विशेष पुनार्कर्जाको व्यवस्था ।
४. ५ मे वा भन्दा साना जलविद्युत आयोजनाहरुलाई उत्पादन अनुमतिपत्रको अवधीको सिमा हटाउने र ५ देखि २५ मेवाका जलविद्युत आयोजनाहरुको उत्पादन अनुमतिपत्रको अवधी ५० वर्ष कायम गर्ने ।
५. हासकट्टी, प्रशासनिक र मर्मत सम्भारको खर्चलाई न्यूनीकरण गर्न ५ मे वा भन्दा साना जलविद्युत आयोजनाहरुलाई विद्युत खरिद विक्री सम्भौता अवधीभर नेपाल राष्ट्र बैंकको मूल्य वृद्धिको सूचक(डक्को आधारमा मुल्यबृद्धि ।
६. ५ मेवा साना जलविद्युत आयोजनाहरुको संचालन अवधी १०० वर्ष मानी हास कट्टीको दर १% कायम गर्ने र १० मेवा साना जलविद्युत आयोजनाहरुको अनुमतिपत्रको अवधी ५० वर्ष मानी हास कट्टीको दर २% कायम गर्ने ।

(ख) Connection Agreement र विद्युत खरिद विक्री सम्भौतामा सुधार गर्नुपर्ने विषयहरु:

१. लेउ वा तिर (Take or Pay) को पूर्णरूपमा कार्यान्वयन गर्ने / लेउ वा तिर (Take or Pay) लाई परिवर्तन गर्न नपाउने व्यवस्था गर्ने ।
२. ३३ के भी वा सो भन्दा तल्लो स्तरको भोल्टेजमा विद्युत प्रवाह गरिरहेका आयोजनालाई लगाइएको प्रशारण लसको (Transmission Loss) व्यवस्था हटाउने ।

^{३४} प्रक्षेपणका अन्य आधारहरु १. प्रति मेवा आम्दानी दुइ करोड, वार्षिक ब्याजदर र फि समेत औषत ११%, १२ वर्षसम्म ०% corporate TAX, १२ वर्षपछी पन्थ वर्षसम्म ५% र १५ वर्ष पछि २०%, हासकट्टी दर ३.३३%, प्रति कर्मचारी मासिक खर्च औषत २८,८५६, वार्षिक मर्मत खर्च ८-१३ लाख प्रति वर्ष, आयोजना लागत १३-२३ करोड (औषत २१ करोड)

३. ५ मेवा साना आयोजनाहरूको विद्युत उत्पादनको भुक्तानी १५ दिन भित्र र अन्य १० मेवा सम्मका आयोजनाहरूको विद्युत उत्पादनको भुक्तानी ३० दिन भित्र दिने व्यवस्था गर्ने ।
४. ५ मेवा साना आयोजनाहरूको विद्युत उत्पादनको हिउद र वर्षातको अनुपात ८ (मार्ग देखि असार) र ४ (श्रावण देखि कार्तिक) महिनाको बनाउने ।
५. १० मेवा सम्मका आयोजनाहरूको Grid Connection ३३ केभी स्तरको भोल्टेजमा राख्ने / १० मेवा सम्मका आयोजनाहरूको Grid Connection मा लाने खर्चको भार घटाउने ।

विद्युत नियमन आयोगमा
कार्यरत लेखक महानुभावहरु
वर्णनुऋमानुसार

HARNESSING HYDROPOWER: PUBLIC INVESTMENT AS A CATALYST FOR NEPAL'S ECONOMIC TRANSFORMATION

Gautam Dongol¹

With strong public participation and improved governance, Nepal's hydropower boom can fuel sustainable development .

Nepal is blessed with abundant water resources, flowing down from the Himalayas through steep rocky terrains and deep valleys, offering a natural advantage for hydropower development . The country's theoretical hydropower potential is around 83,000 Megawatts (MW), of which over 40,000 MW is considered technically and economically viable . Yet, despite this vast potential, as on today Nepal has been able to harness only 10% of it . Constrained by limited financial resources, inadequate infrastructure, long hectic administrative procedures and weak regulatory mechanisms, the hydropower sector has struggled to grow at the pace needed to meet the country's development ambitions . However, recent years have seen a shift in momentum, driven largely by increasing public investment and growing awareness of the transformative role hydropower can play in achieving national economic goals .

Hydropower is a strategic national asset with the capacity to propel economic growth, reduce dependency on imported energy, and position Nepal as a net energy exporter in the South Asian region . Access to reliable and affordable energy is critical for the expansion of industrial activity, improvement in the quality of life, and promotion of economic productivity . As the government aims to drive industrialization, promote digital transformation and strengthen rural economies, hydropower emerges as a backbone of sustainable development . But hydropower projects are capital-intensive by nature, requiring large upfront investments, long gestation periods, and substantial technical and financial risk management . In this context, mobilizing financial resources particularly from the domestic capital market and the general public has become increasingly important .

Public investment, especially through the issuance of shares, has emerged as a powerful tool to fund hydropower projects in Nepal . By allowing ordinary citizens to become shareholders in hydropower companies, the sector has promoted a sense of ownership and participation among the public . This has not only democratized wealth creation but also enhanced transparency and accountability in project execution . Publicly funded projects are subjected to greater scrutiny and tend to follow higher standards of governance . Furthermore, involving the public has reduced dependency on external debt, which often comes with geopolitical and economic risks . The success of several hydropower companies in raising capital through Initial Public Offerings (IPOs) with subscriptions by so many times is evidence of growing trust of Nepali citizens in the sector's potential .

Here it has been tried to explore how public investment is shaping the future of hydropower development in Nepal and how this in turn is influencing the broader economic landscape . An elaborative presentation has been made on successes and challenges of public participation, reg-

¹ Member, Electricity Regulatory Commission, Nepal and lyricist .

ulatory and financial frameworks, and the strategies needed to harness hydropower effectively . By this, highlights have been put forth regarding why empowering the public to invest in strategic infrastructure projects can be a catalyst for inclusive and sustainable economic transformation in Nepal

1. Hydropower: A Cornerstone for National Development

Hydropower is not just an energy source for Nepal, it is an engine for national development . In a country where mountainous terrain and swiftly flowing rivers are abundant, hydropower presents a unique opportunity to generate clean, renewable energy while also promoting long-term economic growth . Its strategic importance goes beyond electricity production; it incorporates economic stability, industrial progress, regional integration, and environmental sustainability . Harnessing this resource efficiently can contribute significantly to achieving the national vision of sustainable development and inclusive prosperity .

Access to reliable and affordable electricity is one of the most fundamental prerequisites for development . In Nepal, inadequate power supply has long constrained economic activities, limited industrial output, and hampered investment . Hydropower development helps address these barriers by providing a steady and domestically sourced supply of energy . With sufficient power generation, industries can operate at full capacity, small and medium enterprises (SMEs) can flourish, and essential services such as education and healthcare can function more effectively . Moreover, rural electrification that is largely dependent on hydropower can uplift communities by enabling new income-generating opportunities, improving access to information, and reducing dependency on traditional and polluting energy sources like firewood and diesel .

The development of hydropower also creates a multiplier effect on employment and infrastructure . From project planning and construction to operation and maintenance, hydropower projects create thousands of skilled and unskilled jobs . Roads, bridges, transmission lines, and other supporting infrastructure developed around hydropower sites often lead to broader regional development . In many cases, previously remote and economically stagnant areas have been opened up and revitalized due to such infrastructure improvements . This not only bridges the urban-rural disparity but also contributes to balanced regional development which is an important goal for Nepal's long-term stability and growth .

Additionally, hydropower has a critical role in enhancing Nepal's energy security and reducing its dependency on imported fossil fuels . Nepal has historically depended on imports from neighboring countries to meet its electricity demand, especially during dry seasons . By scaling up domestic hydropower capacity, Nepal can ensure a more self-sufficient energy supply, protect its economy from global oil price volatility, and significantly reduce its carbon emissions . As the world shifts towards green energy, Nepal has the opportunity to position itself as a leader in clean power generation in the region . The surplus energy generated during wet seasons also offers export potential, particularly to India and Bangladesh, turning electricity into a key trade commodity .

Perhaps most importantly, hydropower aligns closely with Nepal's national development goals, including poverty reduction, job creation, rural development, and climate change mitigation . The sector is deeply integrated into national strategies such as the long-term strategy for net zero emissions and the energy development vision 2030 . Through public-private partnerships, regulatory reforms, and inclusive investment models, hydropower can serve as the

cornerstone of a strong, equitable, and sustainable Nepali economy .

2. Capital Markets: Democratizing Infrastructure Investment

Nepal's journey toward economic transformation through hydropower development would not be possible without innovative approaches to financing . Traditional sources of infrastructure funding such as government budgets, foreign aid, and bank loans have often fallen short in meeting the massive capital requirements of hydropower projects . In response, Nepal has increasingly turned to its capital markets as a means of mobilizing domestic resources . This shift has not only brought in much-needed funding but has also empowered ordinary citizens to participate directly in nation-building . By opening the doors for public investment, capital markets have effectively democratized infrastructure finance in Nepal .

The use of capital markets in hydropower financing has grown significantly over the past decade . Many hydropower companies now raise a portion of their capital through Initial Public Offerings (IPOs) and Right Share Issuance, allowing thousands of individual investors to become shareholders . These public offerings have become popular among retail investors, including students, workers, and rural communities, many of whom are investing in the capital market for the first time . The attraction lies in both financial returns and a sense of content in contributing to national development . Investing in hydropower is not just about earning dividends, but also about supporting energy independence, industrial growth, and a better future for the country .

The increasing accessibility of capital markets has helped create a more inclusive investment environment . Introduction of simplified procedures for public issuance have enabled a wider segment of the population to participate . Mutual funds and hydropower-focused collective investment schemes have further lowered the entry barrier, allowing small investors to pool resources and access diversified portfolios . This has created a growing culture of financial participation and awareness, with lasting effects on capital formation and economic understanding .

More importantly, capital market participation brings transparency and accountability to the infrastructure sector . Publicly listed hydropower companies are required to adhere to strict disclosure norms, periodic financial reporting, and corporate governance standards . This reduces the risks of mismanagement, delays, and cost overruns that are considered as the issues that have historically plagued infrastructure projects in Nepal . Moreover, public scrutiny and shareholder activism encourage better project implementation and regulatory compliance . In effect, public investment not only funds development but also helps improve the quality and credibility of the projects .

Despite good progress observed in the sector, there are so many challenges that needs to be catered in the days ahead . Large segment of the investors still lacks adequate knowledge about capital markets and they seems to be guided by mere speculations carrying unrealistic expectations all over the way . There's also a need for improved oversight to prevent malpractices and ensure that public offerings are based on sound project fundamentals . Nevertheless, the broader trend is positive . Capital markets are playing a transformative role not just in mobilizing funds, but in reshaping how infrastructure is financed and who gets to participate in it .

By transforming savers into stakeholders, Nepal's capital markets are fueling a more participatory form of economic development . Hydropower projects financed by public

shareholders are more than energy assets, they are symbols of collective progress and shared national aspirations . As this model continues to evolve, it has the potential to become a cornerstone of Nepal's strategy for sustainable and inclusive growth

3. Financial Mobilization and Market Deepening

The growth of Nepal's hydropower sector has reinforced the importance of effective financial mobilization and the expansion of domestic capital markets . Infrastructure development, especially in energy, requires continuous and large-scale capital flows, something that cannot be supported solely through government funding or foreign assistance . In this context, channeling domestic savings into productive sectors like hydropower through financial instruments has proven to be a powerful strategy . It not only finances critical national infrastructure but also strengthens the country's financial ecosystem, making it more robust, inclusive, and responsive to development needs .

Financial mobilization involves converting the idle or underutilized scattered small savings of individuals and institutions into active and bulk investments . In Nepal, a significant portion of household savings has traditionally been locked in real estate or informal channels . The expansion of the capital market, particularly through public share issuance in hydropower companies, has begun to redirect these savings into formal, productive use . This shift is contributing to a more dynamic financial sector, with increased liquidity, higher participation rates, and greater investor confidence . Investing in hydropower is especially attractive due to its clear development impact and potential for long-term returns .

Hydropower projects have become key drivers of financial market expansion in Nepal . The increasing number of publicly listed hydropower companies has diversified the offerings in the secondary market, attracting a broader base of investors . This has led to greater trading activity, improved price discovery, and more robust market capitalization . The Nepal Stock Exchange (NEPSE) now features a significant proportion of hydropower-related securities, making the sector a driving force behind market development . As more companies enter the market and expand their operations, the capital market evolves from being simply a fundraising platform to a critical pillar of economic growth .

The role of regulators such as the Electricity Regulatory Commission (ERC), Securities Board of Nepal (SEBON), Nepal Rastra Bank, and the Ministry of Finance has been instrumental in supporting market strengthening . Through policy reforms, improved listing procedures, investor education initiatives, and enhanced disclosure requirements, the regulatory environment is becoming more conducive to innovation and investor protection . Financial literacy programs and digital trading platforms are also helping expand the investor base beyond urban centers, promoting inclusivity and broader financial participation .

In essence, the synergy between financial mobilization and capital market growth is creating a positive cycle that supports hydropower development while strengthening Nepal's financial system . As the country continues to pursue energy-led economic transformation, sustained efforts to mobilize domestic capital and expand market access will be key . A dynamic, transparent, and diversified capital market will ensure that Nepal's development ambitions are not limited by financial constraints but are empowered by its own people's savings and aspirations

4. Social and Local Benefits of Public Investment

Public investment in hydropower projects not only drives economic growth and national development but also creates significant social and local benefits that can transform communities. As Nepal focuses on utilizing its vast hydropower potential, the involvement of the public in financing these projects is helping to foster a sense of ownership, while also delivering direct and indirect benefits to local populations. These benefits range from improved livelihoods and infrastructure development to greater social inclusion and empowerment, especially in rural and remote areas where hydropower projects are often located.

One of the most immediate and visible social benefits of hydropower projects is the creation of jobs. During the construction and operational phases, thousands of skilled and unskilled local workers are employed. This includes workers from nearby villages and towns whose families directly benefit from the income generated.

Beyond employment, hydropower projects contribute to local infrastructure development. Roads, bridges, transmission lines, and communication networks built for hydropower projects often benefit surrounding communities as well. Improved transportation links reduce isolation, facilitate trade, and provide easier access to essential services like healthcare and education. These infrastructure improvements can spark broader regional development, reducing the urban-rural divide and enabling greater social mobility. In this way, public investment in hydropower can lay the foundation for long-term local economic growth and development, transforming previously underdeveloped regions.

Another significant local benefit is the improvement in energy access. As hydropower projects expand, they provide electricity to previously off-grid areas, bringing light and energy to homes, schools, hospitals, and businesses. This energy access is a key driver of poverty alleviation, enabling local enterprises to flourish, improving agricultural productivity, and increasing access to modern technology. For rural communities, access to electricity means a shift away from inefficient, polluting energy sources such as firewood and kerosene, contributing to better health outcomes and a higher quality of life.

Public investment in hydropower also promotes social inclusion by allowing local communities to become stakeholders in the projects that affect their region. The companies can provision up to 10% of its issued capital to the local people living at the projected affected areas that has providing opportunity to the locals to invest directly in the infrastructure built in their own place. This creates a sense of ownership and participation, allowing locals to benefit financially from the projects that impact their environment. By making the hydropower sector more inclusive, public investment empowers communities, helps reduce economic inequalities, and ensures that the benefits of development are distributed more equitably.

Moreover, public investment in hydropower often fosters a collaborative approach to development, with local governments, businesses, and community groups working together to maximize the benefits of these projects. This inclusivity not only ensures that hydropower projects meet the needs and aspirations of local populations but also helps mitigate potential conflicts. When communities are actively engaged in decision-making and share in the economic rewards, the chances of successful project implementation and long-term sustainability increase significantly.

Public investment in hydropower offers a range of social and local benefits that go beyond financial returns. It empowers communities, enhances their quality of life, and facilitates broader regional development. As Nepal continues to harness its hydropower potential, it is vital that these social benefits are prioritized, ensuring that local populations are not only the beneficiaries of energy but also active participants in the country's energy and economic future.

5. Areas for Improvement: Strengthening Governance and Trust

While public investment in Nepal's hydropower sector offers immense potential for national growth and development, there are critical areas that require attention to ensure that these projects achieve their full potential. Among the most pressing challenges are issues related to governance, transparency, and public trust. Strengthening governance frameworks and enhancing trust in the hydropower sector are essential to maximize the benefits of public investment and ensuring the long-term success of these projects. A well-governed and transparent sector will attract more investments, reduce risks, and foster greater social acceptance of hydropower projects.

One of the key areas that requires improvement is the governance structure of hydropower projects. In Nepal, many hydropower projects face delays, cost overruns, and inefficiencies due to weak project management, poor coordination between stakeholders, and lack of clear accountability. Strengthening governance means ensuring that roles and responsibilities are clearly defined, the projects are in the hands of efficient team and that there is effective oversight at every stage of a project, from planning to implementation. Establishing robust project management systems, adopting best practices in the procurement process, and ensuring timely completion of projects will not only improve efficiency but also build confidence among investors and the public.

Transparency is another critical aspect that needs attention. Public investment, particularly in large infrastructure projects, often comes with concerns about mismanagement, financial irregularities, and inefficiency. Strengthening transparency can be achieved by requiring regular and detailed financial disclosures, holding public consultations, creating mechanisms for independent auditing and regular reporting mechanism in the prescribed formats. Public disclosure of project progress, costs, and timelines will provide reassurance to investors and the general public that their money is being spent wisely and that projects are being implemented in the public's best interest.

Building trust is a crucial element in the successful implementation of hydropower projects. Trust can be eroded when stakeholders perceive that projects are being driven by special interests, or inadequate planning. To rebuild and maintain trust, it is essential to involve local communities and stakeholders from the beginning and throughout the life of a project. This means engaging in meaningful consultations, addressing concerns, and ensuring that the community benefits from the projects both socially and financially. Public-private partnerships (PPPs) should be structured in a way that prioritizes the long-term interests of the country, with clear guidelines to prevent conflicts of interest and ensure fair participation for all stakeholders.

Moreover, ensuring the active participation of the private sector and institutional investors in hydropower projects requires improving the regulatory environment. The legal and regulatory framework governing hydropower investment needs to be clear, stable, and investor-friendly. Regulatory bodies like the Electricity Regulatory Commission (ERC) and the Securities

Board of Nepal (SEBON) should work to create an environment that fosters confidence in the sector. This includes providing timely approvals, introducing incentive based reward mechanism for responsible investments, and ensuring that investors have access to necessary information for informed decision-making.

Addressing environmental and social concerns through better governance will also strengthen public trust. Many hydropower projects in Nepal face resistance due to environmental and displacement issues. These concerns need to be taken seriously, and project developers must work closely with local communities, environmental experts, and government bodies to mitigate any adverse impacts. By adhering to strict environmental regulations and ensuring fair compensation for affected communities, the hydropower sector can earn the trust of the public and gain broad social acceptance.

To sum up, while the public investment in hydropower holds great promise, there are clear areas for improvement, particularly in governance, transparency, and trust-building. Strengthening these aspects will ensure that Nepal's hydropower projects not only contribute to economic growth but also deliver sustainable, inclusive, and socially responsible development. Addressing governance issues and building trust is crucial to ensure that the benefits of these projects are widely shared and that the public continues to support hydropower as a catalyst for national transformation.

6. The Role of Regulation and Policy Support

The successful harnessing of Nepal's hydropower potential and the realization of its benefits through public investment depend not only on market forces and financial mobilization but also on the strong regulatory and policy framework that governs the sector. Effective regulation and policy support play a pivotal role in ensuring that hydropower development is sustainable, transparent, and aligned with national development goals. For Nepal, where hydropower is considered a cornerstone for both economic growth and energy security, regulatory mechanisms and government policies are essential for creating an environment that fosters investment while safeguarding public interest.

At the core of a successful hydropower sector is the establishment of clear, consistent, and investor-friendly regulations. Nepal's regulatory bodies, including the Ministry of Energy, Water Resources and Irrigation, the Electricity Regulatory Commission (ERC), and the Securities Board of Nepal (SEBON), are responsible for overseeing the development, operation, and investment processes within the hydropower sector. These institutions must ensure that hydropower projects adhere to high standards of technical, financial, and environmental sustainability. This can be achieved through enforcing strict compliance with environmental impact assessments, monitoring the progress of projects, and holding companies accountable for their commitments. Transparent and predictable regulatory frameworks create investor confidence by reducing the risks associated with hydropower investments.

The policy environment is equally critical in shaping the future of Nepal's hydropower sector. The government's energy policies, such as the Energy Development Vision 2030 outlines the strategic objectives for energy generation, with a strong emphasis on hydropower as the primary source of clean, renewable energy. The policies provide a roadmap for hydropower development, specifying targets for capacity addition, rural electrification, and export potential. Furthermore, policies that encourage private sector participation such as incentives for foreign direct investment (FDI), tax exemptions, and streamlined licensing processes help to

mobilize both domestic and international capital for hydropower projects . Policy support for public-private partnerships (PPPs) can help combine resources and expertise, making large-scale projects more financially viable .

Additionally, regulatory bodies must address the issue of risk management in hydropower investment . The sector is inherently prone to various risks, including environmental, financial, and operational uncertainties . For instance, hydropower projects are highly sensitive to changes in water flow, seasonal variations, and environmental conditions . Regulatory authorities must ensure that risk mitigation strategies, such as proper financial hedging, environmental safeguards, and contingency planning, are in place . This may involve setting clear guidelines on risk-sharing between the government, private investors, and local communities, ensuring that the burden of potential risks does not fall disproportionately on any single stakeholder .

Environmental sustainability must be at the forefront of regulatory and policy decisions . The government must ensure that hydropower projects are designed and operated with minimal negative impacts on local ecosystems and communities . Stringent environmental regulations, combined with effective enforcement, will ensure that projects respect ecological balance, prevent over-exploitation of water resources, and consider the long-term social and environmental consequences . This will also help avoid public opposition and protests, which have at times delayed hydropower projects in Nepal due to concerns over displacement, deforestation, and river ecosystem degradation .

Regulation and policy support are essential components for the successful development of Nepal's hydropower sector . A robust regulatory framework, backed by clear policies and efficient governance, will create the necessary conditions for sustainable hydropower projects, safeguard public investment, and promote private sector participation . By continually refining these regulatory and policy structures, Nepal can realize the full potential of its hydropower resources, thereby contributing to its energy security, economic transformation, and long-term sustainability

7. Opportunities Ahead:

As Nepal seeks to unlock the full potential of its hydropower resources and drive economic transformation through public investment, two key opportunities stand out on the horizon - green finance and regional trade . Both offer pathways for sustainable growth, ensuring that hydropower development aligns with global environmental goals while fostering economic integration within South Asia . By tapping into these opportunities, Nepal can further strengthen its hydropower sector and contribute to regional stability and prosperity .

Green Finance: Driving Sustainable Investment

Green finance refers to funding projects with positive environmental impacts, such as renewable energy and sustainable infrastructure . For Nepal, hydropower is a natural fit for green finance due to its renewable, carbon-free energy potential . With growing global demand for climate-conscious investments, Nepal has an opportunity to attract international and domestic capital for green projects .

International financial institutions like the World Bank and the Asian Development Bank (ADB) are increasingly offering green bonds and other financing mechanisms, which provide funding with favorable terms and lower interest rates for sustainable projects . Nepal can

capitalize on these by issuing green bonds tied to hydropower, attracting investors keen on environmentally responsible investments .

The Government of Nepal can enhance green finance by creating enabling policies such as tax incentives for green projects, easier access to green bonds, and support for green infrastructure development . Positioning hydropower as a cornerstone of Nepal's green development agenda would allow the country to access global capital markets, contribute to international climate goals, and meet domestic energy needs .

Regional Trade: Strengthening Economic Integration

Regional trade offers Nepal a valuable opportunity to maximize its hydropower potential . Despite being landlocked, Nepal can enhance energy exports to neighboring countries like India and Bangladesh, contributing to energy security and economic cooperation . India, with its growing demand for clean energy, has already become a key partner, with several hydropower projects developed for electricity trade .

Regional agreements like SAARC and BIMSTEC provide platforms for greater energy co-operation . Nepal can explore multilateral energy trade agreements and regional power grids, optimizing energy generation and reducing shortages . This would enhance Nepal's position as an energy exporter and stimulate broader economic cooperation in sectors like agriculture, manufacturing, and services, leading to growth, job creation, and regional stability .

Building a Sustainable Future

The twin opportunities of green finance and regional trade offer a promising path forward for Nepal's hydropower sector . By tapping into green financing mechanisms and expanding its role in regional energy trade, Nepal can not only meet its domestic energy needs but also position itself as a key player in South Asia's sustainable energy future . These opportunities are not just about economic growth but also provide a way for Nepal to contribute to global efforts against climate change while enhancing regional cooperation and stability

Conclusion: Lighting the Future Together

As Nepal begins its journey to harness the immense potential of its hydropower resources, the path forward is clear yet challenging . Public investment, driven by a robust regulatory framework and innovative financing strategies, holds the key to unlocking the full benefits of hydropower for national growth, energy security, and regional cooperation . However, achieving this vision requires collective efforts from government institutions, private investors, local communities, and international partners . Only through collaboration, transparency, and shared goals, Nepal can truly light the way for a sustainable and prosperous future .

Hydropower, with its renewable energy capacity, is a cornerstone for Nepal's economic transformation . The ongoing development of hydropower projects presents an opportunity not only to fulfill the nation's growing energy demands but also to position Nepal as a regional leader in clean energy . Public investment, both domestic and international, is essential in mobilizing the capital needed for large-scale projects . But beyond the financial aspect, it is the broader societal benefits that stand out improved infrastructure, enhanced energy access, job creation, and increased economic opportunities for marginalized communities . Well done hydropower projects have the potential to transform the lives of millions of Nepali citizens .

Yet, for this transformation to be sustainable and equitable, strengthening governance and trust remains crucial. Nepal's hydropower sector must evolve to meet the challenges of governance, transparency, and accountability. By improving regulatory frameworks, implementing stricter environmental standards, and fostering greater inclusivity in decision-making processes, Nepal can reduce the risks associated with hydropower projects and ensure that they serve the broader public interest. A transparent, well-governed hydropower sector will not only attract further investment but will also ensure that the benefits are shared equally among all stakeholders, from urban centers to remote rural areas.

The integration of green finance into Nepal's hydropower sector represents a transformative opportunity to tap into the growing global demand for sustainable investments. Green bonds and climate financing instruments provide avenues for raising capital for environmentally friendly projects while simultaneously contributing to global climate goals. These financial mechanisms, when coupled with regional trade in electricity, offer Nepal the chance to diversify its energy exports and play a pivotal role in regional energy security. The ability to export clean, renewable energy will further strengthen Nepal's economic ties with its neighbors and enhance the stability and growth of the broader South Asian region.

At the heart of these opportunities lies the idea of shared prosperity. The success of Nepal's hydropower sector is not solely about financial returns or energy production; it's about ensuring that every Nepali citizen, regardless of their location or economic background, benefits from the country's natural wealth. It's about creating a future where local communities are empowered, where the environment is respected, and where economic opportunities are available to all. Public investment in hydropower can serve as a powerful catalyst for this future, but it requires a long-term vision and a commitment to sustainable practices and social inclusivity.

As Nepal moves forward, the need for collaboration, innovative financing, and forward-thinking policies becomes ever clearer. Lighting the future together means building a unified approach that bridges the gap between environmental sustainability, economic growth, and social equity. By embracing green finance, strengthening governance, and expanding regional cooperation, Nepal can ensure that its hydropower sector not only powers the nation but also lights the way to a more prosperous, sustainable, and harmonious future for all.

Contribution of Hydropower of Nepal to Environment-Focused Energy Trilemma Agenda

-Dr . Jhamak Prasad Sharma¹

Recently the IQ Air, a Swiss-based platform aggregating information on air pollution from various sources including governments, companies, and NGOs had made ranking of the world's most polluted cities in terms of air quality . The name of Kathmandu also was ranked as polluted one for some days on the basis of air quality index (AQI) since the atmosphere was too hazy with pollutant dust during the winter drought . Now it is pleasure that there is improvement after rainfall . This shows the significance of environment in the contemporary society . Environment is the existential basis of all the flora and fauna along with human being . In the present time human being has been able to survive a prosperous life by enjoying wonderful facilities and pleasure as a result of modern technology . But on the other hand, the outcome and effect of technological development has also resulted the pollution and environmental decline . The degrading ecosystem of the earth, climate change and environmental decline have made worried to the world as a whole . The contemporary world, being worried at the environmental decline, has organized numerous conferences and seminars, passed numerous resolutions, signed numerous treaties and conventions, enacted numerous laws, made numerous speeches but in vain . There is no expected outcome by such efforts . Even today, the ecosystem of the earth is being degraded day by day, deforestation is being continued, the arable fertile soil of land level is being eroded to the bottom of sea, desertification is being continued, the ozone layer of atmosphere is being thinner, temperature is increasing everywhere because of greenhouse effect, biodiversity is declining day by day, even respiration is being difficult due to air pollution, the environmental defects due to climate change also are being vivid, the sources of drinking water are being polluted, the calamity of flood and landslides is occurring due to encroachment of rivers . These defects remain continuous until the human behavior does not become environment-friendly . Environmentalist Andy Kerr, watching all these defects from the close has frankly expressed his worriedness and said – “The Third World War is already ongoing between human being and environment . The bad news is, the humans are winning the war against the environment .”

Now, let me make clear about the basic terms Environment, Environmentalism, Environmental Justice and Energy Trilemma .

Environment can be defined as the surroundings or conditions in which a person lives . This includes a person's home, place of work, schools, and community parks, as well as the rivers, woodlands and mountains .

Environmentalism advocates the preservation, restoration and improvement of the natural environment and critical earth system elements or processes such as climate, and may be referred to as a movement to control pollution or protect plant and animal diversity .

Environmental justice is a term coined by Robert Bullard, Paul Mohai, Robin Saha and Beverly Wright in the 1980s and it describes the equitable distribution of environmental benefits and harms experienced as a result of rectifying systems of oppression . Environmental justice (EJ)

1 The author is assigned to the Electricity Regulatory Commission in the capacity of ERC Member . --
Editors

is the idea that all people and communities have the right to live and thrive in safe, healthy environments with equal environmental protections and meaningful involvement in these actions . EJ is the fair treatment and meaningful involvement of all people regardless of race, color, national origin, or income with respect to the development, implementation and enforcement of environmental laws, regulations and policies .

Article 30 of the Constitution of Nepal has provisioned the environment related fundamental right of citizen stating that every citizen shall have the right to live in a clean and healthy environment that the victim shall have the right to obtain compensation, in accordance with law, for any injury caused from environmental pollution or degradation and that this provision shall not be deemed to prevent the making of necessary legal provisions for a proper balance between the environment and development, in the development works of the nation . Hence, EJ is based on the principle that all people have a right to be protected from environmental pollution, and to live in and enjoy a clean and harmful environment . In other words, it is the right to a safe, healthy, productive, and sustainable environment for all, where "environment" is considered in its totality to include the ecological (biological), physical (natural and built), social, political, aesthetic, and economic environments .

Energy Trilemma

The concept of the energy trilemma was initially recognized in the 1987 Brundtland report on sustainable development . The Brundtland report, officially titled "Our Common Future", laid the groundwork for the energy trilemma by emphasizing the interconnectedness of economic growth, environmental protection, and social equity, all crucial for sustainable development . Chapter 7 of this report, which focused on the energy sector, highlighted the need for a "safe, environmentally sound, and economically viable energy pathway . Subsequently the World Energy Council formally adopted the concept and used it in their 2011 report, "Policies for the Future: Assessment of Country Energy and Climate Policies" . Giving due consideration to the protection of environment and creating a policy framework that simultaneously delivers secure, affordable, and environmentally sustainable energy, "a sustainable energy system" is one of the most important challenges facing by the governments today . This triple challenge is known as the Energy Trilemma . The concept of the energy trilemma is still relevant and widely used in the energy sector . The [World Energy Council](#) continues to develop and refine the framework, and it remains a key tool for policymakers and industry leaders to navigate the challenges of energy transitions . The trilemma highlights the interconnectedness of energy security, affordability, and sustainability, and its relevance is particularly evident in the face of ongoing global energy challenges .

Three Dimensions of Energy Trilemma:

As mentioned above, the 3 dimensions of Energy Trilemma can be further elaborated as follows

α) Providing energy security

Energy Security belongs to the effective management of primary energy supply from domestic and external sources, the reliability of energy infrastructure, and the ability of energy providers to meet current and future demand .

Security inevitably means not relying too heavily on any one single energy solution . Being in a country with a rich wind resource would mean that this would be the best source of

electricity both in terms of environmental impact and affordability . However, it does little to answer the energy security question . As a variable resource, renewables like wind cannot stand alone but need to be balanced with solutions to even out supply peaks and troughs . Energy security is a concern over whether there will be sufficient resources to meet the world's energy requirement in the years ahead . All definitions of energy security contain notions of availability, sufficiency, affordability, welfare, energy products and interruptions .

Energy security is discussed at different levels such as household, community and importantly individual countries . Nations have a historic responsibility for energy security, national energy, energy systems and policy intervention . National energy security is defined as protection from disruptions of energy systems that can jeopardize nationally vital energy services .

β) Equitable access to energy

This focuses on energy equity that is to say equitable accessibility and affordability of energy supply across the population . Universal access to reliable, affordable and abundant energy is still not a given everywhere in the world . Raising the momentum of electrification is of particular importance in emerging economies .

Energy equity evaluates the accessibility and affordability of energy in a region . Further, energy equity helps in the measuring of an energy policy's socio- economic impacts . The issue of energy access is gaining momentum as it is critical in enabling people to meet their essential needs . The access to energy should also be coupled with affordability .

χ) Achieving environmental sustainability

This encompasses the achievement of supply and demand-side energy efficiencies and the development of energy supply from renewable and other low-carbon sources . In recent years, the focus has rightly been on this agendum of the energy trilemma challenges .

There is a growing concern on the expandable use of natural resources due to the current consumption and production pattern . Sustainability is used to emphasize the meeting of the needs of the present without compromising the ability of future generations to meet their need .

Environmental sustainability is explained as the meeting of resources and services needs of the current and future generations without compromising the health of the ecosystems . The society should satisfy its needs and not exceed the capacity of supporting its ecosystem to continue to regenerate what is necessary to meet those needs .

The overall message delivered by the concept of energy trilemma

The energy community urgently needs a clear carbon pricing scheme in line with the global objectives that will allow all to make efficient economic decisions . Of all the measures currently being undertaken on the ground, this is the key priority . We call for determined pragmatism from all sides to deliver such a deal that enables significant on-going action beyond dogmatism . It requires predictable policy and balanced regulatory frameworks to unlock the need investment to ensure affordable, reliable and sustainable energy . Although reducing policy risk is critical; only the adoption of strong and balanced national energy policy frameworks can provide substantive progress . However, translating the international objective to the national level as energy requires

an Energy Trilemma approach, which balances the needs of energy security, environment and social agenda . The increasing number of extreme weather events affect critical energy infrastructure today . The frequency of extreme weather events had quadrupled over the past 30 years and this trend and its effects will continue without decisive mitigation and adaptation measures . Our work shows that energy leaders are particularly concerned about the rising number of extreme weather events that are putting critical infrastructures at risk and threatening social and economic development .

Thus, energy trilemma covers the basic world energy issues along with extreme weather risks, energy water nexus, cyber threats, market design etc . The overall gist of such issues as a whole can be mentioned as follows:

The challenge to be tackled in the contemporary world is the expected doubling or even tripling of the global energy demand by 2050, the need to cut global greenhouse gases by fifty per cent during the same period (which requires a cut of eighty per cent in OECD countries), the 1 .3 billion people who are still without energy and the need to improve global governance in respect of the management of global risks from large-scale accidents, require massive transformational efforts on a global scale . With these challenges in mind, the world energy community has set the Energy Trilemma agenda, highlighting the trade-offs between three dimensions; energy security, energy equity (energy access and affordability) and environmental sustainability .

The energy trilemma agenda has been developed to provide an exclusive opportunity for the world energy community to focus on ways to overcome the energy Trilemma and to secure prosperity . It has to explore issues that are high on the global and regional energy agenda, covering climate change mitigation, price volatility and the impact on renewables development, the energy-water-food nexus and energy access . The energy sector has a key part to play in driving the climate debate and delivering the investment and technologies that will help achieve better access to cleaner energy . It is necessary to deliver sustainable energy systems that meet climate targets, development goals, and support to balance the three dimensions of the energy Trilemma .

Five priority action areas of energy trilemma are pointed as - Trade and technology transfer; Carbon pricing; Financing; Focus on demand as well as supply; and Innovation .

High consumption of fossil fuels is widely recognized as the primary cause of global warming and other pollutions, which in turn leads to a rise in anomalous weather patterns, rising sea levels, increased catastrophic flooding, and the spread of pests and diseases . As Nepal is rich in hydropower potentiality, the hydroelectricity of Nepal can significantly contribute to the energy trilemma agenda by replacing the fossil fuels .

Difference between hydropower and hydroelectricity

Hydroelectricity refers to the generation of electrical power by the use of hydropower . Hydropower here mainly is the gravitational force of falling water . This does not use any water in energy production . But now-a-days these two terms are used interchangeably to denote the meaning of hydroelectricity . Hydropower is the oldest form of clean electricity, with significantly lower lifecycle greenhouse gas emissions than most other energy sources . In comparison with burning coal, hydropower avoids up to four billion tons of additional greenhouse gas emissions being emitted annually . Unlike fossil fuels, which release harmful pollutants and carbon dioxide when burned, hydroelectric power is the generated electricity without combustion, helping to reduce air-pollution and mitigate the impacts of global warming .

Difference between Electricity and hydroelectricity

Hydroelectricity simply refers to electricity that was generated by the flow of water being used to turn a generator (most commonly from dams) . The electricity itself is no different from electricity from any other source, it would be impossible to tell where the power came from, just measuring it as it came through the wires . Hydroelectricity is the very electricity .

Why is there a specific word for electricity generated from water flow, when there's not one for electricity generated from coal, gas, nuclear power or wind? It is so because water power goes back a long time, predating electricity generation, but then became one of major early systems for generating electricity, so the term was coined early on to distinguish using water power to generate electricity versus using it to run a mill or any other form of equipment . And the name stuck, and became part of the language .

Context of Nepal regarding Hydroelectricity:

The hydropower potentiality of Nepal is 83000 MW, of which 43000 MW is economically feasible . Nepal's installed hydropower capacity is currently at 3,421 .956 MW, as of March 4, 2025 . This includes 3,255 .806 MW from hydropower, 106 .74 MW from solar, 53 .41 MW from thermal, and 6 MW from Co-generation . The majority of Nepal's electricity generation comes from hydropower .

Out of Nepal's theoretical hydropower potential exceeding 83,000 MW, only a small fraction has been harnessed . The country is actively developing new projects, with a focus on increasing both domestic consumption and export potential, aiming for 28,000 MW by 2035, with plans to export 15,000 MW . Three climate-change phenomena will have a particular impact on our energy sector: global warming, changing regional weather patterns (including hydrological patterns) and an increase in extreme weather events . Not only will these phenomena affect energy demand, but in some regions, they will also affect the entire spectrum of energy production and transmission . While most climate change impacts are likely to be negative, there could be some positive impacts such as lower energy demand in cold climates .

Role of hydropower in environment protection

Hydroelectric energy stands as one of the oldest and most established forms of renewable energy, with its roots tracing back to ancient waterwheels harnessing the power of flowing rivers . In modern times, hydroelectric power plays a pivotal role in sustainable development, offering a reliable, clean, and renewable source of electricity that contributes to economic growth, environmental conservation, and social progress . At its core, hydroelectric energy involves the conversion of kinetic energy from flowing water into electrical energy through the use of turbines and generators . This process is highly efficient and produces minimal greenhouse gas emissions, making it a key component of efforts to mitigate climate change and transition towards a low-carbon energy future . Unlike fossil fuels, which release harmful pollutants and carbon dioxide when burned, hydroelectric power generates electricity without combustion, helping to reduce air pollution and mitigate the impacts of global warming .

One of the most significant contributions of hydroelectric energy to sustainable development lies in its ability to provide clean and reliable electricity to communities around the world . Hydroelectric power plants can range in size from small-scale installations serving local villages to

large-scale facilities powering entire cities or regions . In remote and rural areas where access to electricity is limited, micro-hydro systems can provide a cost-effective and environmentally friendly solution, improving living standards, enhancing educational opportunities, and supporting economic development . Furthermore, hydroelectric energy plays a key role in enhancing energy security by reducing dependence on imported fossil fuels and volatile global energy markets . Unlike oil, gas, or coal, which must be transported over long distances and are subject to price fluctuations, hydroelectric power relies on locally available water resources, providing a stable and predictable source of energy that is less susceptible to geopolitical tensions or supply disruptions . This aspect of hydroelectric energy contributes to the resilience of energy systems and helps ensure reliable access to electricity, particularly in regions vulnerable to energy poverty or geopolitical instability .

In addition to its contributions to energy security and access, hydroelectric energy also offers significant environmental benefits that support sustainable development objectives . By generating electricity from flowing water, hydroelectric power helps preserve natural habitats, protect biodiversity, and mitigate the impacts of climate change . Unlike other forms of renewable energy, such as solar or wind power, hydroelectric energy does not require large land areas or extensive infrastructure, minimizing its ecological footprint and preserving valuable ecosystems . Moreover, hydroelectric reservoirs serve multiple purposes beyond electricity generation, including flood control, water supply, irrigation, and recreation . These multi-purpose reservoirs provide valuable ecosystem services, such as regulating water flow, improving water quality, and supporting aquatic and terrestrial biodiversity . In regions prone to droughts or water scarcity, hydroelectric reservoirs can serve as strategic water reserves, helping to ensure reliable access to freshwater for drinking, agriculture, and industry .

Moreover, advancements in technology, such as fish-friendly turbine designs, sediment management strategies, and ecosystem-based approaches to reservoir management, offer promising solutions for mitigating the environmental impacts of hydroelectric energy projects while maximizing their benefits for both people and nature . Additionally, there is growing interest in exploring the potential for small-scale and low-impact hydroelectric systems, such as run-of-river installations and miniaturized turbines, that minimize environmental disturbance and preserve riverine ecosystems .

Despite its many benefits, hydroelectric energy also presents challenges and trade-offs that must be carefully managed to maximize its contributions to sustainable development . Large scale hydroelectric projects can have significant environmental and social impacts, including habitat disruption, displacement of communities, and alteration of river ecosystems . The construction of dams and reservoirs can fragment river systems, impede fish migration, and alter sediment transport processes, leading to downstream effects on water quality, sedimentation, and aquatic biodiversity . Furthermore, hydroelectric energy projects can have cultural and social implications for indigenous and local communities whose livelihoods depend on rivers and water resources . The construction of dams and reservoirs can result in the displacement of communities, loss of land and livelihoods, and disruption of traditional lifestyles and cultural practices . These social impacts must be carefully considered and addressed through inclusive and participatory decision-making processes that respect the rights, interests, and perspectives of affected communities .

Hydropower: Environmental Benefits

Hydropower is better for the environment than other major sources of electrical power, which use

fossil fuels . Hydropower plants do not emit the waste heat and gases—common with fossil-fuel driven facilities—which are major contributors to air pollution, global warming and acid rain . The mining and drilling required to acquire fossil fuels for other power sources also have a significant negative environmental impact .

Many hydropower plants are located in the headwaters of river basins where they can help control the wide fluctuations in water flow commonly found in these areas . By increasing water flow during dry months these projects help to enhance aquatic habitats . Conversely, by reducing flow during periods of heavy runoff the plants can prevent damage to vegetation and wildlife along stream banks .

However, hydropower projects and the dams associated with them do change the natural river environment, and there is often a price to pay for these changes . USACE works closely with natural resources agencies to minimize the negative environmental impact of all of its hydropower projects .

For instance, in the southeastern states, dissolved oxygen levels below dams often get so low that aquatic life is severely affected . USACE is working to improve dissolved oxygen levels at these facilities by using aerating turbines and injecting oxygen directly into the stream-flow .

Over time the public has come to realize that we need a balance between improving our immediate daily environment and in preserving the natural environment around us . The US Army corps of Engineers (USACE) response is a concerted effort to mitigate dam and reservoir impacts to make the operation of these projects more compatible with the environment . USACE is constantly striving to strike the appropriate balance between the nation's need for a clean, inexpensive, efficient power source and environmental concerns .

Significance of Hydropower of Nepal

The advantages of hydropower playing a major role in the environment balance can be noted in simple words that it is clean and sustainable; it is a very flexible resource; it stabilizes the power grid by preventing intermittency; it reduces the risk of flooding; it helps reclaim marshy areas; and it enhances tourist areas and water sports .

Unlike fossil fuels, which release harmful pollutants and carbon dioxide when burned, hydroelectric power generates electricity without combustion, helping to reduce air pollution and mitigate the impacts of global warming .

Hydropower produces no air pollutants and has ultra-low greenhouse gas emissions . From a full life cycle assessment basis, hydropower's greenhouse gases (GHGs) are as low as wind power and are even lower in many cases . In Canada, all hydropower projects are subject to a comprehensive environmental assessment .

Infrastructure for hydropower projects can also be used for freshwater management and projects with reservoir storage generally provide a variety of value-added uses . Multipurpose uses for reservoirs, including irrigation, flood control, navigation, and recreation, can help support the public acceptance of new storage projects .

Hydropower provides energy storage and other ancillary services that contribute to the more efficient management of the electricity supply system and balancing of the grid .

Water availability is a local issue, therefore governments must take a leading role in addressing

the vicious cycle of increasing water and energy demand co-operation between the energy and water sectors is important, as is driving the operational efficiencies of the major energy and water consumers, particularly electricity generators .

Advantages of Hydropower:

Hydropower, otherwise known as hydroelectric power, offers a number of advantages to the communities that they serve . Hydropower and pumped storage provide essential power, storage, and flexibility services . Since hydropower is a renewable source of energy; the energy generated through hydropower relies on the water cycle, which is driven by the sun, making it renewable . It is fueled by water and it is a domestic source of energy, allowing the country to produce its own energy without being reliant on international fuel sources . Impoundment hydropower creates reservoirs that offer recreational opportunities such as fishing, swimming, and boating . Most hydropower installations are required to provide some public access to the reservoir to allow the public to take advantage of these opportunities . Hydroelectric power is flexible . Some hydro-power facilities can quickly go from zero power to maximum output . Because hydropower plants can generate power to the grid immediately, they provide essential backup power during major electricity outages or disruptions . Hydropower provides benefits beyond electricity generation by providing flood control, irrigation support, and clean drinking water . Hydropower is affordable . Hydropower provides low-cost electricity and durability over time compared to other sources of energy . Construction costs can even be mitigated by using preexisting structures such as bridges, tunnels, and dams .

Hydropower has been an established industry in Nepal, employing a good number of people . And there are a growing number of jobs available in hydropower, including manufacturing, utilities, professional and business services, construction, trade and transportation, energy systems, water management, environmental science, welding, machinery, and other services . Hence, hydropower creates jobs in rural locations and boosts local economies .

Conclusion

As a renewable energy, hydropower can serve as a tool for climate mitigation, where it is an accepted offset for fossil fuel technologies . It can also provide climate change adaptation services through its ability to store water, contributing to flood control and drought alleviation in some circumstances . Infrastructure for hydropower projects can also be used for freshwater management and projects with reservoir storage generally provide a variety of value-added uses . Multipurpose uses for reservoirs, including irrigation, flood control, navigation, and recreation, can help support the public acceptance of new storage projects .

Furthermore, opening up new markets through cross-border trade and power pools and devising appropriate market conditions, such as renewables incentives, clearer price signals for ancillary services and flexible generation, could all have a positive impact on hydropower development .

Project developers and owners of hydropower projects will increasingly be expected to demonstrate climate resilience at the financial and regulatory approval stages . This may include provision of improved data analysis on climate change impacts, increased flexibility in project design to accommodate uncertainty, increased storage volumes, and revised operational regimes .

Hence hydroelectric energy of Nepal plays a vital role in sustainable development by providing clean, reliable, and renewable electricity that supports economic growth, environmental conservation, and social progress . However, to realize its full potential as a sustainable energy source,

hydroelectric projects must be planned, implemented, and managed in a manner that balances energy needs with environmental and the social considerations . By adopting comprehensive and inclusive approaches to hydroelectric energy development, we can harness the power of flowing water to build a more sustainable and equitable future for all as well as making the energy trilemma agenda successful in achieving its goal .

References

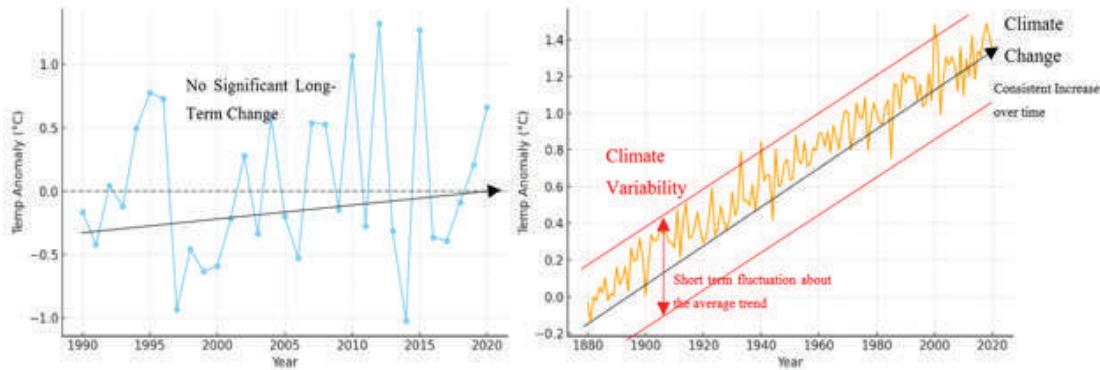
१. ३१आँ वार्षिकोत्सव स्मारिका २०८१ - विद्युत विकास विभाग
२. जागरण अभियान पूर्णांक ८ - उपभोक्ता जागरण अभियान नेपाल, २०८० ।
३. मिमिरि वातावरण विशेषांक पूर्णांक ९५ - नेपाल राष्ट्र बैंक, २०४९ ।
४. वातावरणीय न्याय तथा समन्याय - तिलप्रसाद श्रेष्ठ - राष्ट्रिय न्यायिक प्रतिष्ठान, २०६७ ।
५. विद्युत वर्ष ३३ अंक २ - नेपाल विद्युत प्राधिकरण, २०७९
६. The Constitution of Nepal
७. Gorkhapatra (Daily) Relevant Issues .
८. Kantipur (Daily) Relevant Issues .
९. Utility Regulatory Fundamentals- Ed . Mark A Jamison & Sanford V . Berg; University of Florida, Warrington College of Business, Gainesville, Florida, USA, 2016
१०. Websites of relevant subject-matter .
११. World Energy Trilemma - World Energy Council, 2015

परिवर्तनशील जलवायुको परिप्रेक्ष्यमा विद्युत खरिद बिक्री सम्भौता

विशाल श्रेष्ठ १

१. पृष्ठभूमि

उपभोक्ता तथा लगानीकर्ताको सुरक्षा गर्दै विद्युत सेवालाई निष्पक्ष, प्रतिस्पर्धी र भरपर्दो बनाउनु विद्युत नियमनको मूल ध्येय हो । सोही अनुसूप विद्युत उत्पादन, प्रसारण, वितरण तथा व्यापारलाई व्यवस्थित बनाउन तथा विद्युतको माग र आपूर्तिमा सन्तुलन कायम गर्न विद्युत खरिद विक्रीको नियमन आवश्यक हुन्छ । विद्युत खरिद बिक्री प्रयोजनार्थ विद्युत खरिद सम्भौता गरिन्छ जसले मूल्य स्थायित्वका साथै आयोजनाहरूको बैकेबिलिटी सुनिश्चित गर्दछ । वर्तम(न अवस्थामा नेपाली विद्युत क्षेत्रमा विद्युत खरिद विक्रीको थोक बजार स्थापना भई नसकेको हुँदा नेपालको विद्युत क्षेत्रको नियामक निकाय विद्युत नियमन आयोगले नै विद्युत खरिद विक्री दर निर्धारण तथा विद्युत खरिद सम्भौता गर्न सहमति दिँदै आएको छ ।


हरितगृह ग्याँसको अत्याधिक उत्सर्जन जस्ता मानव गतिविधिका कारण विश्वव्यापी जलवायु परिवर्तनको प्रभाव बढ्दो छ । नगर्न्य हरितगृह ग्याँस उत्सर्जनका बावजुद नेपाल जलवायु परिवर्तनबाट सिर्जित चुनौतीहरूबाट अछुतो छैन । जल(वायु परिवर्तनका कारण मुख्यतः जलचक्र (water cycle) प्रभावित हुने हुँदा जलविद्युत क्षेत्र अन्य क्षेत्रको तुलनामा जलवायु परिवर्तनको प्रतिकूल असरबाट प्रत्यक्ष रूपमा प्रभावित हुन्छ । जलवायु परिवर्तनले निम्त्याएको अतिवृष्टि, अनावृष्टि आदिका कारण बाढी-पहिरोजस्ता जलवायुजन्य प्रकोपले जलविद्युत संरचनाहरूमा अप्रत्याशित क्षति गर्दछ भने अर्को तर्फ अप्राकृतिक वर्षा चक्रका कारण नदीको जलप्रवाहमा उतारचढाव हुँदा अपेक्षित ऊर्जा उत्पादनमा हास आउने जोखिम रहन्छ । यसरी जलवायुजन्य परिस्थितिका कारण विद्युत खरिद सम्भौताको कार्यान्वयनमा प्रत्यक्ष असर पुग्ने हुँदा परिवर्तनशील जलवायुको परिप्रेक्ष्यमा समीक्षा गरिनु आवश्यक देखिन्छ ।

२. जलवायु परिवर्तन

जनमानसमा प्राय मौसम (weather) र जलवायु (climate) लाई एक अर्काको पर्यायिको रूपमा हेरिने गरेको पाइन्छ । यसकारण अल्पकालीन मौसमी उतार-चढाव (short term weather fluctuations) वा जलवायु परिवर्तनशीलता (climate variability) लाई पनि जलवायु परिवर्तन (climate change) को संज्ञा दिने गरिएको पाइन्छ । मौसम भन्नाले कुनै पनि क्षेत्रको अल्पकालीन वायुमण्डलीय अवस्थालाई जनाउँछ, जुन प्राय तापमान (temperature), वर्षा (precipitation), आर्द्रता (humidity), हावाको गति (wind speed) र वायुमण्डलीय चाप (atmospheric pressure) जस्ता घटकहरूको आधारमा निर्धारण गरिन्छ । जलवायुले भने मूलतः कुनै क्षेत्रको दिर्घकालिन औसत मौसमी अवस्था (long term average weather condition) एवं सो को सांख्यिक वितरण (statistical distribution) लाई जनाउँछ । मौसम र जलवायुबीचको भिन्नता बुझनका लागि मौसमलाई व्यक्तिको मनस्थिति (mood) र जलवायुलाई उसको व्यक्तित्व (personality) सँग तुलना गर्नु एउटा उपयोगी साधन हुन्छ । यसरी व्यक्तिको मनस्थिति पल पलमा बदलिन सक्छ - एक घण्टा खुसी, अर्कोमा चिडचिडा-

^१ लेखक विद्युत नियमन आयोगमा इन्जिनीयर पदमा कार्यरत छन ।

मौसम पनि पलभरमा घामबाट आँधीबेहरीमा बदलिन सक्छ । यद्यपि, व्यक्तित्व अनेकौं वर्षको सिकाइ र अनुभवबाट निखारिए भँग जलवायुलाई कुनै क्षेत्रको दीर्घकालीन औसत मौसम अवस्थाले परिभाषित गर्छ । तसर्थ, औसत मौसमी अवस्थामा हुने दीर्घकालीन (long-term), क्रमिक (gradual) र स्थिर (persistent) परिवर्तनलाई नै जलवायु परिवर्तन भनिन्छ । विश्व मौसम सङ्घठन (World Meteorological Organization) अनुसार जलवायु प्रवृत्ति (climate trends) पहिचानका लागि सामान्यतया ३० वर्षको समयावधि (वा सो भन्दा बढी) को मौसम तथ्याङ्कको विश्लेषण गरिनु पर्दछ ।

चित्रमा: (क) जलवायु परिवर्तनशील रहेको तर जलवायुमा परिवर्तन नभएको

(ख) जलवायु परिवर्तनशील एवं परिवर्तन पनि भएको

यस अतिरिक्त, जलवायु परिवर्तनशीलता (climate variability) र जलवायु परिवर्तन (climate change) दुई भिन्न तर अन्तरसम्बन्धित अवधारणाहरू हुन् । जलवायु परिवर्तनशीलताले जलवायु प्रवृत्तिमा हुने अल्पकालीन उतार-चढावलाई बुझाउँछ । तसर्थ, बादल फुट्ने (Cloudburst), उष्णलहर (Heat Wave) जस्ता उग्र मौसमी घटनाहरू आवधिक रूपमा घट्दैमा जलवायु परिवर्तन भएको आङ्गलन गर्नु उपयुक्त हुँदैन । त्यस्ता उग्र घटनाहरूको आवृत्ति (frequency), तीव्रता (intensity) र भौगोलिक दायरा (spatial extent) समयसँगै निरन्तर बढ्दै जाँदा मात्रै स्थायी रूपमा जलवायुमा परिवर्तन भएको मान सकिन्छ ।

३. जलविद्युत उत्पादनमा जलवायु परिवर्तनजन्य चुनौतीहरू

जलवायु परिवर्तनका कारण जलविद्युत उत्पादनमा मुख्यतः दुई प्रकारका चुनौतीको सामना गर्नुपर्ने देखिन्छ । जलवायु परिवर्तनको फलस्वरूप उग्र मौसमी घटनाहरूको आवृत्ति र तीव्रता बढ्दै जाँदा अल्पकालमा बाढी, पहिरो, ग्रेगान बहाव, खडेरी जस्ता प्रकोपको जोखिम रहन्छ । दीर्घकालमा भने तापमान वृद्धिका कारण हिमनदी ह्वास हुँदै जाँदा एवं वर्षा चक्रको सन्तुलन भज्न हुँदा नदीको जलप्रवाहमा अप्रत्याशित उतारचढाव हुने जोखिम रहन्छ । उग्र मौसमी घटनाहरूको हकमा विद्युत खरिद सम्भौतामा गरिने काबू बाहिरको परिस्थिति सम्बन्धी व्यवस्थाले केही हदसम्म जोखिमको सम्बोधन हुने देखिन्छ । काबू बाहिरको परिस्थिति अन्तर्गत पहिरो, बाढी (एक सय वर्षको Design Flood Discharge भन्दा बढी), अनावृष्टि (सरकारी स्तरमा घोषणा भएमा वा आयोजनाको जलाधार क्षेत्रमा हुनुपर्ने औसत वर्षको आधि भन्दा कम वर्ष भएको भनी सम्बन्धित सरकारी निकायबाट प्रमाणित भएमा) जस्ता प्रकोपका कारण सम्भौता बमोजिम पुरा

गर्नु पर्ने काम वा दायित्व पुरा गर्न नसकेमा समयावधि थप गरिने तथा क्षतिपूर्ति एवं हर्जाना नलाग्ने जस्ता व्यवस्था रहेको छ । यद्यपि, जलवायु परिवर्तनका कारण जलविद्युतमा पर्न सक्ने प्रत्यक्ष तथा अप्रत्यक्ष प्रभावहरूको समुचित मुल्याङ्कन नभएमा उग्र मौसमी घटनाहरूको बढ्दो आवृत्ति र तीव्रताका कारण जलविद्युत आयोजना दिगो रहन नसक्ने सम्भावना रहन्छ ।

नदीको जलप्रवाहमा अप्रत्याशित उतारचढाव हुँदा ऊर्जा उत्पादनमा आउने अनिश्चिततालाई सम्बोधन गर्न भने जी(टलता रहेको छ । विद्युत खरिद सम्भौतामा काबु बाहिरको परिस्थितिमा बाहेक अन्य अवस्थामा विद्युत उत्पादनको पूर्वानुमान (Availability Declaration) अनुसार विद्युत शक्ति तथा ऊर्जा तालिकामा उल्लिखित कन्ट्र्याक्ट इनर्जी परिमाणसम्म जलविद्युत आयोजनाबाट उत्पादन हुने ऊर्जा खरिद गरिने व्यवस्था रहेको छ । १० मे.वा. वा सो भन्दा कम क्षमताको हकमा मासिक रूपमा आपूर्ति भएको ऊर्जा (Delivered Energy) विद्युत उत्पादनको पूर्वानुमान(Availability Declaration) को ९० प्रतिशत भन्दा कम भएमा अपुग विद्युतको परिमाणमा विद्युत खरिद सम्भौता बमोजिमको विद्युत खरिद विक्री दरको १० प्रतिशतका दरले विचलन शुल्क (Declaration Deviation Charge) लाग्ने तथा १० मे.वा. भन्दा बढी क्षमताको हकमा मासिक रूपमा आपूर्ति भएको ऊर्जा (Delivered Energy) कन्ट्र्याक्ट इनर्जी वा विद्युत उत्पादनको पूर्वानुमान (Availability Declaration) मध्ये जुन कम छ सो को ८० प्रतिशत भन्दा कम भएमा अपुग विद्युतको परिमाणमा विद्युत खरिद सम्भौता बमोजिमको विद्युत खरिद विक्री दरले क्षतिपूर्ति लाग्ने व्यवस्था रहेको छ । साथै, १० मे.वा. भन्दा बढी क्षमताको हकमा विद्युत उत्पादनको पूर्वानुमान (Availability Declaration) वर्षायाममा र सुख्खायाममा कन्ट्र्याक्ट इनर्जीको ऋमशः ६० प्रतिशत र ९० प्रतिशतभन्दा कम हुन नहुने व्यवस्था रहेको छ । विद्युत खरिद सम्भौता गर्दा नै विद्युत शक्ति तथा ऊर्जा तालिका तय गरिने हुँदा भौगोलिक, प्राविधिक तथा सामाजिक-वातावरणीय परिप्रेक्ष्यबाट जलवायु परिवर्तनका कारण आउन सक्ने जोखिमको यथेष्ट मुल्याङ्कन नगरिएमा ऊर्जा तालिका अनुरूप आपूर्ति हुनुपर्ने ऊर्जा आवश्यकता पुरा गर्न कठिनाई आउनेमा कुनै दुर्ईमत हुँदैन । व्यापारिक उत्पादन भएको प्रत्येक पाँच वर्ष पूरा भए पछि प्रवर्द्धक कम्पनीको अनुरोधमा जलवायुमा भएको परिवर्तन अनुसार जडित क्षमता भन्दा बढी नहुने गरी प्रत्येक महिनाको कन्ट्र्याक्ट इनर्जी थपघट गर्न सकिने व्यवस्था रहेतापनि सुख्खायामको कुल इनर्जी र वर्षायामको कुल इनर्जी भन्दा बढी हुने गरी कन्ट्र्याक्ट इनर्जी परिवर्तन गर्न नपाइने हुँदा विद्युत खरिद सम्भौतामा हस्ताक्षर गर्नु अघि नै जलवायु परिवर्तनको प्रभाव मूल्यांकन गर्नु सबैभन्दा युक्तिसङ्गत हुने देखिन्छ ।

४. भावी कार्यदिशा

विद्यमान जलविद्युत विकासको नीतिगत खाकामा जलवायु परिवर्तनको विषय पर्याप्त रूपमा नसमेटिंदा विगतमा सञ्चा(लनमा आइसकेका एवं हाल निर्माणाधीन जलविद्युत आयोजनाहरू जलवायु अनुकूल (adaptive) एवं प्रत्युत्तरमुखी (responsive) नहुने सम्भावना अत्याधिक रहेको छ । यस्तो अवस्थामा विद्युत खरिद सम्भौताको चरणमा पुगेर मात्रै जलवायु परिवर्तनका जोखिमलाई संशोधन गर्ने प्रयत्न गर्नाले अल्पकालमा जलविद्युत आयोजनाका लागि केही राहत भएतापनि समग्र जलविद्युत क्षेत्रको दिगोपनको दृष्टिकोणबाट भने उपयुक्त नहुन सक्छ । आयोजनाहरूको प्रारम्भिक छोट एवं योजना निर्माणको चरणबाटै जलवायुजन्य जोखिमको पहिचान र न्यूनीकरण एवं अनुकूलनका रणनीति निर्माण गर्नाले मात्रै दीर्घकालीन विश्वसनीयता (credibility), वित्तीय व्यवहार्यता (financial viability) र सबै सरोकारवालाहरूका लागि थप लाभ सुनिश्चित गर्न सकिन्छ ।

यस सन्दर्भमा, जलवायुजन्य जोखिम मूल्याङ्कन गर्दा सर्वप्रथम मूल्याङ्कन अवधि निर्धारण गरिनु पर्दछ । सामान्यतया, आयोजनाको डिजाइन अवधि बराबरको समय सीमासमको अवधिमा जलवायुजन्य जोखिम मूल्याङ्कन गर्नु उचित देखिन्छ । तत्पश्चात, जलविद्युत आयोजनाको विशेषता (आयोजनाको प्रकार, आकार, जलाधार क्षेत्रको विशेषता आदि) को आधारमा मूल्याङ्कन अवधि भरीमा जलविद्युत आयोजनालाई असर गर्न सक्ने जलवायुजन्य जोखिमहरूको पहिचान गरिनु पर्दछ । उदाहरणका लागि बाढी जस्तो उग्र विपर्तिबाट द्यामलगायत संरचनामा क्षति पुग्न सक्छ; अधिकतम वार्षिक वर्षाको मात्रामा वृद्धि हुने तर औसत वार्षिक वर्षाको मात्रामा भने कमी आउँदा नदीबहावको कालगत उपलब्धता (temporal availability) प्रभावित भई यथेष्ट ऊर्जा उत्पादन नहुन सक्छ आदि । यसरी पहिचान गरिएका जोखिमलाई घटना सक्ने सम्भावना (likelihood of occurrence), त्यसको तीव्रता (intensity) तथा क्षति पुर्याउन सक्ने सम्भाव्यता (potential for damage) को आधारमा वर्गीकरण गर्न सकिन्छ, जसबाट आयोजनाको विभिन्न जलवायुजन्य सङ्कटासन्नता प्रतिको संवेदनशीलता (vulnerability) को पहिचान गरी सोही अनुसार न्यूनीकरण तथा अनुकूलनका रणनीतिमा प्राथमिकीकरण गर्न सकिन्छ । जलवायु परिवर्तन हुँदैमा सबै आयोजनाहरू समान रूपले प्रभावित हुन्छ भन्ने आवश्यक छैन । कतिपय अवस्थामा मूल्याङ्कन अवधिमा आउन सक्ने जलवायुजन्य जोखिमहरू कम वा व्यवस्थापन योग्य हुन सक्छन, जसकारण निरन्तर निगरानी र आवधिक जोखिम विश्लेषणका अतिरिक्त अन्य प्रयासहरू आवश्यक नहुन सक्छ । तत्पश्चात, सम्भावित जोखिमसहितको विभिन्न भावी परिस्थितिमा जलविद्युत आयोजनाको ऊर्जा उत्पादन क्षमताको आङ्कलन गर्दा मात्रै ऊर्जा तालिका साध्य हुन सक्छ ।

५. निष्कर्ष

जलवायु परिवर्तनको प्रतिकूल प्रभाव विश्वव्यापी रूपमा महसुस भएको र नेपाल यस परिवेशमा अझै संवेदनशील रहेको अवस्थामा बढ्दो तापमान, अनियमित वर्षा र तीव्र हिमनदी पल्नने जस्ता जलवायुजन्य परिस्थितिले जलविद्युत उत्पादनमा चुनौती थिएँदै जानेमा कुनै शङ्खा छैन । अल्पकालीन रूपमा विद्युत खरिद सम्झौताका ऊर्जा तालिकासम्बन्धी व्यवस्थालाई लचकदार बनाएर केही राहत मिलेपनि दीर्घकालीन समाधानका लागि भने प्रत्येक जलविद्युत आयोजना विकासको क्रममा जलवायु सहिष्णुता (climate resilience) को मूल्याङ्कन आवश्यक हुन्छ । जलविद्युत विक(इसको नीतिगत खाकामा नै जलवायु परिवर्तनको विषय पर्याप्त रूपमा समेटिए मात्रै जलविद्युत आयोजनाहरू जलवायु अनुकूल (adaptive) एवं प्रत्युत्तरमुखी (responsive) भई परिवर्तनशील जलवायुको परिप्रेक्ष्यमा पनि भरपर्दै ऊर्जा उत्पादन सुनिश्चित हुन सक्छ ।

विद्युत नियमन र उपभोक्ताको हित संरक्षण

भागीरथी भद्राई ज्ञवाली १

१. पृष्ठभूमि

उपभोक्तालाई गुणस्तरीय, भरपर्दो एवं सुपथ विद्युत आपूर्तिको सुनिश्चितता गर्दै समस्त विद्युत क्षेत्रलाई उपभोक्ताको हित केन्द्रित बनाउनु विद्युत नियमनको मूल ध्येय हो । विद्युत नियमनका क्रममा विद्युतका उपभोक्ता एवं विद्युत क्षेत्रका लगानीकर्ताहरु, दुवै पक्षको हित, जुन आफैमा पारस्परिक रूपमा विरोधाभासी विषय हुन्, यिनको बीचमा सन्तुलन राख्ने कार्य नियामक निकायको हुन्छ । विद्युत ऊर्जाको रूपमा प्रयोग हुन लागेको भन्डै एक शताब्दी भन्दा बढीको अर्वा(धको अनुभवले सिकाए अनुसार विद्युत व्यवसायमा ठुलो मात्रामा लगानी आवश्यक हुने भएकाले राज्यले मात्र विद्युत विकासको कार्य गर्न सम्भव नहुने देखियो तर फेरी, ठुलो प्रारम्भिक पूँजीगत लगानी आवश्यक हुने भएकाले विद्युत व्यवसायमा जो सुकैले लगानी गर्न सक्ने भन्ने पनि भएन । तसर्थ, संसार भरि नै सामान्यतया, विद्युत आपूर्ति शृङ्खलाका सबै गतिविधि जस्तै, विद्युत उत्पादन, प्रसारण र वितरण, एकै निकायले गर्दा प्राविधिक एवं वित्तीय रूपले प्रभावकारी हुने मानियो र विद्युत व्यवसायमा प्राकृतिक एकाधिकार (Natural Monopoly) हुन पुयो । प्राकृतिक एकाधिकारको रूपमा रहेका यस्ता व्यवसायलाई कुनै प्रतिस्पर्धा नहुने भएकाले तिनको नियमनका लागि संसारभरी नियमनक(री निकायको परिकल्पना गर्न थालियो, जसले सुरु-सुरुमा त्यस्ता विद्युत व्यवसायहरुको महसुल निर्धारण प्रक्रियाको क्रममा उपभोक्ताको हित सुनिश्चित गर्ने कार्य गर्दथे भने पछिल्ला दशकहरुमा विद्युत क्षेत्रको पुनर्संरचनाका गतिविधि धरहरुमा एक मियोको रूपमा कार्य गर्ने भूमिका समेत बहन गर्न थाले । तसर्थ, संसारभरी नै सुरुमा विद्युत महसुलको नियमन गर्ने मूल भूमिकामा रहेका विद्युत क्षेत्रका नियामकहरुलाई प्रायः देशहरुमा पछिल्ला दशकहरुमा विद्युत क्षेत्रको दिगोपनालाई सुनिश्चित गर्दै विद्युत क्षेत्रलाई प्रतिस्पर्धात्मक बनाउन आवश्यक नियामकीय हस्तक्षेप (Regulatory Intervention) गर्ने जिम्मेवारी प्राप्त छ ।

नेपालको विद्युत क्षेत्रमा थोक बजारको स्थापना भई नसकेको र उत्पादन क्षेत्रका अलावा प्रसारण र वितरण क्षेत्रमा निजी लगानीकर्ताको उल्लेखनीय उपस्थिति नरहेको हुँदा विद्युत बजारमा प्रतिस्पर्धाको वातावरण सिर्जना हुन सकेको छैन । यस परिवेशमा उपयुक्त मूल्यमा गुणस्तरीय एवं भरपर्दो विद्युत सेवाको सुनिश्चितता गर्न समयानुकूल एवं न्य(योचित मापदण्डहरु स्थापना गर्दै उपभोक्ताको हित सुरक्षित गर्न विद्युत नियमन आयोगको भूमिका अत्यन्त महत्वपूर्ण रहेको छ ।

२. नेपालमा विद्युत नियमनको अवधारणा

वि.सं. १९६८ मा चन्द्र शमशेरद्वारा ५०० किलोवाट क्षमताको फर्पिङ लघु जलविद्युत परियोजना स्थापना भएपश्चात

^१ लेखिका विद्युत नियमन आयोगको सदस्य हुनुहुन्छ ।

प्रारम्भ भएको नेपालको विद्युत क्षेत्रको शताब्दी लामो यात्राले हाल करिब ३,५०० मेगावाट जडित क्षमताको कोशेदुङ्गा पार गरिसकेको छ । नेपालको विद्युत विकासको सुरुवाती वर्षहरूमा राज्यको स्वामित्व भएको “विजुली अड्डा^२” द्वारा नै विद्युत उत्पादन केन्द्र तथा सो को प्रसारण एवं वितरण संरचनाहरूको रेखदेख तथा सञ्चालन भएको र विद्युत सेवा सम्बन्धी सम्पूर्ण कार्य राज्यबाटै हुने गरेकोमा वि.सं. २०२० सालमा पहिलो पटक नियामकीय जिम्मेवारी सहितको “विद्युत विकास समिति” नामक निकायको परिकल्पना भएको देखिन्छ । उक्त समितिको उद्देश्य उपभोक्ता र उत्पादक दनकर्ताहरू समेतको प्रतिनिधित्व हुने गरी विद्युत शक्तिको उत्पादन, वितरण र उपयोगको लागि विद्युत व्यवस्थाहरूलाई काम गर्ने अधिकार प्रदान गर्न, विद्युत शक्तिको विक्री दर तोकन तथा हर्जानाको व्यवस्थालाई नियमित गर्ने रहेको थिए^३ । यद्यपि, वि.सं. २०२४ मा “नहर तथा विद्युत र तत् सम्बन्धी जलस्रोत ऐन” तथा वि.सं. २०२५ मा “विद्युत नियम(वली” जारी भएपश्चात उक्त समितिको कुनै जिकिर देखिँदैन ।

वि.सं. २०४१ सालमा विद्युत विभाग, नेपाल विद्युत कर्पोरेसन लगायतका निकायहरूलाई समाहित गरी नेपाल विद्युत प्राधिकरणको स्थापना भएको र हुँदै नियामक निकायको व्यवस्था नहुँदा प्राधिकरण आफैले आफ्नो कार्यक्षेत्र भित्र नियमनको भूमिका निभाउने गरेको देखिन्छ । तत्पश्चात, विद्युत नियमवाली, २०५० को व्यवस्था अनुसार विद्युत उपभोक्तालाई लागू हुने विद्युतको महसुल निर्धारण तथा पुनरावलोकनको अधिकार प्राप्त विद्युत महसुल निर्धारण आयोग स्थापना भई केही हद सम्म विद्युत मूल्यको नियमन भएको पाइन्छ । वि.सं. २०५८ सालमा जारी भएको जलाई विद्युत विकास नीतिमा विद्युत खरिद निर्धारण गर्ने, उपभोक्ता विद्युत महसुल र ब्हीतिंग महसुल निर्धारण गर्ने काम-कर्तव्य रहने गरी नियमन संस्था स्थापना गरिने भनी उल्लेख भएको पाइन्छ । त्यस्तै, वि.सं. २०७२ सालको राष्ट्रिय ऊर्जा सङ्कट निवारण तथा विद्युत विकास दशकसम्बन्धी अवधारणा पत्रमा पनि समग्र विद्युत क्षेत्रको नियमनका लागि विद्युत नियमन आयोग स्थापना गर्ने भनि उल्लेख गरिएको देखिन्छ ।

अन्ततः विद्युत नियमन आयोग ऐन, २०७४ तथा विद्युत नियमन आयोग नियमावली, २०७५ जारी भए पश्चात् वि.सं. २०७६ साल वैशाख २५ मा विद्युत क्षेत्रको नियामक निकायका रूपमा विद्युत नियमन आयोगको गठन भएको हो । यस आयोगलाई विद्युत उत्पादन, प्रसारण, वितरण र व्यापारलाई सरल र नियमित तथा पारदर्शी बनाई विद्युतको माग र आपूर्तिमा सन्तुलन कायम राख्ने, विद्युत महसुलको नियमन गर्ने, विद्युत उपभोक्ताको हक्कहित संरक्षण गर्ने, विद्युतको बजारलाई प्रतिस्पर्धात्मक बनाउने तथा विद्युत सेवालाई सर्वसुलभ, गुणस्तरयुक्त तथा सुरक्षित बनाउने कर्तव्य निर्दिष्ट गरिएको छ ।

३. उपभोक्ताको हित

लामो समयसम्म विद्युत नियमनको सम्बन्धमा स्पष्ट नीतिको अभावका बावजुद विभिन्न समयमा तर्जुमा तथा जारी भएका ऐन, नियम तथा सम्बन्धित व्यवस्थाहरू हेर्दा उपभोक्ता हित संरक्षणको विषय कुनै न कुनै रूपमा सदैव समाहित भएको पाइन्छ । विद्युत विकास समितिको परिकल्पना गरेको वि.सं. २०२० को ऐनलाई नै हेर्ने हो भने नेपालको कुल जडित क्षमताले मेगावाटमा दोहोरो अङ्कको सीमा ननाध्दा कै अवस्थामा पनि उपभोक्ताको हितको सिद्धान्तलाई आत्मसात् गरिएको पाइन्छ । प्रतिस्पर्धा तथा विद्युत आपूर्तिसम्बन्धी विकल्पको अभावमा उपभोक्तालाई अत्याधिक दर र विश्वसनीयता रहत सेवाको जोखिममा पार्ने हुँदा उपभोक्ताको हित संरक्षणका निमित्त विद्युत नियमनको विषय

^२ <https://www.urjakhabar.com/en/news/1810874939>

^३ <http://rajpatra.dop.gov.np/welcome/book/?ref=3390>

अपरिहार्य रहन्छ ।

उपभोक्ता संरक्षण सुनिश्चित गर्न प्रयोग गरिने प्रमुख उपायहरूमध्ये एक लागत-प्रतिविम्बित मूल्य निर्धारण प्रणाली (cost-reflective pricing regime) एक महत्वपूर्ण विधि हो । यस अन्तर्गत, उपभोक्ता महसुल निर्धारण गर्दा सेवा प्रदायकहरूको सञ्चालन खर्च, हासकट्टी दर, व्याज भुक्तानी, मर्मत सम्भार, आदि खर्चको सूक्ष्म रूपले विश्लेषण गरी महसुल निर्धारणको सिद्धान्त विपरीतका तथा बढाई-चढाई (inflated) गरी पेश गरिएका लागत अनुमानहरूलाई अस्वीकृत गरिन्छ । अतः विद्युत सेवा सञ्चालन गर्न सेवा प्रदायकलाई आवश्यक हुने रकमको निकटम अनुमान निधि(रिण गरी सो रकममा उपयुक्त प्रतिफल समेत सुनिश्चित गरी उपभोक्ता महसुल निर्धारण गर्दा एकतर्फ उपभोक्तालाई अत्याधिक शुल्कबाट जोगाउँछ भने अर्कोतर्फ सेवा प्रदायक तथा लगानीकर्तालाई पनि आवश्यक आम्दानी सुनिश्चित गर्छ ।

त्यसैगरी, उपभोक्ता संरक्षणका हेतुले विभिन्न न्यूनतम सेवा मापदण्डहरू तोक्ने गरिन्छ जसमा, विद्युत गुणस्तर (quality) , विद्युत कटौतीको आवृत्ति (outage frequency) र समस्या समाधानको समय सीमा (response time) आदि पर्दछन् । नियामक निकायले तोके अनुसारका यी मापदण्डहरू पूरा गर्न असमर्थ हुँदा जरिवाना तथा मापदण्ड अनुसार उत्कृष्ट सेवा प्रदान गरेको हकमा प्रोत्साहन जस्ता उपायहरू अपनाई सेवा गुणस्तरलाई प्राथमिकता दिन सेवा प्रदायकलाई प्रेरित गर्न सकिन्छ । यसबाट सेवा गुणस्तरलाई वैकल्पिक लक्ष्य नभई बाध्यकारी जिम्मेवारी बनाउन सकिन्छ ।

यस अतिरिक्त, उपभोक्ता संरक्षणका लागि सेवा प्रदायकका कारण मर्कमा परेका उपभोक्ताले आफ्नो गुनासो राख्ने, उजुरी दिने एव क्षतिपूर्ति दाबी गर्ने प्रणाली पनि आवश्यक हुन्छ । कल सेन्टर वा अनलाइन पोर्टलमार्फत सस्तो र सुगम तरिकाले उपभोक्ताको गुनासो तथा उजुरी राख्न मिल्ने व्यवस्थाले सेवाप्रदायकहरूको जवाफदेहिता सुनिश्चित गर्छ । यसबाट प्रणालीगत समस्याहरू उजागर भई व्यापक सुधारका लागि मार्ग प्रशस्त हुन्छ ।

४. उपभोक्ताको हित संरक्षणको सन्दर्भमा विद्युत नियमन आयोगले चलेका कदम

४.१ विद्युत उपभोक्ता महसुल निर्धारण निर्देशिका, २०७६

विद्युत महसुल निर्धारण गर्ने प्रयोजनका लागि तर्जुमा गरिएको यस निर्देशिकाले विद्युत उपभोक्ताको महसुल निर्धारणका सिद्धान्त तथा आधार तय गरेको छ । यस निर्देशिका अनुसार विद्युत महसुल निर्धारण गर्दा उपभोक्ताको हक, हितको संरक्षण, विद्युतको आपूर्ति तथा सेवामा गुणस्तर, नियमितता, पर्याप्तता एवं सुरक्षाको सुनिश्चितता, वितरण अनुमति प्राप्त व्यक्तिको व्यावसायिकता तथा प्रभावकारितामा अभिवृद्धि, प्रणाली सुधारका लागि स्रोत परिचालनको आवश्यक(ता, लगानीमा न्ययोचित प्रतिफल जस्ता सिद्धान्तको अधीनमा रही महसुल निर्धारण गरिनु पर्छ । वितरण अनुमति प्राप्त व्यक्तिको पछिल्लो दुई आर्थिक वर्षको लेखापरीक्षण प्रतिवेदन एवं चालु आर्थिक वर्ष तथा आगामी आर्थिक वर्षको प्रक्षेपित वित्तीय विवरणको आधारमा आयोगले विभिन्न आम्दानी तथा खर्च शीर्षक समेत सम्मिलित वार्षिक रकमको आवश्यकता (Annual Revenue Requirement) को विस्तृत परीक्षण गरी समस्त विद्युत उपभोक्ताको हित तथा वितरण अनुमति प्राप्त व्यक्तिको संस्थागत तथा वित्तीय स्वास्थ्यलाई समेत मध्यनजर गर्दै विद्युत महसुल निर्धारण गर्नु यस निर्देशिकाको आधारभूत सार रहेको छ ।

४.२ विद्युत उपभोक्ता हित संरक्षण सम्बन्धी निर्देशिका, २०८०

उपभोक्ताको हक हित संरक्षणको लागि आवश्यक उपाय पहिचान गरी कार्यान्वयन गर्न वा गराउन आयोगलाई निर्दिष्ट गरिएको जिम्मेवारी अनुरूप विद्युत सेवाको सञ्चालन स्तर तथा विद्युत प्रणालीको गुणस्तर तथा सुरक्षास्तर कायम गर्न वितरण अनुमति प्राप्त व्यक्तिको दायित्व निर्धारण गरी कार्यान्वयनको अनुगमन गर्न आयोगद्वारा यो निर्देशिका तर्जुमा गरी लागु गरिएको छ । यस निर्देशिकाले उपभोक्ताले प्राप्त गर्ने विद्युत आपूर्ति एवं सेवामा न्यूनतम मापदण्ड तोकी आयोगले समय समयमा निर्धारण गर्ने र अनुमति प्राप्त व्यक्तिले पालना गर्नुपर्ने आधारहरु समेत निर्धारण गरेको छ । वितरण अनुमति प्राप्त व्यक्तिले उपभोक्तालाई आपूर्ति गर्ने विद्युतीय ऊर्जाको गुणस्तर तथा विश्वसनीयताको स्तर निर्धारण गर्नु एवं सेवाग्राही अथवा उपभोक्ताहरूले प्राप्त गर्ने सेवा निश्चित अवधि भित्र सुरक्षित हिसाबले प्राप्त गर्ने कुरामा सुनिश्चितता गर्नु यस निर्देशिकाको उद्देश्य रहेको छ । यसका अतिरिक्त, यस निर्देशिकाले उपभोक्ताको गुनासो उपर कारवाही प्रक्रियाका सम्बन्धमा मार्गदर्शन दिँदै, सेवा प्रदायकले आफ्नो विद्युत आपूर्ति सम्बन्धी कार्यसम्पादनका सम्बन्धमा आयोग समक्ष प्रतिवेदन समेत पेश गर्नुपर्ने व्यवस्था समेत गरेको छ ।

४.३ Key Performance Indicator -KPI Manual for Monitoring Performance of Electric Utilities, २०२३

विद्युतीय सेवा प्रदायक संस्थालाई जिम्मेवार बनाउन जारी गरिएको यस मापदण्डले सुरक्षित, भरपर्दो र विश्वसनीय सेवा प्रवाहको सुनिश्चितता गर्छ । यस मापदण्डमा निर्धारित प्रावधानहरूले विभिन्न सूचकाङ्कहरूको माध्यमबाट सेवा प्रदायकहरूको प्राविधिक, वित्तीय र ग्राहक सेवाको मूल्याङ्कन गर्ने सुधार्य पक्षहरूको पहिचान गर्न मद्दत गर्दछ, जसकारण सेवा प्रदायकको सञ्चालन दक्षता तथा वित्तीय प्रदर्शनलाई अभ्य सुदृढ बनाउन सकिन्छ । उपभोक्ता सेवा सुदृढ गर्ने, विद्युतमा पहुँच बढाउने, विद्युत ग्रिडको विश्वसनीयता सुधार्ने लगायतका सन्दर्भमा लक्ष्य तोकदा एक तर्फ नियामकीय भूमिका प्रभावकारी बनाउन सकिन्छ भने अर्कोतर्फ विद्युत क्षेत्रका सम्पूर्ण सरोकारवाला निकायहरूलाई साभा लक्ष्य तर्फ अभिमुख गराउन सकिन्छ ।

४. भावी कार्यदिशा

उपभोक्ताको हित संरक्षण गर्दै सेवा प्रदायकलाई पनि उचित प्रतिफल सुनिश्चित गर्न विद्युत नियमन आयोग प्रतिबद्ध रहेको छ । आगामी दिनहरूमा, विद्युत शुल्क निर्धारण प्रक्रियालाई अभ्य वैज्ञानिक बनाउन आयोग क्रियाशील रहेको छ । उपभोक्ताका गुनासा सुनुवाईका लागि प्रभावकारी तथा स्थायी संयन्त्रहरू स्थापना गर्ने र समयमै समस्या समाध(इन गर्ने उपायहरू अन्वेषण तथा कार्यान्वयन गरी तथा सेवा प्रदायकहरूले सेवा गुणस्तर र आपूर्तिको विश्वसनीयता कायम राख्न प्रदर्शन सूचकाङ्क (performance indicators) को प्रभावकारी कार्यान्वयनलाई थप कडाइका साथ अनुगमन र कार्यान्वयन गरी उपभोक्ता र सेवा प्रदायकबीच विश्वास बढाउने, विद्युत क्षेत्रभित्र निष्पक्षता प्रवर्द्धन गर्ने र उपभोक्ताका मौलिक अधिकारहरूको संरक्षण गर्ने विद्युत नियमन आयोग सदैव तत्पर रहनेछ ।

नेपालमा ऊर्जा सुरक्षा

डा. मधुसुदन अधिकारी^१

ब्रम्हाण्डमा हुने सम्पूर्ण प्रक्रिया तथा जीवन सञ्चालनको लागि अपरिहार्य तत्वको रूपमा रहेको ऊर्जा दैनिक जीवनको लागि आधारभूत आवश्यकता हो । ऊर्जालाई सूक्ष्म रूपमा हेर्दा हामीलाई सामान्य रूपमा सास फेर्न, हिंडडुल गर्न र कुनै पनि काम गर्न ऊर्जाको आवश्यकता पर्दछ । बृहत रूपमा ऊर्जा समग्र विश्वकै आर्थिक गतिविधि सञ्चालनमा सघाउ पुऱ्याउने मुख्य साधन हो । ऊर्जाले आर्थिक वृद्धि र गरिबी न्यूनीकरणमा समेत महत्वपूर्ण भूमिका निर्वाह गर्दछ ।

उपलब्ध ऊर्जा का श्रोतहरूलाई दिगो, वातावरण मैत्री बनाउनु पर्ने आवश्यकता एकातिर छ भने अर्कोतिर ऊर्जा सुरक्षाका लागि आम नागरिकको क्रयशक्तिभित्र अनवरत रूपले आवश्यक मात्रामा ऊर्जाको उपलब्धता हुने अवस्था कायम राख्ने र वर्तमान तथा भविष्यको ऊर्जा मागलाई धान्न सक्ने क्षमताको विकास गर्नु पर्ने हुन्छ । त्यसैले समग्र ऊर्जाक्षेत्रको विकास सम्बन्धी नीति निर्माण तथा कार्यान्वयन गर्दा ऊर्जा सुरक्षालाई केन्द्रमा राखिनु पर्छ ।

हाल नेपालमा कुल ऊर्जा उपयोग ६४० पेटाजुल रहेको छ । जस अनुसार प्रतिव्यक्ति ऊर्जा खपत करिब २२०० मेघाजुल (६०००kWh) मध्ये विद्युत खपतजम्मा ४०० किलोवाट घण्टा पुगेको भन्ने तथ्याँकले देखाउँछ । यसरी हाल प्रयोग भईरहेको जम्मा ऊर्जा मध्ये ९० प्रतिशत भन्दा बढी ऊर्जा परम्परागत वायो ऊर्जा (दाउरा, कृषिजन्य अवशेष र गाइवस्तुको गोबर) र आयातित खनिज ऊर्जा (डिजल, पेट्रोल, एल.पि.जि ग्याँस, कोईलाआदि) बाट उपलब्ध भएको देखिन्छ । त्यसैले नेपालमा प्रयोग भईरहेको अधिकाँश ऊर्जा वातावरण मैत्री नहुनुका साथै ऊर्जा दक्षसमेत नहुने देखिन्छ । विज्ञान र प्रविधिको तीव्र विकासले आधुनिक ऊर्जाको विशेष गरी विद्युतीय ऊर्जाको सुरक्षित र अनवरत उपलब्धता मानव जीवनको लागि अत्यावश्यक साधन बनेको छ । नेपालको परिवेशमा पनि हामीले जे जस्ता प्रकारका ऊर्जाका स्रोत साधनहरू प्रयोग गरिरहेका छौं । यथास्थितिमा जीवन चलाउनको लागि हाल उपलब्ध त्यस्ता श्रोतलाई नै कसरी सुरक्षित गर्ने र यो भन्दा विकसित रूपमा जीवनलाई लैजानको लागि हामीलाई आवश्यक ऊर्जालाई कसरी पूर्णरूपमा नवीकरणीय बनाई आवश्यक मात्रामा अनवरत उपलब्ध गराउने भन्ने विषयलाई महत्वपूर्ण विषयको रूपमा लिनुपर्दछ ।

१. ऊर्जा सुरक्षा आयाम

नेपालको सन्दर्भमा ऊर्जा सुरक्षा भन्नाले आम नागरिकको क्रयशक्तिभित्र अनवरत रूपले आवश्यक मात्रामा ऊर्जाको उपलब्धतालाई बुझ्नु पर्दछ । ऊर्जा सुरक्षा कुनै पनि मुलुकका लागि अपरिहार्य सर्त हो । ऊर्जा सुरक्षाको अवस्थाले कुनै पनि देशको वर्तमान तथा भविष्यको ऊर्जा मागलाई धान्न सक्ने क्षमतालाई मापन गर्दछ । निर्बाध रूपमा महत्वपूर्ण ऊर्जा सेवाहरूको उपलब्धता प्रत्येक देशको लागि प्राथमिकताको विषय हुनु पर्छ । ऊर्जा सुरक्षा विशेष गरी राष्ट्रिय

^१ लेखक विद्युत नियमन आयोगको सदस्य हुनुहुन्छ । -सम्पादक

सुरक्षा तथा ऊर्जा उपभोगको लागि प्राकृतिक स्रोतको उपलब्धतासँग सम्बन्धित रहेको हुन्छ । ऊर्जाको दृष्टिले सुरक्षित राष्ट्र वा समुदायले मात्र ऊर्जा आपूर्तिमा आउने आकस्मिक अवरोधको तत्काल सामना गर्न सक्दछ र आपूर्तिमा हुने अवरोधबाट उपभोक्ता तथा आर्थिक क्रियाकलापहरूमा हुने क्षतिलाई न्यूनीकरण गर्न सक्षम हुन्छ । ऊर्जा सुरक्षालाई मुख्यतया तीनवटा आयामबाट हेर्न सकिन्छ - ऊर्जा प्रणालीको सार्वभौमिकता (Sovereignty), दिगो वा वाँ(लयोपना (Robustness) र उत्थानशीलता वा लचकता (Resiliency) । ऊर्जा प्रणालीको सार्वभौमिकता भन्नाले ऊर्जा आपूर्तिको संरचना र स्रोतहरू र ऊर्जा बजार र प्रणाली सञ्चालन नियमहरू सहित यसको समग्र ऊर्जा नीतिको बारेमा स्वतन्त्र रूपमा निर्णय गर्ने क्षमतालाई बुझ्नु पर्दछ । ऊर्जा प्रणालीमा कसैको हस्तक्षेप बिना आफ्नो कानुन बनाएर र स्वतन्त्र रूपले आफ्नो स्रोत साधनको उपभोग र परिचालन गर्न पाउनु ऊर्जा प्रणालीको सार्वभौमिकता हो । यो सचेत व्यक्ति, समुदाय र जनताको ऊर्जा उत्पादन, वितरण र उपभोग सम्बन्धी आफ्नो पारिस्थितिक, सामाजिक, आर्थिक र सांस्कृतिक परिस्थितिमा उपयुक्त तरिकाले निर्णय गर्न पाउने अधिकार हो ।

कुनै पनि परिस्थितिमा राजनीतिक कारणले होस् वा अन्य कुनै कारणले होस् अरु कसैको नियन्त्रण वा अधीनमा रहेको ऊर्जा प्रणालीमा हामीले भर गर्नु पर्ने परिस्थिति बन्यो भने हाम्रो ऊर्जा प्रणाली सुरक्षित र दिगो हुन सक्दैन । त्यसैले ऊर्जा प्रणालीको विकास गर्दा त्यस्तो प्रणालीमाथि स्वतन्त्र रूपमा निर्णय गर्न वा नियन्त्रण गर्न सक्ने सामर्थ्य ऊर्जा प्रयोगकर्ता देशमा रहेमा मात्र ऊर्जा प्रणाली सुरक्षित हुने भएकोले हाम्रो जस्तो भुपरिवेष्टित र खुला सिमाना भएका मुलुकले कुनै पनि ऊर्जा प्रणाली विकास गर्दा ऊर्जा प्रणालीको सार्वभौमिकता आकैमा रहने परिस्थिति निर्माण गर्नु पर्ने विषयलाई प्रमुख रूपमा ध्यान दिनु पर्ने हुन्छ । त्यसैगरी ऊर्जा सुरक्षाका लागि ऊर्जा प्रणालीको दिगोपन वा बलियोपन (Robustness) आवश्यक पर्दछ । अर्थात् निरन्तर रूपमा ऊर्जा आपूर्ति गर्नको लागि हामीले प्रयोग गरिरहेको ऊर्जा प्रणाली बलियो हुनुपर्यो । ऊर्जा उत्पादन र भण्डारण प्रविधि र क्षमताको विविधिकरण, ऊर्जा को उचित मिश्रण, आयातित ऊर्जाको देश, बजार र बाटोको विविधिकरण, जलविद्युतमा पनि मिश्रित आयोजना (ROR, PROR र Storage आयोजनाहरू) ऊर्जा प्रशारण र वितरण, दुवानी पूर्वाधारको पर्याप्त ब्यवस्था आदिको उचित ब्यवस्थापन गरी ऊर्जा प्रणालीलाई दिगोपना दिन सकिन्छ ।

तेस्रो महत्वपूर्ण आयाम ऊर्जा प्रणालीको उत्थानशीलता वा लचकता (resiliency) जुन हामीले प्रयोग गरिरहेको ऊर्जा प्रणालीमा आउन सक्ने विभिन्न किसिमका अवरोधहरू जस्तै आकस्मिक दैवी प्रकोपहरू, मानव सिर्जित समस्याहरू, जलवायु परिवर्तन सम्बन्धी समस्याहरू अथवा अन्य अवरोधहरूलाई बहन गर्न सक्ने क्षमता हो ।

२. नेपालमा ऊर्जा सुरक्षाका प्रयास

ऊर्जा सुरक्षा कुनै स्थान वा भौगोलिक क्षेत्रको परिस्थितिमा निर्भर हुने भएकोले, ऊर्जा सुरक्षा मूल्याङ्कन ढाँचा, सूचकह(रूको छनोट र सूचकाङ्कको संरचना देश अनुसार फरक हुन सक्छ । त्यसैले जस्तो भुपरिवेष्टित र खुला सिमाना भएको मुलुकको ऊर्जा सुरक्षाको सूचकाङ्क अन्य देशहरूको सन्दर्भमा लागू वा तुलनायोग्य नहुन पनि सक्छ । ऊर्जा सुरक्षाको महत्व कति छ भन्ने कुरा सरकारले तयार पारेका विभिन्न रणनीतिक दस्तावेजहरूमा यसको उल्लेख भएबाट पनि प्रष्ट हुन्छ । राष्ट्रिय ऊर्जा संकट निवारण तथा विद्युत विकास दशक सम्बन्धी अवधारणापत्र, २०७२ मा जलविद्युत विकासलाई केन्द्रबिन्दुमा राखी आगामी छ महिनाभित्र “राष्ट्रिय ऊर्जा सुरक्षा नीति” तजुमा गरी लागू गरिनेछ भन्ने उल्लेखित रहेको छ । राष्ट्रिय सुरक्षा नीति, २०७३ ले औँल्याएको सातवटा मुख्य बाह्य सुरक्षा चुनौती र खतरा अन्तर्गत

बाह्य हस्तक्षेप, खुला अन्तर्राष्ट्रीय सीमाना, सीमा अतिक्रमण, बाह्य घूसपैठ र चलखेललाई मात्र होइन इन्धन र ऊर्जा संकटलाई समेत पहिचान गरेको छ । त्यसैगरी सरकारले देशको ऊर्जा मागलाई दिगो रूपमा परिपूर्ति गर्न देशमा उपलब्ध सम्भावित ऊर्जाका स्रोतहरूको पहिचान गर्ने उद्देश्यले सन् २०१३ मा “इनर्जी सेक्टर भिजन, २०५०” त्यसैगरी “ऊर्जा विकास मार्ग चित्र २०८१” तर्जुमा गरेको थियो । यी र यस्तै दस्ताबेजहरूले देशमा उपलब्ध जलविद्युत तथा नवीकरणीय ऊर्जाको अधिकतम उपयोग गरी पेट्रोलियम इन्धनको परनिर्भरतालाई घटाउने परिकल्पना गरेका छन् । दीर्घकालीन रूपमा देशका सबै क्षेत्रको लागि आवश्यक पर्ने ऊर्जा मागलाई परिपूर्ति गर्न जलविद्युतलाई ऊर्जाको प्रमुख स्रोतको रूपमा पहिचान गरिएकोछ । ऊर्जा सुरक्षाका चुनौतीको सामना गर्न न्यूनतम ऊर्जा भण्डारण क्षमता निर्धारण गरी अभावको अवस्थामा आपूर्ति गर्न सकिने व्यवस्थित तथा सुरक्षित वितरण प्रणाली कायम गरिनुपर्ने तथ्य उल्लेख गरिएको छ ।

नेपाल इनर्जी आउटलुक, २०२२ अनुसार विश्वका १२७ वटा देशहरूको ऊर्जा सुरक्षाको सम्बन्धमा गरिएको मूल्यांक(नमा नेपाल कम ऊर्जा सुरक्षा भएका देशहरूमध्ये दोस्रो स्थानमा पर्दछ । खासगरी पेट्रोलियम पदार्थ शत प्रतिशत आयातमा निर्भर रहनु, जलविद्युतमा आधारित ऊर्जामा निर्भर रही अन्य श्रोतबाट विद्युत उत्पादनमा कम प्राथमिकता दिँदा ऊर्जा सम्मिश्रण हुन नसक्नु र ऊर्जा भन्डारण क्षमता कमजोर हुनु जस्ता कारणले पनि नेपाल ऊर्जा सुरक्षाको दृष्टिले उच्च जोखिममा रहेको छ । नेपाल पेट्रोलियम पदार्थमा शतप्रतिशत आयातमा निर्भर रहनुले ऊर्जा सुरक्षालाई अत्यन्तै जोखिमपूर्ण बनाएको छ । जसको फाइदा उठाउँदै देशको आन्तरिक तथा अन्तर्राष्ट्रीय मामिलाहरूमा हस्तक्षेप गरी अनुचित लाभ लिन खोज्ने तत्वहरूलाई थप बल पुग्न सक्ने देखिन्छ । आ.व. २०७७/७८ मा उपलब्ध कूल विद्युत मध्ये ३१.८ प्रतिशत विद्युत भारतबाट आयात गरेको देखिन्छ । बाँकी विद्युत जलविद्युत आयोजनाहरूबाट उत्पादन गरेको देखिन्छ । एकीकृत राष्ट्रीय विद्युत प्रशारण प्रणाली (इन्टरग्रेटेड नेपाल पावर सिस्टम) जलविद्युतमा आधारित रहेको छ जसमा करिव रन अफ द रिभर हाइड्रोपावरबाट (७९ %) तथा डे पि डिमाण्ड स्टोरेज (१५%), स्टोरेज (२.५%) पोण्डेज, Solar PV (३.५%) दुइवटा डिजेल प्लाण्टबाट परिपूर्ति भइरहेको छ ।

विद्युत उत्पादनको क्षेत्रमा ऊर्जा सम्मिश्रण सम्बन्धमा परम्परागत सोच र शैली रहेको छ । कूल जडित क्षमता ३५०० मेगावाट मध्ये ३४०० मेगावाट राष्ट्रीय प्रसारण लाइनमा आबद्ध छन् भने बाँकी १०० मेगावाट विद्युत ग्रिड बाहिर रहेको छ । उत्पादित जलविद्युतमध्ये पनि रन अफ द रिभर, पिकिङ रन अफ द रिभर तथा सिजनल स्टोरेजको उचित सम्मिश्रणको अभाव रहेको छ । मुलुकको विद्युतीय ऊर्जाको सुरक्षाका लागि जल भण्डारण/संकलन (Storage) गर्ने र चाहिएको समयमा मात्र जलविद्युत उत्पादन गर्ने अर्थजलाशयुक्त र जलाशयुक्त आयोजना निर्माण र सञ्चालन अति नै जरुरी रहेको छ ।

वर्ल्ड इनर्जी एजेन्सीका सदस्य राष्ट्रहरूले पेट्रोलियम पदार्थको कूल आयात परिमाणमा कम्तीमा ९० दिनलाई पुग्ने गरी भण्डारण क्षमता हुनुपर्ने प्रावधान छ । वि.सं. २०८० को बित्री आंकडा अनुसार नेपालको पेट्रोल, डिजेल, मट्टितेल र हवाइ इन्धनको भण्डारण क्षमता क्रमश ६ दिन, ८ दिन, ८६ दिन र २० दिनलाई पुग्ने रहेको छ । नेपालमा ऊर्जा सुरक्षाको दृष्टिले हेर्दा हालको ठूलो मात्रामा खनिज इन्धन तथा विद्युत समेतको आयातको स्थितिले गर्दा ऊर्जा आपूर्ति र ऊर्जा सुरक्षाको अवस्थालाई अत्यन्तै कमजोर र जोखिमयुक्त बनाएको छ ।

३. नेपालमा ऊर्जा सुरक्षाका चुनौती

नेपालले विगतमा भोगेका दैनिक १८ घण्टा सम्मको लोडसेडिङ्गबाट श्रृजित ऊर्जा संकट र पटक पटक भएका सीमा

अवरोध तथा नाकाबन्दीका समयमा इन्धन आपूर्तिमा भएको अवरोध जस्ता घटनाबाट नेपाल ऊर्जा सुरक्षाका दृष्टिले निकै नै जोखिमपूर्ण अवस्थामा रहेको छ भने देखाउँछ । जुन भूराजनीतिक सुरक्षाको दृष्टिले पनि चुनौतीपूर्ण छ । त्यस्तै ऊर्जा सुरक्षा प्रणाली र यसको आपूर्ति शृङ्खलाका चुनौतीमा भौतिक सुरक्षा, साइबर सुरक्षा, जलवायु जोखिमबाट सुरक्षा आदि पक्षहरु पनि संगै जोडिएर आउँछन् त्यस कारण पनि ऊर्जा सुरक्षा हाम्रो पहिलो प्राथमिकताको विषय बन्नु पर्छ । यस्ता चुनौतीलाई समाधान गर्नका लागि आवश्यक मात्रामा ऊर्जाको उपलब्धता, उचित ऊर्जा सम्मिश्रणको अवधारणा बमोजिम जलश्रोत बाहेक अन्य नवीकरणीय ऊर्जाका श्रोतबाट विद्युत उत्पादनमा जोड दिने, नदी प्रवाहमा आधारित जलविद्युत परियोजना भन्दा जलाशययुक्त जलविद्युत आयोजना निर्माणमा जोड दिने तथा न्यूनतम ऊर्जा भण्डारण क्षमता अभिबृद्धि गरी अभावको अवस्थामा आपूर्ति गर्न सकिने व्यवस्थित तथा सुरक्षित वितरण प्रणाली कायम गर्नुपर्ने आवश्यकता रहेको छ ।

ऊर्जा सुरक्षामा देखिएका चुनौतीलाई सामना गर्नका लागि नेपालले विभिन्न प्रयास गरेको पाईन्छ तथापि अवलम्बन गर्नुपर्ने ऊर्जाको मार्गाचित्र र गन्तव्य अझै स्पष्ट हुन सकेको छैन । नेपालभित्र ऊर्जा उत्पादन र खपतको सन्दर्भमा तथा नेपालले गरेका अन्तराष्ट्रिय प्रतिबद्धता र भविष्यमा लिएका योजनालाई मनन गरी ऊर्जा सुरक्षाका चुनौतीको मूल्यांकन गर्दा यथास्थितिमा ऊर्जा सुरक्षा चुनौती र खुद शून्य उत्सर्जनमा ऊर्जा सुरक्षा चुनौती गरी दुइवटा विशिष्ट परिस्थितिको बारेमा विश्लेषण गर्नु पर्ने देखिन्छ ।

३.१ यथास्थितिमा ऊर्जा सुरक्षा चुनौती

नेपालले ऊर्जाको अवस्थाको विगतदेखि भविष्यको आंकलन गर्दा ऊर्जा प्रणालीमा केही सुधार भए पनि अझै पनि नेपाल मूलतः परम्परागत ऊर्जा र आयातित खनिज ऊर्जामा निर्भर हुने स्थिति देखिन्छ । जसलाई यथास्थितिको परिस्थितिको रूपमा विश्लेषण गरिनु पर्छ । यथास्थितिमा ऊर्जाको प्रयोग गर्दा ऊर्जा सुरक्षालाई कसरी हेर्ने, ऊर्जा प्रयोगमा मध्यमस्तरको वृद्धि हुँदा हाम्रो ऊर्जाको मार्गाचित्र कस्तो हुने, त्यसमा ऊर्जा सुरक्षा जोखिम के हुन सक्छन् भने सम्बन्धितमा विश्लेषण गर्नुपर्ने हुन्छ । यथास्थितिलाई विश्लेषण गर्दा नेपालको सन्दर्भमा ऊर्जाका आपूर्तिका स्रोतहरु मुख्य रूपले परम्परागत, आयातित खनिज ऊर्जा र नवीकरणीय विद्युतीय ऊर्जा गरी तीनवटा रहेका छन् । यी तीनवटा ऊर्जाका श्रोतबाट उपलब्ध ऊर्जाको उपयोगको अवस्थालाई हेर्दा हाम्रो ऊर्जा प्रणाली अझै पनि परम्परागत ऊर्जाका श्रोतमा नै निर्भर रहेको र अझै केही समय यथास्थितिमा नै रहने देखिन्छ । नेपालमा ठूलो मात्रामा प्रयोग भैरहेको परम्परागत ऊर्जालाई हामीले बिस्तारै विद्युतीय ऊर्जाले प्रतिस्थापन गर्नु पर्ने हुन्छ । हालसम्म उत्पादित विद्युतको मात्रा कूल उपभोगको १० प्रतिशतभन्दा कम छ । त्यसैले अहिलेकै गतिमा भएका हाम्रा प्रयास वा समान्य सुधारबाट मात्र परम्परागत ऊर्जालाई विद्युतीय ऊर्जाले प्रतिस्थापन गर्न निकै नै लामो समय लाग्ने देखिन्छ । यसले तत्काल ऊर्जा सुरक्षामा देखिएका जोखिमलाई न्यूनीकरण गर्न सक्ने देखिदैन यथास्थिति (Business as usual) को ढाँचालाई हेर्दा हामीले भविष्यमा वनजंगलबाट प्राप्त हुने परम्परागत ऊर्जाको प्रयोगलाई घटाउँदै लैजाने रणनीति अवलम्बन गरेतापनि तत्कालका लागि ऊर्जाको आपूर्ति गर्नको लागि परम्परागत जैविक ऊर्जाको स्रोतलाई समेत नियमित र सुरक्षित रूपमा प्रयोग गर्नु पर्ने आवश्यकता देखिन्छ ।

तसर्थ हामीले यथास्थितिको अवस्था रहिरह्यो भने अर्थात् आधुनिक ऊर्जामा रूपान्तरण गर्न सकेनौं भने दाउरा नै बालेर खाना पकाउनु पर्ने परिस्थिति रहेसम्म आवश्यक दाउराको स्रोत समेत सुनिश्चित गर्न वन जंगललाई दिगो रूपमा सुरक्षित

राखेर परम्परागत ऊर्जा सुरक्षाको प्रत्याभूति गर्नु पर्ने हुन्छ । यथास्थितिमा पनि संभव भएसम्म परम्परागत ऊर्जालाई प्रशोधन गरी आधुनिक ऊर्जाको स्रोत जस्तै ब्रिकेट, पेलेट वा चारकोलमा परिवर्तन गरी स्वच्छ ऊर्जाको रूपमा प्रयोग गर्न जरुरी छ र गर्नुपर्छ । हामीले विभिन्न नीति नियमहरूको माध्यमबाट वनजंगल जोगाउने, वनजंगलबाट प्राप्त हुने ऊर्जाको जथाभावी प्रयोग बन्द गर्ने, यदि स्रोतको दुरुपयोग गरेमा कानुन बमोजिम दण्ड सजाय हुने व्यवस्था गरिएको छ । तर यथास्थितिमा परम्परागत रूपमा प्रयोग हुँदै आएका ऊर्जाको मागलाई संबोधन गर्नेका लागि विद्यमान नीरी(तगत तथा कानूनी संरचनामा ऊर्जा सुरक्षाको प्रत्याभूति हुने गरी दिगो बन व्यवस्थापनका लागि नीतिगत तथा कानूनी संरचनामा परिमार्जन गर्नु पर्ने देखिन्छ ।

आयातित खनिज ऊर्जा सुरक्षाको दृष्टिकोणबाट हेर्दा नेपालमा विकासको साथसाथै नागरिकको जीवनशैलीमा आएको परिवर्तन, बढ्दो शहरीकरण, बढ्दो सवारी साधन विशेष गरी निजी सवारी साधनको प्रयोग, खाना पकाउन प्रयोग हुने LPG ग्याँस जस्ता आयातित पेट्रोलियम पदार्थको प्रयोग अत्यधिक रूपमा बढ्दै गइरहेको छ । हामीले किन्ने ग्याँस, हा(मीले किन्ने पेट्रोल, डिजेलहरू शतप्रतिशत देश बाहिरबाट आयात गर्नुपर्ने हुन्छ । यसरी आयातित पेट्रोलियम पदार्थको बढ्दो प्रयोग र पेट्रोलियम पदार्थमा शत प्रतिशत आयातमा निर्भर रहनुपर्ने अवस्था ऊर्जा सुरक्षाका दृष्टिले सबैभन्दा जोखिमयुक्त र चुनौतीपूर्ण रहेको छ । यसबाट नेपाल ऊर्जा सुरक्षाको दृष्टिले उच्च जोखिमयुक्त अवस्थामा रहेको र ऊर्जा सार्वभौमिकता माथि थप चुनौती थपिएको देखिन्छ ।

त्यसैले पेट्रोलियम पदार्थको आपूर्ति संरचनामा विविधता ल्याउन जरुरी छ । सुरक्षाको दृष्टिले लामो समयसम्म एउटै स्थान वा बजार वा नाकाबाट पेट्रोलियम पदार्थ आयात गर्नुको सद्वा फरक फरक स्थान, बजार वा नाका वा अन्य वैकल्पिक उपायहरू अवलम्बन गर्ने र एउटै देशबाट आयात गर्दा पनि विभिन्न किसिमको बाटोहरूबाट ल्याउन सकिने वैकल्पिक मार्गहरू समेत पहिचान गर्नुपर्छ । भारतको साथै चीन लगायत अन्य मुलुकबाट समेत सहज रूपमा आयात गर्न सकिने उपायहरूको निरन्तर खोजी गरिरहनु पर्छ । मूल्यको साथै स्रोत, बजार, स्थान लगायतका समग्र पक्ष र विकल्पहरूलाई विविधीकरण गर्नुपर्छ । जसले गर्दा ऊर्जा प्रणालीको सार्वभौमिकतामा कसैले प्रहार गर्न सक्ने अवस्था बन्न नसकोस् । पेट्रोलियम सवारी साधनको वृद्धि तथा पेट्रोलियम पदार्थको खपत निरन्तर वृद्धि भइरहेको परिप्रेक्षयमा कम्तीमा ३ महिनाको लागि पुग्ने पेट्रोलियम पदार्थको भण्डारण क्षमता हुनु आवश्यक छ । यसको लागि पेट्रोलियम भण्डारण स्थलको थप निर्माण गरिनुपर्छ । भण्डारस्थलकै सुरक्षा पनि अर्को महत्पवूर्ण हुन्छ । प्रज्वलनशील पदार्थ हुने भएकोले भण्डारण स्थललाई आगलागी वा अन्य प्रकोपबाट जोगाउन सुरक्षाको राम्रो प्रबन्ध गर्नुपर्छ ।

त्यसै गरी विद्युतीय ऊर्जाको प्रयोग वृद्धि गर्ने र यसको सुरक्षाका सम्बन्धमा नेपालले सकेसम्म बढी जलस्रोत तथा अन्य नवीकरणीय ऊर्जा का श्रोतको उपयोग गरेर विद्युत उत्पादन गर्ने र यसको प्रयोग गरी परम्परागत जैविक ऊर्जा र आयातित खनिज ऊर्जालाई विस्थापित गर्ने नै हो । विद्युतीय ऊर्जाको सुरक्षाको लागि विद्युत उत्पादनको विविधीकरण (नदी प्रवाहमा आधारित, अर्धजलाशययुक्त, डे पिकिङ र जलाशययुक्त जलविद्युत आयोजनाहरू) र अधिक मात्रामा सौर्य लगायतका अन्य नवीकरणीय ऊर्जाका श्रोतबाट ऊर्जा उत्पादन गरी विद्युतको नियमित आपूर्ति र गुणस्तरीय उपलब्धताका लागि प्रसारण र वितरण प्रणालीमा व्यापक सुधार गर्नु जरुरी छ ।

३.२ खुद शून्य उत्सर्जनमा ऊर्जा सुरक्षा चुनौती

खुद शून्य उत्सर्जन सम्बन्धी नेपालको दीर्घकालीन रणनीति, २०२१ (Nepal's Long-term Strategy for Net-

zero Emission, २०२१) को आधारमा हामीले सन् २०४५ सम्ममा कार्बन उत्सर्जनलाई शून्य बनाउने भनेका छौं । जलवायु परिवर्तनसम्बन्धी पेरिस सम्झौताको धारा ४ मा उल्लेखित कार्बन उत्सर्जन न्यूनीकरण सम्बन्धी प्रतिबद्धताहरु कार्यान्वयन गर्ने उद्देश्यले यो रणनीति तयार गरिएको हो । यो दस्तावेजमा खुद शून्य उत्सर्जनको लक्ष्य हासिल गर्नको लागि सन् २०४५ सम्मको यथार्थपरक समयावधि र अपनाउनुपर्ने उपायहरु उल्लेखित रहेको छ । नेपालले अब सन् २०४५ (वि.सं. २१००) सम्ममा साँच्चै नै आमूल परिवर्तन गरी खुद शून्य उत्सर्जनको दीर्घकालीन रणनीतिक योजना अनुसार देशमा उत्पादित नवीकरणीय ऊर्जाको अधिकतम प्रयोग गरी ऊर्जामा आत्मनिर्भर हुने तर्फ आवश्यक पहल गर्नु पर्ने हुन्छ । खुद शून्य उत्सर्जनमा नेपालको दीर्घकालीन रणनीतिको लक्ष्य अनुसार सन् २०२०-२०३० सम्म खुद शून्य लक्ष्य हासिल गर्ने र तत् पश्चात् अत्यन्तै न्यून कार्बन उत्सर्जन गरी सन् २०४५ सम्ममा पूर्ण खुद शून्य उत्सर्जन हासिल गर्ने रहेको छ ।

सो लक्ष्य प्राप्तिको लागि घरायसी, यातायात, औद्योगिक तथा व्यापारिक क्षेत्रमा प्रयोग हुने ऊर्जालाई विद्युतीय ऊर्जाले प्रतिस्थापन गर्ने, स्वच्छ ऊर्जाको पहुँचमा वृद्धि, ऊर्जा दक्षतामा सुधार, शत प्रतिशत विद्युतीय सवारी साधनको प्रयोग लगायतका दीर्घकालीन रणनीतिहरु रहेका छन् । यसरी नेपालले अन्तराष्ट्रिय तथा राष्ट्रिय स्तरमा गरेका प्रतिवद्धता पूरा गर्न तयार गरेका रणनीति तथा योजनाहरु को प्रभावकारी कार्यान्वयन आफैमा चुनौतीपूर्ण छ ।

शून्य कार्बन रणनीति बमोजिमको पहिलो काम ३५,००० देखि ५०,००० मेगावाट विद्युतको उत्पादन गर्ने नै हो । सोको लागि आयोजनाको पूर्व तयारी, जोखिमको विश्लेषण, लगानी जुटाउने कार्य नै आफैमा चुनौतीपूर्ण छन् । विद्युतको दैनिक र वार्षिक रूपमा नियमित रूपमा गुणस्तरीय बनाउनको लागि नदी प्रवाहमा आधारित जलविद्युत आयोजनाको साथै जलाशययुक्त आयोजनाहरु निर्माण गर्नुपर्छ । कुलेखानी जस्ता भण्डारण क्षमता भएको, बुढीगण्डकी, दुधकोशी जस्ता दुइ चार महिना नै पानी स्टोरेज गर्न मिल्ने आयोजनाहरु निर्माण गर्नुपर्छ । आगामी २० वर्षमा कम्तीमा १५,००० मेगावाट विद्युत स्टोरेज प्लान्टबाट उत्पादन गरी राष्ट्रिय विद्युत प्रणालीमा जोड्नुपर्दछ । यद्यपि दूला स्टोरेज प्रोजेक्ट बनाउन लामो समय लाग्ने तथा खर्चिला हुनुको साथै प्राविधिक रूपले पनि जटिल हुने हुँदा आयोजनाको साथै तल्लो तटीय क्षेत्रको सुरक्षाको सवालहरु धेरै आउँछन् । करिपय योजनाहरुमा मानवबस्ती स्थानान्तरण गर्नुपर्ने हुँदा वात(वारणीय तथा सामाजिक सुरक्षाका सवालहरु आउन सक्छन् र स्टोरेज प्रोजेक्टका बाँध र जलाशयको सुरक्षाका पक्षहरु छुट्टै छन् ।

पछिल्लो समयमा सौर्य फोटोभोल्टेक प्रविधिको उच्चतम विकास र यसको घट्टो मूल्यको कारण सौर्य विद्युत प्रणाली हाल सबैभन्दा सस्तो विद्युत उत्पादनको स्रोत बनेको छ । ऊर्जा सम्मिश्रणको अवधारणा अनुसार दिँसो घाम लागेको बेलामा सौर्य विद्युत उत्पादन गर्ने र जलाशययुक्त वा डे पिकिङ परियोजनामा पानी जम्मा गरी साँझको पिक आवरमा मात्र विद्युत उत्पादन गर्दा बढी प्रभावकारी हुन्छ र ऊर्जा सुरक्षामा टेवा पुऱ्याउँछ ।

विद्युतीय ऊर्जा सुरक्षाको अर्को महत्वपूर्ण पक्ष आवश्यकता अनुसार प्रसारण लाईनको विकास गरी स्वदेशमै पनि धेरै ऊर्जा खपत हुने शहरी क्षेत्रमा एउटै मात्र प्रसारण लाइनको भर नपरी प्रसारण लाइनमा विविधीकरण गर्नु पर्दछ । रेखांकित (Linear) किसिमको विद्युत प्रसारण प्रणालीभन्दा गोलाकार (Circular) प्रसारण तथा वितरण प्रणालीमा जानुपर्दछ । एउटा प्रणाली असफल भयो भने अर्को प्रणालीले काम गर्ने व्यवस्था हुनुपर्छ । हाल नेपालको विद्युत प्रणालीमा प्रसारण लाइनको धेरै कमी छ । विद्युतगृहहरुलाई राष्ट्रिय प्रसारण लाइनमा र राष्ट्रिय प्रसारण लाइनबाट खपत

केन्द्रसम्म विद्युत पुऱ्याउने लाइनको निकै नै कमी छ । मुख्य भार केन्द्र (Load Centre) हरुमा एउटा मात्र प्रसारण लाइनको भरमा बस्नुहुँदैन । विद्युत प्रसारण वितरण, व्यापारलाई सहज बनाउन ठूलो लगानीको आवश्यकता पर्ने हुनाले यो क्षेत्रमा खुला व्यापार गर्न “ओपन एक्सेस” को कानुनी व्यवस्था गर्न अति नै जरुरी छ । कुनै प्राकृतिक अथवा मानव सिर्जित प्रकोपबाट प्रसारण लाइनमा क्षति भयो भने पूरै प्रणाली अबरुद्ध हुन सक्छ । तसर्थ प्रसारण लाइनको विकल्पहरु राख्नुको साथै ऊर्जा उत्पादन आयोजनाहरुको पनि पूर्वदेखि पश्चिमसम्म विकेन्ट्रीकृत रूपमा छारिएर रहेको हुनुपर्दछ । त्यसैगरी ट्रान्सफर्मर, सबस्टेशन सबैमा विविधीकरण, पर्याप्त विकल्प र अतिरिक्त क्षमताहरु चाहिन्छ । विद्युत प्रसारणको सुरक्षा सम्बन्धमा वर्तमान अवस्थामा एउटा देशमा उत्पादित विद्युतलाई नजिकको क्षेत्रीय बजारसँग पनि निर्बाध रूपमा जोड्नुपर्छ । जसले गर्दा प्रविधिको पारस्परिक सम्मिश्रणले दैनिक र वार्षिक रूपमा नै आवश्यकता अनुसार विद्युत आयात निर्यात गरी विद्युतीय सुरक्षा बलियो बनाउन सकिन्छ । अहिले नेपालमा पनि विद्युत व्यापार, विद्युत निर्यात, अन्तरदेशीय प्रसारण लाइनका सवालहरु टड्कारो रूपमा आइरहेका छन् । यी विषयहरु पनि ऊर्जा सुरक्षाको दृष्टिले अत्यन्तै संवेदनशील छन् ।

तसर्थ सुरक्षित विद्युत प्रणालीको लागि विद्युतको उत्पादन, प्रसारण र वितरण तीनवटै पक्षमा विविधीकरण हुनु जरुरी छ विद्युतीय ऊर्जा सुरक्षाको दृष्टिले हेर्दा उल्लेखित समग्र पक्षहरु (उत्पादनदेखि वितरणसम्म) सूक्ष्मदेखि बृहत्स्तरसम्म ऊर्जा सुरक्षाको दृष्टिले हेर्नुपर्दछ । यी सबै कुरालाई ध्यानमा राखेर निर्माण गरेको ऊर्जा प्रणालीबाट मात्र ऊर्जा सुरक्षाको प्रत्याभुति दिन सकिन्छ ।

४. निष्कर्ष र सुझाव

नेपालमा ऊर्जाको उपलब्धता र उपयोगको अवस्था हेर्दा सबैभन्दा बढी परम्परागत ऊर्जा, दोस्रोमा आयातित खनिज ऊर्जा र तेस्रोमा न्युन मात्रामा देशभित्र उत्पादित जलश्रोत तथा अन्य नवीकरणीय ऊर्जाका श्रोतबाट उत्पादित ऊर्जाको प्रयोग हुँदै आएको पाईन्छ । नेपाल अभैसम्म पनि मुख्य रूपमा परम्परागत ऊर्जामा निर्भर रहेको छ । ऊर्जाको मुख्य स्रोतको रूपमा रहेको परम्परागत ऊर्जा (दाउरा, कृषि अवशेष आदि) को प्रयोगले ऊर्जाको दीगोपन, घरभित्रको वायु प्रदूषण, वन विनास, मानव स्वास्थ्य जस्ता पक्षहरुमा चुनौती खडा गरेको छ ।

नेपालभित्र उत्पादित जलश्रोत तथा अन्य नवीकरणीय ऊर्जाका श्रोतबाट उत्पादित विद्युतको मात्रा समग्र ऊर्जा उपयोगको १० प्रतिशत भन्दा कमी छ । विद्युत पहुँचको कमीले मुलुकको आर्थिक उत्पादकत्व मात्र घेटेको छैन, विद्युतको बढ्दो माग पूरा गर्न अझै पनि ठूलो मात्रामा विद्युत आयात गर्नुपरेको छ । पेट्रोलियम पदार्थको प्रयोग सबैभन्दा बढी यात(आयात क्षेत्रमा, त्यसपछि औद्योगिक, आवासीय र व्यावसायिक क्षेत्रहरुमा रहेको छ । शहरी क्षेत्रमा मुख्य रूपमा खाना पकाउने, पानी तताउने र कोठा तताउने उद्देश्यका लागि एलपिजीको प्रयोग गरिन्छ जसको आयातको मात्रा र वृद्धिदर अस्वाभाविक रूपमा बढ्दै गईरहेको छ । नेपालमा पेट्रोलियम पदार्थ सात प्रतिशत आयात हुन्छ जसमा ठूलो वैदेशिक मुद्रा खर्च हुने गर्दछ । नेपालले निर्यात गर्ने सबै वस्तुबाट प्राप्त आम्दानी भन्दा आयातित ऊर्जामा लाग्ने खर्च बढी रहेको छ । पेट्रोलियम पदार्थको मूल्यमा आउने उतारचढावले समेत देशको कूल गार्हस्थ उत्पादनमा नकारात्मक असर पर्दछ । नेपालको प्रतिइकाइ कूल गार्हस्थ उत्पादनमा ऊर्जा प्रयोग र यसको आयातको हिस्सा वृद्ध हुँदै गएको देखिन्छ ।

ऊर्जा सुरक्षाको दृष्टिले हेर्दा खासगरी पेट्रोलियम पदार्थ शतप्रतिशत आयातमा निर्भर रहनु, हिउँद याममा विद्युत समेत आयात गर्नु पर्ने अवस्था रहनु, ऊर्जा प्रणालीको सार्वभौमिकताको दृष्टिकोणले जोखिमयुक्त अवस्था हो जुन

नेपालले पटक पटक पेट्रोलियम पदार्थको नाकाबन्दीबाट भोगिसकेको छ । नदी प्रवाहमा आधारित जलविद्युत प्रणाली आकाशबाट हुने बर्षाको पानीमा निर्भर हुन्छ । अन्य श्रोतबाट विद्युत उत्पादनमा प्राथमिकता नदिंदा उचित ऊर्जा सम्मिश्रण हुन सकेको छैन । त्यसै गरी ऊर्जा भन्डारण क्षमता कमजोर हुनु, प्रसारण र वितरण प्रणालीको क्षमता न्यून हुनु र परम्परागत प्रविधिमा आश्रित प्रणाली हुनु जस्ता कारणले नेपालको ऊर्जा प्रणाली दिगो र बलियो बन्न सकेको छैन । त्यसैगरी उत्पादित विद्युतको वाह्य बजार पनि सीमित रहने भएकोले उत्पादित विद्युतले प्रतिस्पर्धात्मक बजार नपाउन सक्ने स्थिति बन्न सक्ने भएकोले विद्युत उत्पादनमा प्रयोग लगानी बढाउन समेत जोखिमयुक्त देखिन्छ । नेपालको ऊर्जा प्रणाली अत्यन्त कमजोर र पर्याप्त विकल्परहित हुनुको साथै प्रणालीमा आउन सक्ने प्राकृतिक, मानवीय र साईर क्षति र बजारको लचकतालाई सामान्य रूपमा पनि वहन गर्न सक्ने क्षमताको कमि हुनु अर्को ऊर्जा सुरक्षा चुनौती हो ।

ऊर्जा सुरक्षाका दृष्टिकोणबाट हेर्दा विभिन्न कारणले गर्दा यथास्थितिको ऊर्जा विकास हुँदा पनि परम्परागत ऊर्जाको श्रोत बन जंगलको दिगो उपयोगको नीतिको साथै आयातित पेट्रोलियम पदार्थको नियमित आपूर्तिलाई सुनिश्चित गर्न कम्तीमा ३ महिनाको लागि पुग्ने भण्डारण क्षमता बढाउनु पर्ने हुन्छ । शून्य कार्बन रणनीति बमोजिम नेपालको कूल ऊर्जा माग संबोधन गर्न स्वच्छ नवीकरणीय ऊर्जाको प्रयोग गरी आर्थिक क्रियाकलापका सबै क्षेत्रहरूमा प्रयोग हुदै आएको परम्परागत तथा खनिज इन्धनलाई स्वच्छ ऊर्जाले प्रतिस्थापन गर्नु पर्छ । ऊर्जाको किफायती प्रयोग गर्न ऊर्जा दक्षतामा सुधार गरी घरायसी, औद्योगिक तथा यातायात क्षेत्रमा ऊर्जा दक्षता हासिल गर्ने रणनीति अखिलयार गर्नु पर्ने देखिन्छ ।

अन्त्यमा नेपालजस्तो भुपरिवेष्टित र भौगोलिक अवस्थिति भएको मुलुकले उच्च स्तरको ऊर्जा सुरक्षाका लागि ऊर्जा प्रणालीको सार्वभौमिकता (क्यान्युभचभज्जलतथ), दिगो वा बलियोपन र उत्थानशीलता वा लचकता जस्ता तीनै आयामहरूमा रणनीतिक रूपमा नै तयार हुन विलम्ब गर्नु हुँदैन । ऊर्जा खपतका मुख्यक्षेत्रहरू जस्तै घरायसी, यातायात, उद्योग, व्यापार जस्ता क्षेत्रमा नवीकरणीय ऊर्जाबाट ऊर्जा आपूर्तिमा वृद्धि गर्ने, आधुनिक विद्युतीय ऊर्जा स्रोतको प्रयोगको विविधीकरणमा जोड दिने, परम्परागत स्रोतहरूको दिगो प्रयोग, आयातीत ऊर्जा माथिको निर्भरता कम गर्ने, खनिज इन्धन आयातमा न्यूनीकरण गर्ने, इन्धन भण्डारणको क्षमता विकास गर्ने जस्ता कार्यहरू गर्नु आवश्यक छ ।

तसर्थ, ऊर्जा सम्बन्धी राष्ट्रिय नीति तथा कानूनहरूमा ऊर्जा सुरक्षा सम्बन्धी माथि विषय वस्तुलाई प्राथमिकताका साथ समावेश गर्नु आवश्यक देखिन्छ । ऊर्जा सुरक्षा सूचकाङ्कले समयसँगै नेपालको ऊर्जा सुरक्षा स्थितिमा आएको परिवर्तन, स्थितिमा सुधार वा खस्किएको सङ्केत गर्छ । तसर्थ ऊर्जा सुरक्षाको विषयलाई दीगो रूपमा समाधान गर्न र समग्र ऊर्जा का चुनौती संबोधन गर्न राष्ट्रिय ऊर्जा सुरक्षा नीति बनाई लागु गर्नुपर्ने आवश्यकता रहेको देखिन्छ ।

विद्युत क्षेत्रको सुदृढ नियमनमा आयोगको भूमिका: एक समिक्षा

मन देवी श्रेष्ठ^१

१. पृष्ठभूमि

आम नागरिकको सहज दैनिक जीविकोपार्जनका लागि मात्र नभई राष्ट्रको सामाजिक, आर्थिक उन्नति तथा औद्योगिक विकासका लागि ऊर्जा अत्यावश्यक तथा महत्वपूर्ण वस्तुको रूपमा रहेको छ । सवसुलभ, भरपर्दै तथा स्वच्छ ऊर्जाको पहुँच सम्पूर्ण नागरिकको आधारभूत अधिकार हो ।

नेपालको सन्दर्भमा जलविद्युत उत्पादनको कूल सम्भाव्य क्षमता ८३,००० मेगावाट रहेको जसमध्ये ४३,००० मेगावट मात्रै व्यवसायिक रूपमा उत्पादन गर्न सकिने भनिएकोमा जल तथा ऊर्जा आयोगद्वारा सन् २०१९ मा गरिएको एक अध्ययन अनुसार नेपालमा जलविद्युत उत्पादनको सम्भाव्यता ७२,००० मेगावाट रहेको देखिएको छ । नेपालको ऊर्जा खपतको समग्र अवस्था हेर्दा हाल घरायसी प्रयोजनको लागि ६०.७५%, औद्योगिक क्षेत्रको लागि २०.९१%, यातायात क्षेत्रमा १०.४३%, व्यापारिक क्षेत्रमा ५.०४%, कन्स्ट्रक्शन तथा माइनिंग क्षेत्रमा १.९२% र कृषि क्षेत्रमा ०.९२% विद्युत खपत हुने गर्दछ (WECS, २०२४) । जलविद्युतको क्षेत्रमा आर्थिक वर्ष २०८०/८१ सम्म निजी क्षेत्र तथा नेपाल सरकारद्वारा प्रवर्द्धित विभिन्न ऊर्जा स्रोतबाट मात्रै विद्युत उत्पादन ३१५७ मेगावाट पुगीसकेको छ । जसमध्ये नेपाल विद्युत प्राधिकरण तथा यसका सहायक कम्पनीहरूको योगदान ३९.४३ प्रतिशत र स्वतन्त्र ऊर्जा उत्पादकहरूको योगदान ४७ प्रतिशत, भारतबाट आयातित ऊर्जाको योगदान १३.५७ प्रतिशत रहेको छ । त्यसै गरी, नेपालमा विद्युत उपभोक्तासँगै विद्युतको माग र खपतसमेत आ.व. २०८०/८१ मा ९.४६ प्रतिशतले वृद्धि भएको छ (ने.वि.प्रा., २०८१) ।

विशेषगरी सन् १९९० को दशकमा मुलुकको राजनीतिक परिवर्तनसँगै राज्यले निजीकरण सम्बन्धी नीतिलाई प्राथमिकताका साथ कार्यान्वयनमा ल्याए पश्चात विद्युत क्षेत्रमा पनि नेपाल सरकारद्वारा जारी गरिएको जलविद्युत नीति, २०४९ ले निजी क्षेत्रलाई प्रवेश गर्न बाटो खुलाउनुका साथै जलविद्युत उत्पादनमा वैदेशिक लगानी समेत गर्न सकिने व्यवस्थालाई नीतिगत गर्ने काम गरिएको थियो । सोही नीतिको आशयलाई समेट्ने गरी नेपाल सरकारद्वारा अहिलेको प्रचलित विद्युत ऐन, २०४९ र विद्युत नियमावली, २०५० जारी गरेको हो । यसले निजी क्षेत्रको सहभागिता सुनिश्चित गर्नका साथसाथै नेपाल सरकार स्वयं पनि जलविद्युत क्षेत्रमा सक्रिय रूपमा संलग्न हुन आवश्यक भएकोले निजी क्षेत्र र सार्वजनिक क्षेत्रलाई समान रूपमा परिचालन गर्न एउटा स्वतन्त्र नियामक निकाय विद्युत ऐन, २०४९ को दफा १७ मा परिकल्पना गरिएको थियो । यसको परिणाम स्वरूप प्रारम्भिक चरणमा विद्युत महसुल निर्धारण आयोगको स्थापना गरी यसको सचिवालयको रूपमा विद्युत विकास विभागलाई कार्य सञ्चालन गर्न तोकिएको थियो । यद्यपि, नियमावलीको आधारमा यस आयोगलाई प्रभावकारी नियामक आयोगको रूपमा सञ्चालन गर्नको लागि प्रावधान गरिएको थियो, तर

^१ लेखक विद्युत नियमन आयोगमा हाल सचिवको रूपमा कार्यरत हुनहुन्छ ।

उक्त आयोगले प्रारम्भिक अभ्यास मात्र गर्यो, जसमा उपभोक्ताको विद्युत नियमनको काममा सीमित राखियो । उक्त दफा विद्युत नियमन आयोग ऐन आएपछि खारेज गरिएको छ ।

त्यस्तै जलविद्युत विकास नीति, २०५८ ले पहिलो पटक नीतिगत रूपमा एक शक्तिसम्पन्न विद्युतको नियमनक(री निकायको परिकल्पना गरेको थियो । तत्कालीन विद्युत महसुल निर्धारण आयोगलाई नियमन संस्थाको रूपमा विकास गर्दै विद्युतको गुणस्तरको अनुगमन एवं सुपरिवेक्षण गर्ने कार्यको सिलसिलामा सार्वजनिक तथा निजी क्षेत्रका उत्पादनकर्ताहरूको विद्युत खरीद सम्झौता समेतलाई ध्यानमा राखी आवश्यकता अनुसार निर्देशन र सुपरिवेक्षण गर्ने अधिकार दिइएको थियो । सोहीबमोजिम, विद्युत क्षेत्रको नियमनसम्बन्धी अन्तरराष्ट्रीय अभ्यासलाई अनुसरण गर्दै नेपाल सरकारद्वारा विद्युत नियमन आयोग ऐन, २०७४ तथा विद्युत नियमन आयोग नियमावली, २०७५ ले व्यवस्था गरेबमोजिम नेपाल सरकार मन्त्रिपरिषद्को २०७६ बैशाख २३ गतेको निर्णयनुसार विद्युत नियमन आयोगको स्थापना भएको हो । त्यसैगरी, आयोगका प्रथम पदाधिकारीहरूको नियुक्ति उश्चात् मिति २०७६/०१/२५ गतेदेखि बहालि भएकोमा २०८१/०१/२५ देखि पाँच वर्षीय कार्यकालको समाप्ति भएको हो । त्यस पश्चात, मिति २०८१ आषाढ १० मा आयोगमा दोस्रो पटक पदाधिकारीहरूको नियुक्ति भएको हो ।

२. आयोगको संगठनात्मक संरचना तथा कर्मचारी पदपूर्तिको अवस्था

विद्युत नियमन आयोग ऐन, २०७४ को दफा ५ ले गरेको व्यवस्थाअनुरूप एक जना अध्यक्षसहित चार सदस्य पदाधिकारीको रूपमा रहने व्यवस्था गरेको छ भने सोही ऐनको दफा ३१ ले आयोगको कार्य संचालनको लागि आयोगमा नेपाल सरकारले स्वीकृत गरेको संचयामा कर्मचारी रहने व्यवस्था गरेको छ । हाल आयोगमा सचिवसहित देहायबमोजिम पदाधिकारी रहेका छन्:

क्र.सं.	नाम	पद	नियुक्ति भएको मिति
१.	डा. राम प्रसाद घिताल	अध्यक्ष	२०८१ आषाढ १०
२.	श्री गौतम डंगोल	सदस्य	२०७८ चैत्र २३
३.	डा. मधुसूदन अधिकारी	सदस्य	२०८१ आषाढ १०
४.	डा. ज्ञमक प्रसाद शर्मा	सदस्य	२०८१ आषाढ १०
५.	श्री भागिरथी भट्टराई जवाली	सदस्य	२०८१ चैत्र ०१
६.	श्री मन देवी श्रेष्ठ	सचिव	२०८१ बैशाख १०

त्यसैगरी, आयोगको कर्मचारीको नियुक्ति, काम, कर्तव्य, अधिकार, योग्यता, सुविधा तथा सेवाको शर्तसहितको कर्मचारी प्रसाशनसम्बन्धी विनियमावली, २०८१ उपर नेपाल सरकार र लोकसेवा आयोगको सहमति प्राप्त भई मिति २०८१/०९/२५ मा आयोगबाट स्वीकृत तथा लागू भैसकेको अवस्था छ । उक्त विनियमावलीको विनियम ४ बमोजिम हाल आयोगमा निम्नबमोजिम तीन (३) वटा सेवा समूह गठन गरिएको छ :

(क) इन्जिनियरिङ सेवा, (ख) प्रशासन सेवा, र (ग) विविध सेवा ।

विभिन्न सेवा समूह, तह र पदमा जम्मा ३९ जना कर्मचारीहरूको दरबन्दी नेपाल सरकारबाट स्वीकृत भएको छ । उक्त

विनियमावलीबमोजिम आयोगले हाल देहायबमोजिमको संगठनात्मक संरचना कायम गरेको छ :

- क) अध्यक्ष
- ख) सदस्य
- ग) सचिव
- घ) नियमन, सुपरिवेक्षण, बाह्य सम्बन्ध तथा प्राविधिक विभाग
- ड) महसुल दर, आर्थिक विश्लेषण तथा उपभोक्ता हित संरक्षण विभाग
- च) अन्य शाखाहरू

हाल उल्लेखित संख्यामा कर्मचारीहरुको नियुक्ति भईसकेको अवस्था छैन । यद्यपि, हालैमात्र लोक सेवा आयोगमार्फत कर्मचारी पदपूर्तिको लागि विज्ञापन आव्हान गरिएको छ । आयोगको आफ्नै कर्मचारीको पदपूर्ति नभएसम्म नेपाल सरकारद्वारा निम्न पदहरुमा कर्मचारी काजमा पठाइएको छ:

क्र.स.	पद	संख्या
काजमा कार्यरत कर्मचारी:		
क.	आयोगको सचिवको जिम्मेवारीमा कार्यरत सहसचिव	१
ख.	सी.डि.ई.	१
ग.	इन्जिनियर	४
घ.	लेखा अधिकृत	१
ड.	नायब सुब्बा	२
च.	खरिदार	१
छ.	लेखापाल	१
करारमा कार्यरत कर्मचारी:		
क.	कानून अधिकृत	१
ख.	कम्पुटर अपरेटर	६
ग.	हलुका सवारी चालक	६
घ.	कार्यालय सहयोगी	६

३. आयोगको हालसम्मको प्रगति :

विगत पाँच वर्षमा आयोगले आफ्नो क्षेत्राधिकार भित्रका विभिन्न मामिलासँग सम्बन्धित आवश्यक नियामक उपकरणह(रुको मस्यौदा तर्जुमा गरी कार्यान्वयनसमेत गरेको छ । आयोगको आन्तरिक प्रशासनलाई सुदृढ बनाउन विद्युत नियमन आयोगको बैठक सम्बन्धी कार्यविधि, २०७६ र आर्थिक प्रशासन विनियमावली, २०८१ जारी गरिएको छ । विद्युत खरिद बिक्री तथा विद्युत महसुल नियमनको निम्नि विद्युत खरिद बिक्री तथा अनुमति प्राप्त व्यक्तिले पालना गर्नुपर्ने शर्त सम्बन्धी विनियमावली, २०७६ एवम् विद्युत उपभोक्ता महसुल निर्धारण निर्देशिका, २०७६ जारी गरिएका छन् ।

विद्युत उपभोक्ताको हितलाई सुनिश्चित गर्न तथा विद्युत निर्णय प्रक्रियामा उपभोक्ताका सल्लाह, सुभाव र गुनासाहरु समावेश गर्न विद्युत उपभोक्ता हित संरक्षण सम्बन्धी निर्देशिका, २०८० तथा विद्युत नियमन आयोग सार्वजनिक सुनुवाई सञ्चालन निर्देशिका, २०७६ जारी भई कार्यान्वयनको अवस्थामा रहेको छ ।

विद्युतीय ग्रीडको योजना, संचालन तथा सुरक्षाका निम्न नेपाल विद्युत ग्रीड संहिता, २०८० बनाएको छ भने अनुमति(पत्र प्राप्त व्यक्तिहरुका विभिन्न पक्षहरु नियमन गर्न विद्युत नियमन आयोग अनुमतिपत्र प्राप्त व्यक्ति आपसमा गाभिन, आपसमा मिल्न, शेयर खरिद, संरचनाको खरिद बिक्री वा हस्तान्तरण, प्राप्ति वा ग्रहण सम्बन्धी निर्देशिका, २०७७, विद्युत सम्बन्धी कम्पनीको शेयरको सार्वजनिक निष्कासनको पूर्वस्वीकृति तथा नियमन सम्बन्धी निर्देशिका, २०७८ तथा विद्युत सेवा प्रदायकको कार्यसम्पादन सम्बन्धी मुख्य सूचकांकसम्बन्धी म्यानुअल, २०८० प्रचलनमा छन् । आयोगलाई ऐनद्वारा प्रदत्त अधिकारहरु नियमावलीले दिएको निर्देशकीय खाका भित्र रही यीनै निर्देशिका, विनियमावली र म्यानुअल अन्तर्गत रहेर आयोगले आफ्नो नियामकीय जिम्मेवारी वहान गर्ने गरेको छ । आयोगले हालसम्म तर्जुमा गरी कार्यान्वयनमा ल्याइएको नियामकीय उपकरणहरु निम्नबमोजिम रहेका छ :

क्र.सं.	नियामकीय उपकरण
१.	विद्युत नियमन आयोगको बैठक सम्बन्धी कार्यविधि, २०७६
२.	विद्युत खरिद बिक्री तथा अनुमति प्राप्त व्यक्तिले पालना गर्नुपर्ने शर्त सम्बन्धी विनियमावली, २०७६
३.	विद्युत उपभोक्ता महसुल निर्धारण निर्देशिका, २०७६
४.	विद्युत नियमन आयोग सार्वजनिक सुनुवाई सञ्चालन निर्देशिका, २०७६
५.	विद्युत नियमन आयोग अनुमतिपत्र प्राप्त व्यक्ति आपसमा गाभिन, आपसमा मिल्न, शेयर खरिद, संरचनाको खरिद बिक्री वा हस्तान्तरण, प्राप्ति वा ग्रहण सम्बन्धी निर्देशिका, २०७७
६.	विद्युत सम्बन्धी कम्पनीको शेयरको सार्वजनिक निष्कासनको पूर्वस्वीकृति तथा नियमन सम्बन्धी निर्देशिका, २०७८
७.	नेपाल विद्युत ग्रीड कोड, २०८०
८.	Key Performance Indicators Manual for Monitoring the Performance of Electric Utilities, २०२३
९.	विद्युत उपभोक्ता हित संरक्षण सम्बन्धी निर्देशिका, २०८०
१०.	आयोगको पाँच (५) वर्षे मागचित्र, २०८१-२०८६
११.	विद्युत नियमन आयोग कर्मचारी प्रसाशन सम्बन्धी विनियमावली, २०८१
१२.	विद्युत नियमन आयोग आर्थिक प्रशासन सम्बन्धी विनियमावली, २०८१
१३.	विद्युत नियमन आयोग विवाद समाधान सम्बन्धी विनियमावली, २०८२

३.१ आ.व. २०८०/८१ सम्म आयोगले गरेका कार्यसम्पादनसम्बन्धी मुख्य उपलब्धिहरु:

आयोगले आफ्नो स्थापनाको पाँचौ वर्ष सम्पन्न गरी सकदा नियमितरूपमा सेवाग्राहीको निवेदनउपर सुनुवाई, विभिन्न नियामकीय उपकरणहरु तर्जुमा, विद्युत उपभोक्ता हित संरक्षण, तथा उपभोक्ता महसुल निर्धारणसम्बन्धी विभिन्न कार्य सफलतापूर्वक गरेको अवस्था छ । आयोगले आ.व. २०८०/८१ सम्म तथा चालु आ.व. २०८१/८२ को हालसम्म हासिल गरेका मुख्य उपलब्धिहरु देहायबमोजिम रहेका छन्:

क्र.सं.	विवरण	चालु आ.व. २०८१/८२ को बैशाखसम्मको जम्मा	विगत पाँच आ.व.को जम्मा	हाल सम्मको कुल जम्मा
१.	नियामकीय उपकरण तर्जुमा तथा जारी	४	१२	१६
२.	उपभोक्ता विद्युत महसुल निधारण	०	३	३
३.	उपभोक्ता विद्युत महसुल निर्णय पुनरावलोकन	१	०	१
४.	अवधारणा तथा छलफल पत्र जारी गरेको	४	०	४
५.	प्राथमिक तथा हकपद शेयर निष्काशनको पूर्व स्वीकृति	२५	१०५	१३०
६.	विद्युत कम्पनीको शेयर संरचना परिवर्तनमा स्वीकृति	१९	१०६	१२५
७.	विद्युत कम्पनीको विद्युत खरिदविक्री दरको निधारण तथा विद्युत सम्झौतामा सहमति	३६	१३६	१७२
८.	विद्युत कम्पनीको विद्युत खरिद सम्झौताको संशोधनमा सहमति	२६	४७६	५०२
९.	विद्युत कम्पनीको स्वामित्व हस्तान्तरण/ आयोजना, प्राप्ति र ग्रहण सहमति	२	२६	२८
१०.	विद्युत कम्पनीको शेयर खरिदविक्रीको सहमति	२५	४०	६५

४. विद्युत क्षेत्र सुधारका निमित्त आयोगबाट भएका मुख्य कार्यहरू:

(क) नेपाल विद्युत ग्रिड संहिता, विद्युत उपभोक्ता हित संरक्षणसम्बन्धी नियामकीय व्यवस्था गरिएको

विद्युत नियमन आयोगले आफ्नो स्थापनाको छैटौं वर्ष पूरा गर्दैगर्दा ऊर्जा क्षेत्रको सुधार, विस्तार र उपभोक्ता हित संरक्षणमा उल्लेखनीय कार्यहरू सम्पन्न गरेको छ । आयोगले नेपाल विद्युत ग्रिड कोड, २०८० को कार्यान्वयनम(फर्फत विद्युत प्रसारण प्रणालीको सञ्चालन, पहुँच र सुरक्षामा स्पष्ट मापदण्ड स्थापित गरेको छ । यसले राष्ट्रिय प्रसारण प्रणालीको दीर्घकालीन विश्वसनीयता र दक्षता अभिवृद्धिमा महत्वपूर्ण योगदान पुर्याएको छ । त्यस्तै, विद्युत उपभोक्ता हित संरक्षण सम्बन्धी निर्देशिका, २०८० को कार्यान्वयनमार्फत उपभोक्ताको गुनासो व्यवस्थापन, सेवा गुणस्तरको निगरानी, निरीक्षण तथा उपभोक्ता अधिकार प्रवर्द्धनका लागि स्पष्ट मार्ग प्रशस्त भएको छ । आयोगले सार्वजनिक सुनुवाईका कार्यीविधिहरू प्रभावकारी बनाउँदै, उपभोक्तासँग प्रत्यक्ष संवाद गर्ने अभ्यासल(ई संस्थागत गरी नियामक प्रक्रियामा पारदर्शिता र जवाफदेहिता बढाएको छ । त्यसै गरी, आयोगले विद्युत सेवा प्रदायकहरूको कार्यसम्पादन मूल्याङ्कनका लागि Key Performance Indicators (KPI_ Manual, २०८० जारी गरेको छ । यसले सेवा प्रदायकहरूको गुणस्तरीय सेवा सुनिश्चित गर्ने आधार तयार गरेकोमा आगा(मी दिनहरूमा सेवामा सुधार ल्याउन ठूलो भूमिका खेल्ने अपेक्षा गरिएको छ ।

(ख) आयोगको पाँच वर्षे मार्गचित्र

आयोगले आफ्नो पाँच वर्षे मार्गीचित्र (२०८१-२०८६) पारित गरी आउने वर्षहरूमा विद्युत नियमनको प्राथमिकता र रणनीतिहरू स्पष्ट रूपमा परिभाषित गरेको छ । यस मार्गीचित्रले नियामकीय सुधार, निजी क्षेत्रको लगानी प्रवर्द्धन, उपभोक्ता संरक्षण, तथा विद्युत बजारको विकास जस्ता महत्वपूर्ण क्षेत्रमा आयोगको भविष्यको कार्यालय दशा निर्धारण गरेको छ ।

(ग) **संस्थागत तथा आन्तरिक प्राथमिकता**

संगठित र प्रभावकारी आन्तरिक प्रशासनका लागि आयोगले हालैमात्र विद्युत नियमन आयोग कर्मचारी प्रशासनसम्बन्धी विनियमावली, २०८१ तथा आर्थिक प्रशासनसम्बन्धी विनियमावली, २०८१ जारी गरेको छ । यी विनियमावलीहरूको कार्यान्वयनबाट कर्मचारी व्यवस्थापन, सेवा सुविधा, बजेट तथा लेखापरीक्षण कार्यहरूमा एकरूपता, पारदर्शिता र जवाफदेहिता सुनिश्चित गरिएको छ ।

(घ) **विद्युत क्षेत्र सुधारसम्बन्धी नियामकीय तथा नीतिगत कार्यहरू**

उर्जा क्षेत्रको उदारीकरण तथा प्रतिस्पर्धालाई प्रवर्द्धन गर्ने उद्देश्यले आयोगले खुला पहुँच (Open Access) सम्बन्धी अवधारणा पत्र सार्वजनिक गरेको छ । यस अवधारणा पत्रले विद्युत ग्राहकहरूलाई प्रत्यक्षरूपमा ग्रिड प्रयोग गरी विभिन्न उत्पादकहरूबाट विद्युत खरिद गर्ने अवसर प्रदान गर्ने दिशामा नीति तथा नियामकीय व्यवस्था तर्जुमाको आधार तय गरेको छ । त्यसैगरी, जलाशययुक्त जलविद्युत आयोजनाहरूका लागि स्थायित्व र लगानीको सुनिश्चितताको लागि आवश्यक मानिने जलाशययुक्त परियोजना (Hydro-storage PPA) को विद्युत खरिद दर सम्बन्धी अवधारणा पत्र पनि आयोगले जारी गरेको छ ।

(ङ) **विवाद समाधानसम्बन्धी विनियमावली जारी गरिएको**

विद्युतसम्बन्धी विवाद समाधान प्रक्रियालाई प्रभावकारी, पारदर्शी र निष्पक्ष बनाउन आयोगले विद्युत नियमन आयोग विवाद समाधानसम्बन्धी विनियमावली, २०८१ जारी गरेको छ । यस विनियमावलीको कार्यान्वयनबाट विद्युत क्षेत्रसँग सम्बन्धित विवादहरू छिटोछिरितो र विश्वसनीय ढङ्गले समाधान गर्न सकिने वातावरण तयार भएको छ ।

५. सुभाव तथा सिफारिस

विद्युत नियमन आयोगले विगत पाँच वर्षमा गरेको नियामकीय कार्य र प्रगतिको समीक्षा गर्दा, आगामी दिनहरूमा निम्न सुभावहरूलाई प्राथमिकताका साथ कार्यान्वयन गर्नु उपयुक्त देखिन्छः

- निजामती संरचनाको पूर्णता र सुदृढीकरण:** आयोगमा स्वीकृत दरबन्दीअनुसार स्थायी कर्मचारी पदपूर्ति कार्यलाई शीघ्र सम्पन्न गरी संस्थागत स्मृति (Institutional Memory) लाई बलियो बनाउनु आवश्यक रहेको छ ।
- सेवाग्राही केन्द्रित नियमन कार्यको विस्तार:** विद्युत उपभोक्ताको हित संरक्षण र सेवाको गुणस्तर अभिवृद्धि गर्न उपभोक्तासँग प्रत्यक्ष अन्तर्क्रिया बढाउने र सार्वजनिक सुनुवाइहरूलाई अभ्यन्तरिक्त आवश्यक रहेको छ ।

- ग) नवीनतम प्रविधि र अन्तर्राष्ट्रिय अभ्यासहरूको अनुकरण: ग्रिड व्यवस्थापन, स्मार्ट मिटरिङ र स्वच्छ ऊर्जाको प्रवर्द्धनजस्ता क्षेत्रमा नवीनतम प्रविधि र अन्तर्राष्ट्रिय नियामक अभ्यासहरूलाई अंगीकार गर्न आवश्यक रहेको छ ।
- घ) नीति निर्माणमा संघीय समन्वय र परामर्श: संघ, प्रदेश र स्थानीय तहबीच नीति समन्वय सुदृढ गर्दै विद्युत नियमनसम्बन्धी स्पष्ट कार्य विभाजन र सहकार्य प्रणाली विकास गर्नु वाज्ञानीय देखिन्छ ।
- ङ) नियामकीय उपकरणहरूको नियमित पुनरावलोकन: नियामक परिदृश्यमा, बदलाई उर्जा बजार र प्रविधिगत विकासअनुसार विद्यमान विनियमावली, निर्देशिका तथा म्यानुअलहरूको पुनरावलोकन र अद्यावधिक गरिरहन आवश्यक रहेको छ ।

६. निष्कर्ष

नेपालको उर्जा क्षेत्रमा गुणस्तरीय सेवा प्रवाह, निष्पक्ष प्रतिस्पर्धा, तथा उपभोक्ता हित संरक्षण सुनिश्चित गर्न विद्युत नियमन आयोगले विगत पाँच वर्षमा उल्लेखनीय प्रगति गरेको छ । नियामकीय आधारभूत संरचना विकास, उपभोक्ता सहभागिता, तथा निजी क्षेत्र र सार्वजनिक क्षेत्रबीच सन्तुलन कायम गर्ने कार्यमा आयोग सफल देखिन्छ । तर, आगामी दिनहरूमा बढ्दो विद्युत उत्पादन, प्रसारण, वितरण र उपभोगको परिप्रेक्ष्यमा नियमनको दायरा र जटिलता समेत वृद्धि हुँदै जाने छ । यस्तो अवस्थामा आयोगले आफ्नो संस्थागत क्षमता सुदृढ गर्दै, आधुनिक प्रविधिको सुदृढयोग गर्दै, र सेवाग्राही केन्द्रित कार्यप्रणालीलाई अभ्यासहरूको अधिक प्रभावकारी बनाउँदै जानु अपरिहार्य हुनेछ ।

विद्युत नियमन आयोग: वर्तमान अवस्था र अबको बाटो

डा. राम प्रसाद धिताल^१

१. पृष्ठभूमि

वर्तमान परिप्रेक्ष्यमा विद्युत मानव जीवनको एक आधारभूत, अपरिहार्य तथा अत्यावश्यक वस्तु वा सेवाको रूपमा विकसित भएको छ । विगतमा विद्युत सेवालाई सामाजिक सेवामा परिभाषित गरिएकोमा हाल यो व्यापारिक वस्तुमा रूपान्तरण भई बित्री, वितरण, आयात तथा निर्यातसमेत हुने गरेको छ । प्राकृतिक स्रोतमा अधीनस्थ भएकै कारणले गर्दा यसको जथाभावी प्रयोग तथा लापरवाहीरूपमा विकास हुँदा राष्ट्र तथा अर्थतन्त्रलाई नकारात्मक असर पर्ने हुन्छ । यसका अतिरिक्त, विद्युत क्षेत्रमा माग र आपूर्ति सन्तुलन कायम गर्न, उपभोक्ता हित र लगानीकर्ताको लगानी सुरक्षा सुनिश्चितता गर्न, र विद्युत प्रणालीमा एकाधिकार कायम हुन नदिन विद्युत नियमन अपरिहार्य रहेको वास्तविकता नै हो । यसै अवधारणाबमोजिम नेपाल सरकारद्वारा जारी गरिएको जलविद्युत विकास नीति, २०५८ को परिकल्पना तथा करिब दुई दशक देखिको गृहकार्य पश्चात विद्युत क्षेत्रको नियामकको रूपमा विद्युत नियमन आयोगको स्थापना भएको हो ।

विद्युत नियमन आयोग ऐन, २०७४ बमोजिम विद्युत उत्पादन, प्रसारण, वितरण तथा व्यापारलाई सरल, नियमित, व्यवस्थित र पारदर्शी बनाउने र विद्युतको माग तथा आपूर्तिमा सन्तुलन कायम गर्ने उद्देश्यले विद्युत नियमन आयोगको स्थापना गरिएको हो । ऐनले आयोगलाई विद्युत महसुलको नियमन, उपभोक्ताको हक तथा हितको संरक्षण, विद्युत बजारलाई प्रतिस्पर्धात्मक बनाउने, र विद्युत सेवा भरपर्दो, सर्वसुलभ, गुणस्तरीय तथा सुरक्षित बनाउने जस्ता महत(वर्पूर्ण जिम्मेवारीहरू प्रदान गरेको छ । मिति २०७६ साल बैशाख २५ गते अध्यक्ष र सदस्यहरूको पहिलो नियुक्तिस(गै औपचारिक रूपमा सञ्चालनमा आएको आयोगले स्थापना भएदेखि सीमित क्षेत्रमा मात्र आफ्नो कर्तव्य तथा जिम्मेवारी निर्वाह गरिरहेको भएता पनि ऐनले परिकल्पना गरेको पूर्ण नियामकीय भूमिका निर्वाह गर्न अभै सक्षम बन्न सकेको छैन । यस पृष्ठभूमिमा, आयोगले आन्तरिक क्षमता सुदृढ गर्दै ऐनले निर्दिष्ट गरेका दायित्वहरू प्रभावकारी रूपमा निर्वाह गर्न सक्षम हुने उद्देश्यले “आयोगको पाँच वर्षे मार्गीचित्र, २०८१” लागू गरेको छ । सो मार्गीचित्रमा आयोगको वर्तमान अवस्थाको समीक्षा गरिए आगामी वर्षहरूमा गरिनुपर्ने आन्तरिक सुदृढीकरण तथा नियामकीय कार्यहरूको प्राथमिकता निर्धारण र कार्यान्वयन सम्बन्धी विषयहरू विस्तारमा उल्लेख गरिएका छन् ।

पूर्ववत रूपमा अनुमान गर्न सकिने नियामकीय कार्यहरूले व्यवसायहरूलाई योजना निर्माण तथा लगानी गर्न सहज स्थिति सिर्जना गर्दै अप्रत्याशित परिवर्तनका कारण हुने संचालनगत तथा वित्तीय जोखिमलाई कम गर्न सहयोग पुऱ्या(उने हुँदा नेपालजस्तो विकासोन्मुख देशमा अनुमानयोग्य नियामकको विशेष महत्व रहन्छ । राष्ट्रको विद्युत क्षेत्रको प्रतिष्ठित तथा विश्वसनीय नियामक निकायको रूपमा परिचित हुने दूरदृष्टि बोकेको आयोगले पारदर्शिता, निष्पक्षता,

^१ लेखक विद्युत नियमन आयोगको अध्यक्ष हुनुहुन्छ । - सम्पादक

जवाफदेहिता, अग्रसक्रियता, व्यावसायिकता र प्रतिक्रियाशीलता लाई मार्गनिर्देशक सिद्धान्तको रूपमा ग्रहण गरेको छ । सरकारको नीतिलाई प्रभावकारी रूपले अवलम्बन गर्न, सेवा प्रदायकको वित्तीय सशक्तता सुनिश्चित गर्न, लगानीकर्ताको लगानी सुरक्षा गर्न र उपभोक्ताको हक हित रक्षा गर्न आवश्यक सशक्त नियामकीय प्रणाली निर्माण गरी कार्यान्वयन गर्नु आयोगको उद्देश्य हो । आयोगको क्षेत्राधिकारभित्र पर्ने सम्पूर्ण विषयहरूसम्बन्धी आवश्यक अध्ययन गर्ने र आयोगको काम, कर्तव्य र अधिकार कार्यान्वयन गर्ने आवश्यक सबै नियामकीय उपकरण निर्माण गरी नियामकीय गतिविधिहरू प्रभावकारी तरिकाले कार्यान्वयन गर्ने ध्येयका साथ आयोगले पाँच वर्षे मार्गीचत्र कार्यान्वयनमा ल्याएको हो ।

२. आयोगको वर्तमान अवस्था

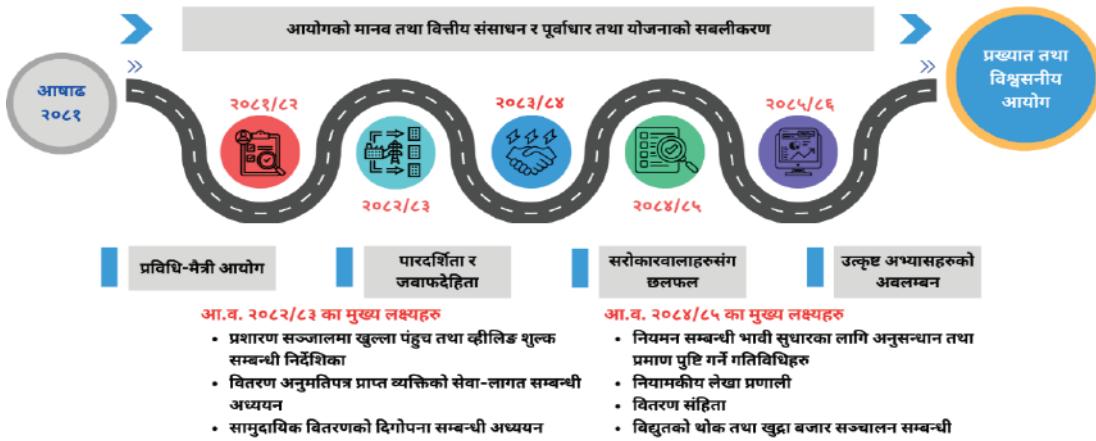
विगत पाँच वर्षमा आयोगले आफ्नो क्षेत्राधिकार भित्रका विभिन्न मामिलासँग सम्बन्धित आवश्यक नियामक उपकरणहरू तर्जुमा गरी कार्यान्वयनसमेत गरेको छ । आयोगको आन्तरिक प्रशासनलाई सुदृढ बनाउन विद्युत नियमन आयोगको बैठक सम्बन्धी कार्यविधि, २०७६ लगायत चालु आर्थिक वर्षमा आर्थिक प्रशासन विनियमावली, २०८१, कर्मचारी प्रशासन विनियमावली, २०८१ र विवाद समाधानसम्बन्धी विनियमावली, २०८२ जारी गरिएको छ । यसरी, हालसम्म विद्युत नियमन आयोगबाट विनियम(५), निर्देशिका (६), संहिता (१), म्यानुअल (१) र मार्गीचत्र (१) लगायत समग्रमा १४ वटा नियामकीय उपकरणहरू तर्जुमा गरी कार्यान्वयनमा ल्याएको छ । आयोगलाई ऐनद्वारा प्रदत्त अधिकारहरू नियमावलीले दिएको निर्देशकीय खाका भित्र रही उल्लेखित निर्देशिका, विनियमावली र म्यानुअल अन्तर्गत रहेर आयोगले आफ्नो नियामकीय जिम्मेवारी बहन गर्ने गरेको छ ।

सामान्यतया, कुनै पनि नयाँ निकाय गठनपश्चात उक्त निकायका प्रारम्भिक बर्ष चुनौतीपूर्ण नै रहन्छ । आयोगको पूर्ण गतिमा सञ्चालनका निमित्त स्थायी कर्मचारीसम्बन्धी व्यवस्था गर्नसकेको छैन र त्यसको परिणामस्वरूप आयोगको प्राविधिक, प्रशासनिक, तथा वित्तीय क्षमता सीमित भएको छ । यद्यपि आयोगमा नयाँ पदाधिकारीहरूले पदग्रहण गरेसँगै आयोगको संस्थागत सुदृढीकरणलाई प्राथमिकतामा राखिएको छ । जसको परिणामस्वरूप आयोगले आर्थिक प्रशासनसम्बन्धी विनियमावली, २०८० र कर्मचारी प्रशासन विनियमावली, २०८१ जारी गरी कार्यान्वयनमा ल्य(इसकेको अवस्था छ । यसै सँगै, पदपूर्ति समितिबाट पाद्यक्रम स्वीकृत भई पहिलो चरणमा तह पाँच (५), छैटौ (६), सात (७) र नौ (९) का कर्मचारीहरूको भर्ना प्रक्रिया लोकसेवा आयोगमार्फत छिटै शुरु हुनेछ ।

आयोगको अधिकार, भूमिका तथा जिम्मेवारीका सम्बन्धमा सरोकारवालाहरूलाई प्रभावकारी रूपमा संवाद गर्ने सम्बन्धमा पनि आयोगका लागि प्रशस्त सुधारका स्थानहरू छन् । आयोगसमक्ष पेश गरिएका निवेदन तथा दस्तावेजहरूको व्यवस्थापनमा चुनौती देखिनुका साथै नियमकीय उपकरणको कार्यान्वयनमा चुनौती देखिन्छ । विगतमा जारी गरिएका विद्युत उपभोक्ता महशुल, विद्युत खरिद सम्झौता, सार्वजनिक शेयर निष्कासनको पूर्वस्वीकृति, लगायतका व्यवस्थ(हरूमा समयानुकूल पुनरावलोकन र संशोधन गर्न नसक्नु अर्को कमजोर पक्ष हो । अन्ततः प्रसारण सञ्जालमा खुला पहुँच, थोक प्रतिस्पर्धा र प्रसारण तथा वितरण (ट्विलिड) शुल्क निर्धारण लगायतका विषयमा सीमित वा अपर्याप्त गृहकार्य भएका कारण आयोगको मुख्य भूमिका, अर्थात्, विद्युत क्षेत्र सुधारका सम्बन्धमा महत्वपूर्ण गतिविधिहरू अघिबद्धन सकेका छैनन् ।

३. आयोगको पञ्चवर्षीय मार्गचित्र (२०८१-२०८६):

आ.व. २०८१/८२ का मुख्य लक्ष्यहरू


- आन्तरिक प्रापाली निर्माण तथा नियमनकारी गतिविधिको विवाद समाधान सम्बन्धी विनियमाबली
- आन्तरिक नियन्त्रण प्रणाली सम्बन्धी विनियमाबली
- महसूल सम्बन्धी अध्ययन (भण्डारण आयोजनाबाट उत्पादित विद्युतको महसूल, Progressive र Regressive महसूल, स्टार्ट मिटरहरू पाइलट अध्ययन)

आ.व. २०८३/८४ का मुख्य लक्ष्यहरू

- उत्पादन र वितरणको महसूल निर्धारण सम्बन्धी Framework
- नयाँ विद्युत आयोजनाहरूको विद्युत खरिद समझौता तथा विद्युत खरिद विक्री दर सम्बन्धी निर्देशिका
- दोस्रो चरणमा रहेका विद्युत आयोजनाहरूको विद्युत खरिद समझौता तथा विद्युत खरिद विक्री दर सम्बन्धी निर्देशिका
- अनुमतिपत्र प्राप्त व्यक्तिहरूको व्यावसायिक सुशासन सम्बन्धी निर्देशिका

आ.व. २०८५/८६ का मुख्य लक्ष्यहरू

- पुनरावलोकन तथा अनुगमन
- आयोगको स्थिरता (Stability)

आयोगको उल्लेखित वर्तमान अवस्था र पहिचान गरिएका समस्या तथा चुनौती र आयोगलाई संस्थागत पूर्णता दिनुका साथै एक सक्षम नियामक निकायको रूपमा स्थापित हुन आयोगले आन्तरिक र नियामकीय गरी दुई किसिमका प्राथमिकताहरू तय गरेको छ ।

(क) आन्तरिक प्राथमिकता (Institutional Priorities):

- आयोगलाई प्राविधिक, आर्थिक, संरचनागत एवम् कार्यगत रूपमा स्वतन्त्र एवं सक्षम नियामक निकायको रूपमा स्थापित गर्नु ।
- आयोगको आन्तरिक संचालन तथा सेवा प्रवाहमा सूचना तथा सञ्चार प्रविधिको अनुसरण गर्नु/गराउनु ।
- पारदर्शिता, जवाफदेहिता तथा आयोगप्रति सेवाग्राहीको भरोसा वृद्धि गर्न स्पष्ट पद्धति लागु गराउनु ।

(ख) नियामकीय प्राथमिकता (Regulatory Priorities):

- आवश्यक प्राविधिक मापदण्ड, कार्यविधि तथा निर्देशन एवम् तिनमा समयानुकूल संशोधन गरी विद्युत प्रणा(लीको सुरक्षित र भरपर्दो सञ्चालन सुनिश्चित गराउनु ।
- विद्युत उत्पादनकर्ताबाट विद्युतको प्रतिस्पर्धात्मक खरिदसम्बन्धी व्यवस्था कार्यान्वयन तथा विद्युत व्यापार मार्फत विद्युतको थोक प्रतिस्पर्धाको स्थिति सुधार गर्नु ।
- नेपालमा उत्पादित बिजुलीको आन्तरिक तथा सीमापार विद्युत व्यापार बढाउने प्रयोजनका निमित्त प्रसारण

सञ्जालमा खुला पहुँचको व्यवस्था गर्नु ।

- थप पारदर्शी, व्यवस्थित तथा लागत प्रतिबिम्बित उपभोक्ता महसुलसम्बन्धी व्यवस्था स्थापित गरी सेवाप्रद(एकहरुको वित्तीय दिगोपन समेत सुनिश्चित गर्नु) ।
- विद्युत क्षेत्र सुधार र नियमनसम्बन्धी विषयमा निर्णय सहायता एवम् नेपाल सरकारलाई नीतिगत सिफारिस गर्ने कार्यलाई थप सशक्त बनाउन विभिन्न शैक्षिक संस्था, प्रवुद्ध समूह तथा विज्ञहरुसँग साझेदारी गर्नु ।
- विवाद समाधानसम्बन्धी उपयुक्त संयन्त्रको निर्माण गर्नु ।

४. आयोगको उद्देश्य: दृष्टिकोणबाट क्रियाशीलतासम्म

संस्थागत सुदृढीकरण बिना प्रभावकारी नियमन सम्भव छैन । उल्लेखित संरचनागत तथा नियामकीय प्राथमिकता अवलम्बन गर्ने हेतु आयोगद्वारा निम्न उद्देश्यहरु पहिचान गरी हासिल गर्ने लक्ष्य लिएको छ । आयोगको दूरदृष्टिकोजिम उद्देश्य प्राप्ति हुँदा आयोगले आफैलाई एक शसक्त तथा विश्वासिलो नियामको रूपमा स्थापित गर्न सक्नेछ । आगामी दिनहरुमा आयोगले नेपालको विद्युत क्षेत्र सुधार तथा सुदृढ नियमन गर्ने नीतिअनुरूप निम्न लक्ष्य प्राप्तिको प्रतिवद्ता जाहेर गर्दछ :

१. **संस्थागत नियमन:** आयोगको ऐनप्रदत्त प्रमुख जिम्मेवारी मध्ये एक संस्थागत नियमन गर्नु हो । यस उद्देश्यअनुसार आयोगले विद्युत क्षेत्रमा सुशासन कायम गर्नुका साथै आवश्यक भएमा अनुमतिपत्र प्राप्त व्यक्तिहरुको सेवा प्रवाहका सम्बन्धमा अनुगमन तथा निरीक्षण (Monitoring and Inspection) गर्नु रहेको छ । त्यसैगरी, आयोगद्वारा संस्थागत नियमनअन्तर्गत कोष प्रयोगसम्बन्धी कार्यविधि (Fund Utilization Guidelines) तर्जुमा गर्ने चरणमा रहेको छ । उक्त कार्यविधिमार्फत आयोगले संगठनात्मक पारदर्शिता, जवाफदेहिता र कार्यक्षमताको सुनिश्चितता गर्ने उद्देश्य लिएको छ । यसले संस्थाको स्रोतको द्रुपयोग हुन नदिई, रणनीतिक उद्देश्यअनुसार खर्च गर्ने मार्गदर्शन प्रदान गर्ने तथा सरकार, अनुमतिपत्र प्राप्त व्यक्ति तथा सेवाग्राहीहरुमाझ आयोग विश्वसनीयता प्रवर्धन गर्न सहयोग पुर्याउने छ ।
२. **नीतिगत सुभाव दिने:** विद्युत नियमन आयोग ऐन, २०७४ बमोजिम आयोगलाई विद्युत क्षेत्र सुधार तथा विक(सका सम्बन्धमा सरकारको सल्लाहकारको रूपमा कार्य गर्ने जिम्मेवारी प्राप्त रहेको छ । यसैअनुरूप, आयोगले सरकारलाई विभिन्न समयमा विद्युतको माग तथा आपूर्तिमा सन्तुलन कायम गर्ने, विद्युत क्षेत्रका प्रचलित नीति नियमनमा गरिनु पर्ने संसोधन तथा विद्युत नियमनका सम्बन्धमा नीतिगत सल्लाह सुभावसमेत दिने लक्ष्य रहेको छ ।
३. **आर्थिक नियमन:** नियामकको हैसियतले विद्युत क्षेत्रमा आर्थिक नियमन गर्ने उद्देश्य अन्तर्गत आयोगले विद्युतको उत्पादन, प्रसारण, तथा व्यापारको महसुल निर्धारण नियमन गर्नुका साथै ब्लिलिंग चार्ज, वितरण महसुल, Cost Recovery Framework, Tariff Based Competitive Bidding for Transmission Services, तथा Least Cost Expansion Plan लगायतको नीतिगत व्यवस्था तथा नियमन गर्ने दायित्व रहेको छ ।
४. **उपभोक्ता हक हित संरक्षण:** विद्युत उपभोक्ताको हक हित संरक्षण गर्नु आयोगको कानूनी दायित्व रहेको छ । विद्युत नियमन आयोग ऐन २०७४ बमोजिम आयोगसमक्ष विद्युत क्षेत्र नियमनका अलावा विद्युत उपभोक्ताको

गुनासो सुन्ने, कुनै उजुरी भए निरूपण गर्नुका साथै विवाद भएको खण्डमा उक्त विवाद समेत समाधान गर्ने दायित्व छ । यो लक्ष्य प्राप्ति अन्तर्गत आयोगद्वारा हालसम्म विद्युत उपभोक्ता हित संरक्षण सम्बन्धी निर्देशिका, २०८० र विवाद समाधानसम्बन्धी विनियमावली पनि हालैमात्र आयोगबाट जारी भईसकेको अवस्था छ ।

५. **प्रतिष्ठर्धात्मक विद्युत बजार तथा प्राविधिक नियमन गर्ने:** यस उद्देश्य अनुरूप आयोगद्वारा विद्युत सेवालाई सर्वसुलभ, गुणस्तरीय, भरपर्दो, सुरक्षित तथा लगानी मैत्री बनाउने अठोट लिईएको छ । यस अन्तर्गत आयोगले विद्युतमा खुला पहुँचको व्यवस्था गर्ने, प्रणाली संचालकको दायित्व निर्धारण, वितरण अनुमतिप्राप्त व्यक्तिहरूको कुशलता मापन गर्ने, तथा उत्पादन आयोजनाका लागत निर्धारण (Cost Benchmarking) लगायतका कार्य गर्ने छ ।

५. आयोगको हालसम्मको प्रगति

आयोगले आफ्नो स्थापनाको पाँचौ वर्ष पार गरी छैटौं वर्षमा लागेको छ । मुख्यतः यो अवधिमा आयोगले विभिन्न नियामकीय उपकरण तथा अवधारणापत्रहरू जारी गर्नु अतिरिक्त नेपाल विद्युत प्राधिकरण तथा बुटवल पावर कम्प(नीसमेत गरी तीन (३) पटक महसुल निर्धारण तथा एक (१) पटक महसुल निर्धारणको निर्णय पुनरावलोकन र अनुमति(पत्र व्यक्तिहरूको निवेदनउपर दैनिकरूपमा सुनुवाईसमेत गर्दै आइरहेको छ । मिति २०८१ असार १० मा आयोगमा नयाँ पदाधिकारीको आगमन सँगै आयोग नेपाल सरकारको नीति तथा आफ्नो पञ्चवर्षीय मार्गाचित्र (२०८१-२०८६) लाई आधार मानी उल्लेखित लक्ष्य प्राप्तिका लागि चालेका केही कदम तपशिलबमोजिम रहेका छन्:

१. **आयोगको पञ्च-वर्षीय मार्गाचित्र (२०८१-२०८६):** आयोगको दोस्रो पदाधिकारीहरूको आगमन लगतै पञ्च-वर्षीय मार्गाचित्र (२०८१-२०८६) तर्जुमा भई कार्यान्वयनमा आइसकेको छ । आयोगको आगामी पाँच वर्षको कायदिश यहि मार्गाचित्रमा आधारित भएर अगाडि बढने रहेको छ । यसै मार्गाचित्र अनुरूप आयोगले सुरवाती वर्षहरूमा आयोग आन्तरिक सुदृढिकरण, विवाद समाधानसम्बन्धी व्यवस्था, आन्तरिक नियन्त्रण प्रणाली, तथा महसुल अध्ययन लगायतका विषयमा आधारित रहने छ भने आगामी वर्षहरूमा खुला पहुँचको कार्यान्वयन, वितरण तथा व्हीलिंग महसुल निर्धारण, वितरण सीहिता, तथा नियामकीय लेखा प्रणाली लगायतका विषय अग(डी बढाइने छ ।
२. **आर्थिक प्रसाशन विनियमावलीको स्वीकृति:** विद्युत नियमन आयोगको आर्थिक तथा वित्तीय सुशासन र दैनिक संचालनका निमित्त अत्यावश्यक विद्युत नियमन आयोगको आर्थिक प्रशासन विनियमावली, २०८० उपर नेपाल सरकारद्वारा मिति २०८१/०६/०६ मा स्वीकृति प्रदान गरिएको थियो । त्यस पश्चात आयोगद्वारा नेपाल सरकारमार्फत प्राप्त सल्लाह सुभाव सम्बोधन गरी आयोगको मिति २०८१/०७/०२ मा आयोगको बैठकबाट जारी गरी कार्यान्वयनमा ल्याइएको छ । यो विनियमावली लागु भएसँगै अब उप्रान्त आयोगले खरिद लगायत अन्य आवश्यक आर्थिक गतिविधि सहजरूपमा हुने अपेक्षा गरिएको छ ।
३. **कर्मचारी प्रशासन विनियमावलीको स्वीकृति:** नेपाल सरकार अर्थ मन्त्रालयको मिति २०८१/०९/०१ को सहमतिबमोजिम आयोगद्वारा २०८१/०९/२५ गतेका दिन विद्युत नियमन आयोग कर्मचारी प्रशासन विनियम(वली, २०८१ जारी गरेको छ । यसै साथै अब आयोगलाई आवश्यक कर्मचारी नियुक्ति गर्न सक्ने बाटो खुलेको छ भने यस सम्बन्धमा लोकसेवा आयोगसंग समन्वय पनि भैरहेको छ । यो विनियमावलीको उद्देश्य आयोगको

कर्मचारीको भर्ती, सेवा सुविधा, काम कर्तव्य तथा पारिश्रमिकलगायत विषय सम्बोधन गरी आयोगलाई पूर्णरूपमा संचालनयोग्य बनाउनु हो ।

४. **अनलाइन डकुमेन्ट म्यानेजमेन्ट प्रणाली:** विद्युत नियमन आयोगद्वारा प्रदान गरिने सेवा जस्तै अनुमतिपत्र प्राप्त व्यक्तिहरूको शेयरको सार्वजनिक निष्काशन, विद्युत कम्पनीको शेयर संरचना परिवर्तन, तथा विद्युत खरिद बिक्री सम्भौतामा सहमति र संसोधनसम्बन्धी आयोगबाट हुने अन्य काम कारबाही तथा सेवा प्रवाहलाई छिटो-छरितो, विश्वसनीय, सेवाग्राही तथा प्रविधि मैत्री रूपले संचालन गर्नका निमित्त Online Document Management System (DMS) प्रणाली कार्यान्वयनमात्रा ल्याएको छ । सार्वजनिक सेवा प्रवाहलाई प्रविधि मैत्री बन(उन, सार्वजनिक सेवा प्रदायक र सेवाग्राही बीच हुने सूचना आदान प्रदानलाई थप व्यवस्थित तथा सरल बनाउन, कागजरहित नियमन (Paperless Regulation) को अवधारणा स्थापित गर्ने उद्देश्यका साथ आयोगद्वारा प्रविधिमैत्री पूर्वाधारहरू निर्माण गर्ने कार्यलाई प्राथमिकतामा राखिएको छ ।

त्यसै गरी, भविष्यमा आयोगबाट प्रदान गरिने सम्पूर्ण सेवा तथा काम कारबाहीलाई पूर्ण रूपले Digitalize गर्ने अभियानमा आयोग प्रतिबद्ध रहेको छ । यस प्रणालीले आयोगमार्फत हुने काम कारबाहीलाई मर्यादित तथा पारदर्शी बनाउनुका साथै अनुमतिपत्र प्राप्त व्यक्ति तथा सेवाग्राहीलाई पनि सेवा प्राप्त गर्न सहज र सरल हुने अपेक्षा गरिएको छ । यस प्रणाली अन्तर्गत हाल सार्वजनिक निष्काशन, विद्युत खरिद बिक्री दर निर्धारणलगायत सिमित विशेषता भएपनि आगामी दिनमा यो प्रणालीलाई नियामकीय सूचना व्यवस्थापन प्रणाली (Regulatory Information Management System) को रूपमा विकास गर्ने रणनीति आयोगले लिएको छ ।

५. **नियामकीय उपकरणहरूको पुनरावलोकन:** संसारभरि नै नियामक निकायलाई विनियमावली, निर्देशिका, संहिता, म्यानुअलका रूपमा कानून बनाई सम्बन्धित क्षेत्रलाई नियमन गर्न सक्ने अधिकार रहेको हुन्छ । नियामकले प्रत्यायोजित कानून (Delegated Legislation) तर्जुमा गर्नुका साथै त्यसको समयानुकूल पुनरावलोकन (Revision) गर्नु पर्ने निरन्तर प्रक्रिया (Continuous Process) हो । यसै सन्दर्भमा, आयोगद्वारा हालसम्म निर्माण भई कार्यान्वयन आएका विभिन्न नियामकीय उपकरणहरूको पुनरावलोकन गर्ने लक्ष्य लिएको छ । आयोगद्वारा आफ्नो पञ्च-वर्षीय मार्गीचित्र अनुसार सुरुवाती वर्षमा सम्पन्न गरिने आन्तरिक प्रणाली निर्माण तथा नियामकीय गतिविधि सुदृढीकरण गर्ने कार्यहरू अन्तर्गत उपभोक्ता विद्युत महशुल निर्धारणसम्बन्धी निर्देशिका, विद्युत अनुमतिपत्र प्राप्त व्यक्तिले पालना गर्नु पर्ने शर्त सम्बन्धी विनियमावली २०७६, विद्युत कम्पनीको शेयरको सार्वजनिक निष्काशनको पूर्वस्वीकृति सम्बन्धी निर्देशिका, २०७८ लगायतका विनियम तथा निर्देशिका(हरू पुनरावलोकन गर्ने प्रक्रियामा रहेको छ ।

यसै सम्बन्धमा, नियामकीय उपकरणहरू पुनरावलोकन गर्ने प्रक्रियामा पहिलो चरणमा आयोगद्वारा हालैमात्र विद्युत उपभोक्ता महसुल निर्धारण निर्देशिका, २०७६ संशोधन गर्न बनेको मस्यौदा जारी गरी त्यसउपर सम्बन्धित निकाय, विज्ञ तथा सरोकारवालासँग राय, सुझाव माग गर्ने प्रक्रियामा रहेको छ ।

६. **बुटवल पावर कम्पनीको उपभोक्ता महसुलदर निर्धारणमा पुनरावलोकन:** बुटवल पावर कम्पनीद्वारा संचालित आँधिखोला विद्युत वितरण केन्द्रमार्फत स्याङ्गजा तथा पाल्पा जिल्लाका उपभोक्तालाई वितरण गरिने उपभोक्ता विद्युतको महसुल ७५ प्रतिशतसम्म वृद्धि गर्नका निमित्त निवेदन दिएको थियो । उक्त निवेदनउपर तत्कालिन

विद्युत नियमन आयोगद्वारा मिति २०८१/०१/२१ मा ३९ प्रतिशतसम्म वृद्धि हुने गरी निर्णय भएको थियो । उक्त निर्णयको विरुद्धमा विभिन्न सरोकारवाला तथा महसुल वृद्धिको विरुद्धमा गठन भएको संघर्ष समितिलगायतले घरायसी तथा औद्योगिक उपभोक्तालाई त्वचषा कजयअप भई अत्यधिक मार पर्ने हुँदा पुनरावलोकन गरी पाउँ भनि निवेदन पेश गरेका थिए । आयोगमा नयाँ पदाधिकारीहरुको पदग्रहण पश्चात पटक पटक वार्ता तथा समन्वय गरी तत्कालीन निर्णयलाई पुनरावलोकन गरी समग्र उपभोक्ताको सरोकार तथा गुनासोलाई मध्यनजर गरी करिब ३० प्रतिशतले मात्र वृद्धि कायम हुने गरी निर्णय मिति २०८१/११/१९ को आयोगको २६४औं बैठकबाट भएको छ ।

७. **विवाद समाधानसम्बन्धी विनियमवाली, २०८१ जारी गरिएको:** विद्युत नियमन आयोग ऐन, २०७४ को दफा १८ बमोजिम आयोगलाई विद्युतसम्बन्धी विवाद समाधान गर्ने जिम्मेवारी प्रदान छ । अनुमतिपत्र प्राप्त व्यक्ति बीच तथा अनुमतिपत्र प्राप्त व्यक्ति र उपभोक्ता बीच हुने विद्युत सम्बन्धी विवादको निराकरण विद्युत नियमन आयोगमार्फत हुने परिकल्पना गरिएको छ । यस सम्बन्धमा, विद्युत नियमन आयोगद्वारा विवादको छिटो छरितो र न्यायसंगत विवाद निरूपणका निमित “विवाद समाधानसम्बन्धी विनियमवाली, २०८२ आयोगबाट हालैमात्र स्वीकृत भई जारी भईसकेको अवस्था छ ।

८. **खुल्ला पहुँच (Open Access) सम्बन्धी अवधारणा/छलफल पत्र जारी गरिएको:**

नेपालको विद्युत क्षेत्रको प्रतिस्पर्धात्मक अभिवृद्धि, विद्युत विकासमा निजी क्षेत्रको सहभागिता प्रवर्धन गर्न तथा उपभोक्तालाई आफ्नो सेवा प्रदायक आफै छनौट गर्ने पाउने अवसर प्रदान गर्न आयोगद्वारा खुल्ला पहुँच (Open Access) सम्बन्धी अवधारणा/छलफल पत्र तर्जुमा गरी सरोकारवाला तथा विषय विज्ञको राय, सल्लाह सुभाव प्राप्त गर्ने हेतु सार्वजनिक गरेको छ । उक्त छलफल पत्रमा खुल्ला पहुँचमार्फत हुने विद्युत व्यापारका लागि दस्तुरको संरचना (Pricing Structure), तथा व्हीलिंग दस्तुर (wheeling charges) लगायतका विषयहरु समेटिएका छन् । विद्यमान संरचना तथा अन्तर्राष्ट्रिय अभ्यासको समीक्षा गर्दै तयार गरिएको उक्त छलफल पत्रमार्फत नेपालमा खुल्ला पहुँच प्रणालीको स्थापनाका लागि आवश्यक नीति तथा नियामकीय मार्गीनिर्देशन प्राप्त हुनेछ । सरोकारवाला तथा विषय विज्ञहरू मार्फत राय सुभाव प्राप्त भएपश्चात विस्तृत परामर्श गरी कार्यान्वयनयोग्य निर्देशिका विकास गरिने छ ।

जलाशययुक्त जलविद्युत आयोजनाहरू (Hydro-Storage PPA) को विद्युत खरिद बिक्री दर निर्धारणसम्बन्धी धी अवधारणा/छलफल पत्र जारी गरिएको: विद्युत नियमन आयोगद्वारा २०८१ साल वैशाख ४ गते स्टोरेज (जलाशययुक्त) जलविद्युत आयोजनाहरूका लागि विद्युत खरिद बिक्री सम्झौता (PPA) दर निर्धारणसम्बन्धी छलफलपत्र सार्वजनिक गरेको हो । उक्त छलफलपत्रको उद्देश्य जलाशययुक्त जलविद्युत आयोजनाको लागत भरपाई (Cost Recovery) को सिद्धान्तको आधारमा उचित दर निर्धारण संरचना विकास गर्नु, लगानीकरण (किंतु आकर्षण बढाउनु, र उपभोक्ताको हित सुनिश्चित गर्नु रहेको छ । उक्त छलफलपत्रमा लागतमा आधारित (Cost Based) र मूल्यमा आधारित (Price Based) दुवै दृष्टिकोणलाई समेट्दै “हाइब्रिड” (Hybrid) विधि प्रस्ताव गरिएको छ । यस छलफलपत्रलाई जलाशययुक्त जलविद्युत आयोजनाको दीर्घकालीन वित्तीय स्थायीत्व, प्रणाली सन्तुलन, र नवीकरणीय ऊर्जाको एकीकरणलाई प्रवर्द्धन गर्ने दिशातर्फ महत्वपूर्ण कदमका रूपमा लिइएको छ ।

६. अपेक्षित परिणाम: नियमनको नयाँ युग

नेपाल सरकारको नीति तथा आयोगको पाँच वर्षीय मार्गीचित्रमा पहिचान गरिएका कार्यहरू सिद्ध गर्न सके नेपालको विद्युत क्षेत्रमा कायापलट हुने कुरामा कुनै सन्देह छैन । यसका अतिरिक्त, उल्लेखित उद्देश्य पूर्ति तथा नियम र सिद्धान्तमा आधारित नियमन (Rule and Principle based Regulation) ले आयोगलाई थप विश्वासिलो र निष्पक्ष नियामको रूपमा स्थापित गर्ने छ । परिणामस्वरूप, यसले विद्युत क्षेत्रमा लगानीकर्ताको मनोबल बढन गई लगानी प्रवर्धन हुने, सेवा प्रदायक सेवाग्राही प्रति जवाफदेही हुने, नेपाल सरकारको उर्जा मार्गीचित्र, २०८१ को लक्ष्य प्राप्ति हुने र कानूनी रूपमा सशक्त भएको स्वतन्त्र आयोग स्थापित गर्न सहयोग गर्ने छ । त्यसैगरी, पञ्चवर्षीय मार्गीचित्र (२०८१-२०८६) मा उल्लेख भएबमोजिम आयोगद्वारा आगामी दिनमा निम्नकार्यहरू प्राथमिकताका साथ अगाडि बढाउने उद्देश्य राखेको छ :

	विवाद समाधानसम्बन्धी विनियमावली, २०८१ जारी गरी निष्पक्ष र छारितो न्याय सुनिश्चित गर्ने ।
	विद्युत उपभोक्ता महशुल निर्देशिका, २०७६ लाई समसामयिक आवश्यकताङ्कुरूप संशोधन गर्दै सन्तुलित महशुल संरचना निर्माण गर्ने ।
	खुल्ला पहुँच (Open Access) निर्देशिका तयार गरी प्रतिस्पर्धात्मक बजार संरचना विकास गर्ने ।
	जलाशययुक्त (Storage) जलविद्युत आयोजनाका लागि PPA निर्देशिका जारी गर्दै लचिलो प्रणाली र लगानीमैत्री दर संरचना सुनिश्चित गर्ने ।
	आयोगको दीर्घकालीन रणनीतिक विकास योजना (Strategic Development Plan) तर्जुमा गरी दूरदर्शी नियमनका आधार तयार गर्ने ।
	लागत मापन (Cost Benchmarking) कार्य अधि बढाउंदै उत्पादन दर निर्धारणलाई तयार आधारित बनाउने ।
	ERC डिजिटल प्लेटफर्मको स्तरोन्ति गरी प्रविधि-मैत्री, पारदर्शी र छारितो सेवा प्रवाहको युग सुरु गर्ने ।
	PPA ढाँचामा एकरूपता (Standardization of PPA Template) ल्याई नियामकीय स्पष्टता र समझौतामा विद्यासनीयता बढाउने ।

नेपालको विद्युत क्षेत्रलाई पारदर्शी, प्रतिस्पर्धात्मक, र दीगो बनाउनका निमित्त विद्युत नियमन आयोगको भूमिका अझै सशक्त हुनुपर्ने आवश्यक रहेको छ । विद्युत उत्पादन, प्रसारण, वितरण तथा उपभोगका सबै चरणह(रूमा नियमनमार्फत गुणस्तर, सुरक्षा, तथा सेवाको विश्वसनीयता सुनिश्चित गर्न सकिन्छ । साथै, उपभोक्ताको हक अधिकार संरक्षण, निजी क्षेत्रको सहभागिता प्रोत्साहन तथा प्रवर्द्धन गर्नु, र निष्पक्ष महसुल निर्धारण गर्नु पनि नियमनको मुख्य उद्देश्यहरू हुन् । नेपालमा उपलब्ध जलविद्युत, सौर्य, वायुलगायतका प्राकृतिक स्रोतको प्रभावकारी उपयोगका लागि स्पष्ट नियम, विधि र नियामक निकायको भूमिका महत्वपूर्ण हुन्छ । त्यसैले विद्युत नियमनले नीतिगत स्पष्टता, लगानीमैत्री वातावरण, तथा ऊर्जा क्षेत्रको दीगो विकास सुनिश्चित गर्न सहयोग पुर्याउने कुरामा दुई मत हुनु हुदैन । अब नियमन केवल निर्देशन मात्र होइन देशको आर्थिक रूपान्तरण तथा “ऊर्जा स्वतन्त्रताको मार्गदर्शन” हो । जब नीति स्पष्ट हुन्छ, नियमन सशक्त हुन्छ फलस्वरूप लगानी आकर्षित हुन्छ, र जनतालाई सशक्त बनाइन्छ । यही हो विद्युत नियमन आयोगको आगामी यात्राको सार ।

Challenges of Extra High Voltage Transmission: Grid Code Compliance and Environmental Stewardship

Sandeep Neupane

Electrical Engineer

Electricity Regulatory Commission

Introduction

Electricity is a critical commodity in the contemporary world, powering industry, communications, technology, and homes and its utilization is one of the principle drivers of the county's development factors . It powers development, sustains life, and facilitates innovation in all areas of society and economy . Generation of electricity has been altered from conventional to alternative sources like solar and wind, a sign of technological advancements and focus on sustainability with time . Nepal's gross hydropower potential has been calculated as 72 .544 GW in three major river basins .¹ Commercial on-grid solar PV system potential has been estimated at 2100 MW while 3000 MW from wind .² Current installed capacity of Nepal stands at around 3505 MW from 212 hydro, thermal, solar, cogeneration plants .³

The effectiveness of an electricity system depends not only on generation but also on the alignment of the transmission network's capacity and design with the generation output . Any imbalance or deviation will cause voltage, power losses, or even system failure, and hence operation and planning of the two systems must be coordinated . Grid code and transmission system cannot be separated because grid code is the regulatory code that defines operation, planning, and performance of the transmission system . Grid code delivers technical and operational requirements to be implemented by Transmission System Operators (TSOs) and connected parties for secure, stable, and reliable operation of the power system . It offers standards regarding voltage levels, frequency control, system protection, data exchange, and generator, distributor, and consumer connection requirements . Through the imposition of these regulations, the grid code ensures that the transmission network is within safe operating limits and is still able to accommodate various power sources, such as renewables, without impacting grid stability and efficiency .⁴

Nepal Electricity Grid Code, 2080

Nepal Electricity Grid Code, 2080 issued by the Electricity Regulatory Commission on Ashad, 2080 (July 2023) contains the provision for prescribing minimum design criteria and operational rules and obligations to be adhered to by the generation station, transmission utilities, distribution utilities and traders in a coordinated, non-discriminatory, transparent and efficient manner and its publication is a major milestone in opening the power sector to private and particularly variable renewable energy generators . Since we have to transmit enormous amount of power generated

1 Assessment of Hydropower Potential of Nepal, WECS, 2019

2 UNEP/GEF, 2008

3 <http://www.doe.doe.gov.np/>

4 <https://ieeexplore.ieee.org/document/6345379>

over the long distance, we have to utilize the higher voltage level . Among the various parameters outlined in the grid code to ensure safe and secure grid operation voltage level stands out as one of the most critical . Nepal Electricity Grid Code, 2080 has also considered the voltage level of 765 KV in Nepal .

The Need of High Voltage

According to the classification of IEC, Voltage level above 230 KV falls under the category of Extra High Voltage . For 750 KV voltage level it is the rated voltage level and 765 KV is the highest operating voltage level .⁵ Power transmitted by any transmission voltage level relies on the sending end, receiving end voltage level, the angle between these two voltage level (power angle), line reactance, and the length of the transmission line i.e. $P = \dots$ For 750 KV line the average height of the phase conductors from ground level is about 18 m, separation between two phase conductors are about 15 m and for 50 Hz system the ratio of line reactance to line resistance (x/r) is about 20 .⁶ The average East-West length of Nepal is 885 Km and North South width is 193 Km .⁷ In case of Nepal the power handling capacity of single circuit for East-West and North- South can be illustrated in the figure below .

It can be seen from the above illustration that a single 750-kV line can carry as much power as four 400-kV circuits for the same transmission distance with 2 .5% loss of power compared to 4 .76% for the 400-kV line . This is the advantage of high voltage in minimizing the transmission losses and in obtaining maximum efficiency .

Limitation of EHV Line

a) Corona Effect

High voltage increases the potential gradient over the surfaces of conductors, which generates stronger electric fields . This may result in corona discharge, causing power loss, noise, and interference . Corona effect is the phenomenon in which the electric field around a high-voltage conductor exceeds the breakdown strength of air, ionizing the surrounding air . It produces a par-

5 Indian Standard 2026

6 Extra High Voltage A .C . Transmission Engineering by R .D . Begamudre

7 <https://doi.org/10.1177/13117/nepal-identity--12th-edition--2081/>

tial glow, hissing noise, ozone, and power loss . It is enhanced with rising voltage, sharp edges of conductors, and poor weather, affecting transmission efficiency and electromagnetic compatibility . Extra High Voltage lines give rise to audible noise when there is corona on the conductors . The noise is especially intense under bad weather conditions . The noise is broadband from very low frequency to about 20 kHz . Corona discharges give rise to positive and negative ions that are alternately attracted and repelled by alternating reversal of polarity of the ac excitation . Their movement produces sound-pressure waves at frequencies equal to twice the power frequency and harmonics thereof, in addition to the broadband spectrum generated by random ionic movements .

For 750 KV line with "Drake" conductor (diameter 2*28 .1 mm)⁸ may produce an audible noise of 55 dB at a distance of 30m away from the center conductor in horizontal configuration in day time and about 65 dB at night time which is equivalent to noise of passenger car at 65 km/h at about 30 meters and 10 meters respectively.⁹ The Bonneville Power Administration in the U.S.A . uses the Perry Criterion to assess acceptable noise levels from transmission lines . Based on this, sound levels less than 52 .5 dB(A) will result in no complaints, sound levels between 52 .5 dB(A) and 59 dB(A) will result in a few complaints, and sound levels greater than 59 dB(A) will result in numerous complaints, indicating growing sensitivity to transmission line noise by people .

Besides, this pulse-type corona causes interference with radio broadcasting in the frequency range 0 .5 MHz to 1 .6 MHz . For 750 KV line with two bundle conductor at a distance of 30 m from the central line conductor, the RI is calculated to be 43 .5 dB at 0 .5 MHz at normal time and 60 .5 dB in rain which is equivalent to approximately the buzz or static we might hear from a weak AM radio station and loud static noise we hear when driving underneath high-voltage lines in a thunderstorm with the radio on.¹⁰ The value to be utilized for this RI limit is generating a lot of discussion and some nations, especially in Europe, have established specific limits for the RI field from power lines . In Czechoslovakia (present-day Czech Republic and Slovakia), the limit of radio interference for a 750 kV line was 40 dB (microvolts per meter) at 70 meters from line center .^{6,11} This is characteristic of attempts to reduce electromagnetic interference with communications systems, especially in sensitive or heavily populated regions .

b) Voltage gradient on Earth Wire

For 750 KV with two sub conductor per phase and two earth wire at a height of around 30 m from the ground surface, the charge coefficients of ground wires are around 4500 V.⁶ Though the physical potential of the ground wire is zero (grounded), it has induced charge by the electric field of the high-voltage phase conductors . A larger value of the charge coefficient indicates that the ground wire is carrying more induced charge for each volt of influence from the phase conductors . The use of induced potential on ground wires of 750 kV lines is advantageous in terms of powering remote sensors, facilitating smart grid capability, and providing communication systems in remote locations . If induced surface voltage gradient is excessive, then it can cause corona discharge even on earth wires, particularly in dirty or wet conditions and have very significant effects on design of insulation, and clearance spacings . While grounded at towers, the earth wires electrically float between towers and retain induced charge, especially on long runs and cause unexpected potential differences between tops of towers and surrounding ground (touch voltage hazard) .

8 <https://www.lzicable.com/drake-acss-conductor/>

9 <https://www.iacoustics.com/blog-full/comparative-examples-of-noise-levels>

10 <https://krex.k-state.edu/server/api/core/bitstreams/dca30eb1-9040-4dee-a32f-c7dbb4ce5d0e/content>

11 http://hdl.ethernet.edu.et/bitstream/123456789/59027/1/H.%20Kikuchi_1983.pdf

c) Effect of Electrostatic and Electromagnetic fields

High voltage transmission lines produce electrostatic and electromagnetic fields that can impact the environment, wildlife, and human health. Electrostatic effects can induce voltages on metallic objects around the transmission lines, posing shock risks to people and animals. For instance, a metal fence beneath a 400 kV power line could generate a potential difference that would shock cattle. Electromagnetic fields from alternating current can interfere with sensitive electronics, confuse bird navigation, or affect animal migration patterns. Powerful EMFs in woodland or nature reserve areas can frighten away some species of wildlife or disrupt nesting behavior. Tests conducted in cages under Extra High Voltage lines have discovered that pigeons and hens are impacted by high electro static field at the level of around 30 kV/m. They will not be able to pick grain because of chattering of their beaks which will retard their growth. At the field intensity of 20 kV/m (RMS), the pointed tips of the stalk generate corona discharges in such a manner that the top area of the grain-bearing structures is damaged in crop plants like wheat, rice, sugarcane, etc. In human beings, although EMFs are non-ionizing, chronic exposure near high-tension lines has also raised concerns about potential health effects such as sleep disturbances, headaches, increased levels of stress, Childhood Leukemia, risk of miscarriage in pregnancy.⁶

Policy and Regulatory Responses

Regulators have an important role to play in reducing the health and environmental effects of Extra High Voltage (EHV) transmission lines through the exercise of standards and policy through Grid Codes and environmental laws. Regulators are responsible for ensuring utilities meet corona discharge, audible noise, and radio interference thresholds by imposing conductor configurations, bundle spacing, and surface voltage gradient limits. Regulators ought to require regular testing of EMF exposure levels, especially in the vicinity of populated or sensitive ecological areas, and establish buffer zones to mitigate risks to humans, animals, and vegetation. Policies need to be established to mitigate ground wire charge effects by calling for adequate grounding schemes, using insulators or surge arresters, and prohibiting the placement of metallic objects very near transmission corridors. Public health codes need to be included in order to educate people and establish secure construction guidelines. These measures must be included within the Grid Code or environmental compliance documentation to facilitate efficient, secure, and sustainable power transmission across all regions.

Resilience of the Nepalese Power System: Towards Sustainable Future

Sushila Dawadi⁹

Introduction

Nepal's power sector is experiencing rapid growth, driven by increasing demand, regional integration, and a growing dependence on hydropower. While run-of-river (RoR) hydropower plants are the primary source of electricity generation, they face challenges due to seasonal fluctuations in water flow. To address these issues, it is essential to manage seasonal demand peaks through advanced storage technologies, such as battery storage, pumped storage, or storage hydropower projects. A combination such technologies can be used for balancing energy in short term, medium term and long term to provide reliable electricity supply for all.

Following the successful implementation of the Government of Nepal's initiatives outlined in the National Energy Crisis Mitigation and Electricity Development Action Plan (2072 - 2082), nationwide load shedding was officially eliminated on 2075/02/01. As part of commitment to sustainability, Nepal has set an ambitious goal of achieving net-zero emissions by 2045. To meet this clean energy target, a comprehensive energy transition is essential, that gradually replaces the use of coal and petroleum products across key sectors such as households, agriculture, industry, transportation, construction, and mining.

Furthermore, the reliability of Nepal's power system has been increasingly threatened by unpredictable weather patterns and climate-related factors, particularly disrupting rainfall patterns. These disruptions affect both hydropower generation and the overall stability of the grid, making it crucial to adopt solutions that enhance the resilience, reliability, and flexibility of the system.

Existing Scenario

Nepal's total installed electricity generation capacity is approximately 3,421 MW, with hydropower plants accounting for the majority of this capacity, contributing approximately 3,339 MW. This underscores the country's strong reliance on hydropower as its primary source of electricity. In terms of energy, The Nepal Electricity Authority (NEA) and its subsidiaries provide 39.43% of the total energy supply, while Independent Power Producers (IPPs) contribute 47.00%, and the remaining 13.57% is imported from India to meet the current demand.

Nepal's peak power demand for the year 2024 is recorded to be around 2,000 MW. During the wet season (Jestha 16 to Mangsir 15, roughly late May to early December), the existing generation capacity is typically sufficient to meet national demand due to the high water levels, optimizing hydropower output in run-of-river (ROR) projects. During the wet season, the Nepal Electricity Authority (NEA) exports surplus electricity. Conversely, in the dry season (Mangsir 16 to Jestha 15, December to mid May) a notable significant drop in river flow limits hydropower output and thus the generated power. To bridge this seasonal gap, NEA relies on electricity imports from India.

¹ The authoress is assigned to the Electricity Regulatory Commission in the capacity of Electrical Engineer .-- Editors

Kulekhani-I and Kulekhani-II are the only storage-cum-cascade hydropower projects in Nepal . In addition, the NEA operated Peak Run-of-the-River (PROR) projects such as Kaligandaki, Middle Marsyangdi, Marsyangdi, Chameliya play a crucial role in meeting daily peak demand . Nepal also has two thermal plants: the 39 MW Duhabi Multi-Fuel Plant (established in 1990) and the 14 .41 MW Hetauda Diesel Powerhouse (established in 1963) . However, these thermal plants have contributed only marginally to overall energy generation over the years, primarily due to operational inefficiencies .

Kushaha - Kataiya 132 kV (Second Circuit) Transmission Line, Raxaul - Parwanipur 132 kV (Second Circuit) Transmission Line, Bardghat - Sardi 132 kV Transmission Line, Trishuli 3B 220 kV Hub Substation, Hetauda - Dhalkebar - Inaruwa 400 kV Substation Expansion, Dhalkebar - Inaruwa Section of Hetauda - Dhalkebar - Inaruwa 400kV Transmission Line, and Hetauda - Bharatpur - Bardaghat 220 kV Transmission Line projects are some of the recently commissioned projects of NEA . The current electrification rate is 99% and following Government's electricity roadmap, NEA is committed to provide access of electricity to every household by FY 2024/25 .

[*NEA Annual Report, 2023/24]

Enhancing Power Resilience

Present situation highlights the urgent need to diversify Nepal's energy mix . Incorporating alternative and complementary sources such as solar, wind, pumped storage, and biomass can help balance seasonal variability and reduce over-reliance on any single source . Additionally, investing in energy storage technologies, enhancing grid flexibility, and improving forecasting and demand management systems will further strengthen the resilience of the power system .

Enhancing power system resilience is a comprehensive approach that addresses all segments of the electrical infrastructure - generation, transmission, and distribution . Each of these components plays a vital role in ensuring a stable and high quality power supply, especially under adverse conditions such as extreme weather events, cyber attacks, or equipment failures . Some international best practices in this regard are discussed here .

1. Energy Mix: From the generation perspective, a diversified energy mix has to be implemented to ensure continuous power supply .

- Water is pumped to a higher elevation during periods of low-cost or surplus power and then released to generate electricity during peak demand . This method, known as **Pumped-Storage Hydropower (PSH)**, is widely used in countries like Switzerland, China, Japan, USA, and India . PSH is particularly well-suited for mountainous regions and can be integrated into existing hydropower infrastructure with the addition of reservoirs .

In Nepal, 42,000 MW of potential Pumped Storage projects have been identified across the country, with further studies underway to determine the most viable options for development . Currently, projects under various stages of study include the Syapru Lake PSP (332 MW) and the Jawa Tila PROR project (73 MW) [/*NEA Annual Report 2023/24] .

- **Lithium-Ion Battery are deployed for power storage, which makes** storage easily scalable and quick to deploy, are usually ideal for short duration storage (1- 4 hours) . So, it could be used for grid services, renewable smoothing, and backup power . USA, South Korea, Australia, Germany uses this technology for storing power .

- **Flow Batteries (Vanadium Redox, Zinc-Bromine)** are being used for storing power for longer hours (4+ hours), and are being used in China, USA, Japan, Europe .
- Heat is trapped in concentrated Solar Power in the form of **Thermal Energy Storage**, this method has been practiced in Spain, UAE, USA .
- Compressed air is stored in underground caverns or tanks and is released to drive turbines . **Compressed Air Energy Storage** has been applied in Germany, USA, China .
- Surplus electricity is used to produce **green hydrogen** via electrolysis and is stored, which later is converted to electricity (via fuel cells or turbines) or used in transport and industry . **Hydrogen Energy Storage (Power-to-Gas)** has been used in Japan, Germany, South Korea .

1. Upgrading Transmission and Distribution Line

Enhancing transmission system resilience involves reinforcing physical infrastructure such as towers, conductors, and substations to withstand extreme conditions, along with deploying advanced technologies . Wide Area Monitoring Systems (WAMS) with Phasor Measurement Units (PMUs) provide real time data for early fault detection and system stability . Flexible AC Transmission Systems (FACTS) and High Voltage Direct Current (HVDC) links improve power flow control and operational flexibility, enabling faster response during grid disturbances . Together, these measures strengthen the grid's ability to withstand and recover from disruptions .

Nepal's power distribution infrastructure is frequently vulnerable to extreme weather conditions, which often lead to widespread power outages during storms, heavy rainfall, or snowfall . These weather related disruptions leave many consumers without electricity for extended periods, severely impacting daily life and economic activities . Furthermore, the aging and outdated structure of the distribution network has become a significant safety concern . Faulty or poorly maintained equipment, combined with obsolete design, has resulted in numerous accidents, posing risks to both human life and property .

To effectively address these challenges, it is crucial to implement a phased and strategic upgrade of the power distribution infrastructure . This includes modernizing distribution lines, replacing aging transformers, and enhancing protection systems to improve reliability and safety across the network . Such upgrades will help minimize outages, reduce technical losses, and mitigate the risk of accidents . In addition to physical improvements, the adoption of advanced technologies should be prioritized . The integration of smart meters and Advanced Metering Infrastructure (AMI) will enable real-time monitoring, accurate billing, and better demand-side management . NEA shall prepare the domestic consumption plan and shall implement these upgrades via existing eight numbers of distribution and consumer service directorate, which shall be transformed into distribution *companies* (*Recommendation from High level commission on Economic Reform) . Together, these upgrades represent a vital step toward building a more resilient, efficient, and future-ready power distribution system in Nepal .

Present Status

The Electricity Act, 2049 and Regulation, 2050 have opened the door for private sector participi-

pation in generation, transmission, and distribution of electric power . However, the government is yet to establish the necessary guidelines to facilitate these activities . Currently, the determination of tariff rates and wheeling charges is under process by the Energy Regulatory Commission (ERC) .

Given that transmission lines require significant investment and can have environmental impacts, the governing body must develop a long-term plan for upcoming projects . Such plan should ensure the availability of grid connections for commissioned projects and anticipate any potential congestion in the future . However, due to grid constraints and limited export capacity, the Load Dispatch Centre (LDC) is occasionally compelled to issue curtailment directives, instructing certain generating units to reduce output by up to 10% of their installed capacity . At present Rastriya Prasharan Grid Company Limited (RPGCL) and Nepal Electricity Company are government owned companies for construction and operation of Transmission Lines .

To ensure a consistent and uninterrupted power supply, NEA has undertaken a series of initiatives to reinforce the existing infrastructure:

- Focus on the construction of large-scale reservoir and Pumped Storage Hydropower Projects,
- Implementation of underground distribution systems in major cities such as Kathmandu, Lalitpur, Bhaktapur, Pokhara, and Bharatpur
- reinforcement of existing networks in Madhesh Pradesh, to improve the quality of electricity supply
- Installation of smart meters and Advanced Metering Infrastructure (AMI) in areas under the Ratnapark and Maharajgunj Distribution Centers to increase operational efficiency and reduce energy losses
- Ongoing efforts to procure 800 MW of power from solar photovoltaic (PV) systems to diversify the energy mix .

Additionally, RPGCL has developed a comprehensive transmission line master plan, based on which the implementation of key transmission infrastructure is underway . This includes the construction of critical transmission lines and substations at voltage levels of 132 kV, 220 kV, and 400 kV .

Key Challenges

Ensuring a consistent and high quality supply of electricity throughout the year remains one of the most pressing challenges on the generation side of Nepal's power sector . Seasonal fluctuations in hydropower output lead to a mismatch between supply and demand . To effectively manage this imbalance, the introduction of efficient and scalable energy storage solutions is crucial . Technologies such as pumped hydro storage, battery storage systems, or hybrid energy models can store surplus electricity generated during peak periods and release it during times of shortage, thereby enhancing grid reliability and operational flexibility .

To boost domestic electricity consumption and fully utilize the available generation capacity, the power supply must be both uninterrupted and compliant with established quality standards, including voltage and frequency stability . Reliable electricity is a prerequisite for encouraging households, businesses, and industries to transition to electric solutions . To support this shift, the government should implement targeted subsidy programs that promote the adoption of electric appliances particularly in the areas of cooking, transportation (such as electric vehicles), and

commercial and industrial applications . These incentives will not only reduce dependence on imported fossil fuels but also foster energy self-sufficiency and environmental sustainability .

In the transmission sector, one of the key barriers to accomplish timely completion is the challenge of land acquisition . To overcome this, proactive government facilitation is essential . Once land is acquired, it should be effectively utilized such as by installing solar panels along the Right of Way (ROW) . This approach can help deter restricted farming or construction in these areas while contributing to energy generation through solar power integration . Moreover, the construction of transmission lines must be expedited to accommodate the growing load demands and the expanding grid network .

Simultaneously, reinforcing and modernizing the distribution sector is vital for ensuring the safety and continuity of power supply . Upgrading distribution lines, improving substations, and implementing modern protection systems are necessary steps to reduce outages, prevent accidents, and enhance service quality for end-users .

Together, these coordinated efforts across the generation, transmission, and distribution sectors will help build a more resilient, efficient, and consumer-friendly power system in Nepal .

Strategic Plan

Strategic planning is essential to ensure a stable and uninterrupted electricity supply throughout the year . This includes long-term infrastructure development, policy support for renewable energy integration, and regional cooperation for energy trade . By adopting a more balanced and forward-looking approach, Nepal can move toward a more secure, sustainable, and self-reliant energy future .

The Government must create and gradually implement strategic plans for the short, medium, and long term . Since electricity is vital for improving the quality of life for the Nepalese population, the priority should be on increasing domestic consumption, with electricity exports considered only after fulfilling internal requirements . Key plans for this transition include:

- Short term plan (1-3 years):
 - α) Deploy small scale solar PV with Battery Energy Storage System (BESS), and stand-alone BESS shall be installed in substations to improve power quality,
 - β) Commissioning of pumped storage hydropower projects on the existing infrastructures,
 - γ) Implementing incentive programs to promote the use of electric appliances in households and industries,
 - δ) Expediting transmission line construction projects through streamlined land acquisition and regulatory processes .
- Medium term plan (3-7 years):
 - (α) Installation of medium and large scale solar PV projects
 - (β) Commissioning of pumped storage hydropower projects
 - (γ) Completion of Hetauda-Dhalkebar- Inaruwa 400kV transmission line as the backbone of Nepalses INPS
- Long term plan (7 and above years):
 - α) Commissioning of storage type hydropower projects eg: Budhigandaki hydropower proj-

ect

- β) Building a smart, resilient national grid capable of integrating various energy sources and supporting cross-border electricity trade
- χ) Establishing Nepal as a regional green energy hub through strategic exports once domestic energy security is assured

Conclusion

Nepal's power system stands at a pivotal moment, rich in hydropower potential but challenged by seasonal imbalances and infrastructure gaps . Building resilience requires more than just expanding capacity; it calls for smarter planning, energy diversification, and investments in modern transmission, storage, and distribution . In the long term, with the adoption of advanced technologies and a diversified energy mix, Nepal has the potential to become not only energy self-reliant but also a net exporter of electricity to neighboring countries such as India and Bangladesh . Additionally, by leveraging its clean energy production, Nepal can benefit economically through participation in international carbon trading markets .

MITIGATING HYDROLOGICAL RISK IN HYDRO-POWER THROUGH REGULATORY INTERVENTIONS

Hari Bahadur Khatri¹

Introduction

Hydropower is one of the oldest and most widely used renewable energy sources, it provides reliable, clean and stable electricity. As the world is focusing towards a renewable and more sustainable energy future, hydropower comes to be a cornerstone of the renewable energy mix. However, there are many risks in hydropower in both construction and operation phase. Among these, hydrological risk i.e. uncertainty related to the availability and variability of water flows is the most significant risk.

Hydrological risk in hydropower projects may arise from many factors, including seasonal or annual fluctuation in the river flow due to changing weather patterns, and long-term changes due to climate change. The hydrological risk can impact the viability, profitability, and long-term sustainability of hydropower projects. Managing and minimizing these risks is critical to the success of hydropower project, this article explores the cause of hydrological uncertainty, its impact on hydropower projects, and the role of regulators to minimize the hydrological risk.

Hydrological Risk:

Water flow in the river is an output of complex natural phenomena i.e. Hydrological cycle which are highly variable, interdependent, and influenced by both short-term weather and long-term climatic trends. Accurate prediction of river hydrology is very challenging due to the various reason as briefly discussed below:

- a) **Natural Variability of Weather and Climate:** Rainfall is inherently unpredictable beyond a few days, and even with modern forecasting technology, intensity and spatial distribution cannot be predicted accurately. Monsoon and snowmelt can shift due to impact of climate change in long run which is hard to forecast accurately, on the other hand extreme weather events like storms, droughts, and flash floods are becoming more frequent and unpredictable.
- b) **Complex Watershed Characteristics:** Watersheds from where river gets water vary in soil type, vegetation, land use, land cover and topography, which all affect how water moves through the watershed. Even small changes in land cover in watershed (e.g., deforestation, urbanization) can drastically change runoff patterns and river flow. And also, groundwater flow and infiltration are difficult to measure and model accurately.
- c) **Hydrological Data Limitations:** Especially in mountainous or developing areas, there is lack of, reliable, consistent and long-term hydrological data. Lack of

¹ S.D.E., Electricity Regulatory Commission

long-term consistent data makes it hard to establish trends or build reliable models and predict the river flow more accurately .

- d) **Long-term Uncertainties from Climate Change:** Many Studies shows that Climate change is altering precipitation patterns, shifting of monsoon, increasing no . of dry day while increasing intensity of rainfall, increasing temperature and glacier melt rates etc . which is making past data less reliable for future predictions of flow . Traditional method of study based on past data may no longer be valid in a changing climate . And also, these changes are causing decrease in river flow in dry season, increase in flood magnitude recurrence of flash floods etc .
- e) **Human interventions in the hydrological cycle:** Storage Dams, river basin diversion and water withdrawals for irrigation can also modify the river flow regime and decrease the river flow impacting the downstream projects . Similarly, unauthorized water use or poorly managed catchments can also introduce unexpected variability .

So, in summary, hydrological risk is not attributed from a single factor and it is difficult to predict accurately . As a result, hydrological forecast especially beyond the short term always involve a degree of uncertainty that is why hydrological risk is a critical factor in planning and managing hydropower and other water dependent infrastructure project .

Impact of Hydrological Risk on Hydropower Projects

Hydropower generation depends on two main factors; river flow and head . The head of the project once fixed is unchangeable and river flow is only the factor that affects the electricity generation from the hydropower plant . This variability can result in generation shortfalls, which may not only affect the plant's output but also its financial viability . Hydrological risks, if not well understood and managed, can lead to unforeseen construction and operational challenges, natural disasters even project failures . Some of the impacts of hydrological risks on hydro project are:

- a) **Impacts on power system:** A dry year or low rainfall season can lead to a sharp decline in generation capacity . Without sufficient inflow, a hydropower plant may operate below its design capacity, leading to a drop-in power output . A shortfall in generation can lead to power shortages in the country's power system .
- b) **Financial Impacts:** The financial impacts of hydrological risk are significant and can have serious effects on the project's profitability . Since hydropower revenue is directly tied to power generation, a fluctuation in water flow can have bad impact in revenue generation . This can also make it challenging to maintain profitability or meet debt obligations . Due to the hydrological risk on the project, the lender of the project may demand high interest rate, keep strict conditions or large equity contribution from the investor which may increase the investment on the project making energy prices costlier . Due to the inability of supplying contract energy to the off taker, the project may have to pay penalty which will further degrade the financial health of the companies .

c) **Impacts on Project Sustainability:** In long term, due to the effect of climate change contributing shifting of monsoon, reduction in rainfall amount, increase in rainfall intensity, it is becoming more difficult to predict future water availability. In Himalayas region decrease in snow and glacier may reduce the river flow drastically whereas the extreme flood, flash floods will increase the risk of damaging the projects.

Regulatory Measures to Mitigate Hydrological Risk in the context of Nepal

Nepal being located in the Hindu Kush Himalayan region; climate change is showing more impacts here as compared to other parts of the world. Frequency and magnitude of flood, flash flood, Glacier Lakes Outburst flood (GLOF), Cloud burst flood (CLOF) are increasing day by day making hydropower as well as other water resource project more vulnerable to natural disaster such as flood, landslide etc. On the other hand, unexpected decrease in river flow in dry month are being observed causing decrease in energy generation from hydropower project. Electricity generation from hydropower is the top most priority of Nepal Government. This can be achieved only through the investment from both government and domestic/foreign investors. The increasing hydrological risk on the project and lack of proper mechanism/regulation for its minimization may discourage the investors and government's target may not be fulfilled. That's why it has been imperative to set the mechanism to address these issues by any means. The electricity sector regulator may be the appropriate institution to initiate and work on it.

The Electricity Regulatory Commission of Nepal was established to regulate generation, transmission, distribution and trading of electricity by the Electricity Regulatory Commission act 2074. According to the clause 13 (kha) and 13(ga) of the act, the commission has mandate to fix the electricity rate for power purchase agreement between electricity generator and distributor or trader and also give the consent for PPA agreement between two parties. Currently the commission has "bylaws on power purchase agreement and term to be followed by the Licensee, 2076" in implementation. This bylaw has set out the provision that the project with capacity less than 10MW has to provide availability declaration to the purchaser and there will be no any penalty for not meeting those availability declarations. This provision has addressed the seasonal hydrological risk of the project with capacity less than 10MW but the bylaw is silent for the project with capacity more than 10MW. Similarly, the generator will not get any compensation from the purchaser even the generated power couldn't be transmitted due to the failure of transmission line or substation by any natural disaster's earthquake, landslide, flood etc. These current provisions on the bylaw are not sufficient to address this challenging issue. The ERC in the future can create frameworks, policies, and mechanisms to ensure that hydropower developers, off taker and other stakeholders are protected from excessive hydrological risk. It can also amend the existing bylaws or bring new guideline or formulate PPA template incorporating measures to address all these issues so that the development of the projects expedites. Some of the key points, the regulator can bring in its purview are briefly discussed here:

a . Fair risk allocation and transparency in PPA: One of the major impacts of hydrological uncertainty lies in the power purchase agreement between the project developers and electricity buyers (off taker). PPA establishes the financial terms and conditions of electricity purchase and sale. So, hydrological risk must be carefully addressed into these agreements so that risk can be equally shared by both the parties .

1. **Fair Risk Allocation:** Regulators can play a major role in ensuring that hydrological risks are fairly allocated between the hydropower plant operators and the buyers by introducing:
 - i. **Flexible Tariff Structures:** Regulators can encourage the use of tariff models that reflect the risks associated with hydrological variability. For example, sliding tariffs, that is adjusted based on actual generation, or take-or-pay clauses that guarantee payments even when generation falls short due to hydrological factors, can provide more stability to hydropower projects.
 - ii. **Force Majeure Clauses:** Regulators may introduce the force majeure provisions in PPA that are applied to ensure that hydropower projects are not unduly penalized during extreme hydrological events like floods, droughts, or landslides. This clause can allow hydropower projects to be excused from performance requirements under such circumstances, ensuring they are not financially burdened by conditions beyond their control.
2. **Transparency in Hydrological Data:** Access to reliable data on river flow, seasonal changes, and climate forecasts is critical for both project developers and buyers to understand the hydrological risks and manage it more efficiently. Regulators can mandate that accurate, transparent, and up-to-date hydrological data be available for all stakeholders involved in the hydropower project.

b . Setting Standards for Hydrological study and estimation of river flow

Proper hydrological study and estimation of river flow are critical for energy generation forecast, operation scheduling, and financial planning and risk management. So, the regulators can formulate and implement the standards requiring hydropower developers to perform detailed hydrological assessment before PPA approval. Those standards may include detailed procedure to estimate the long-term river flow, minimum data quality requirement to be used, climate change impact consideration on study, seasonal variability and extreme weather events consideration. Regulators can also encourage the use of appropriate hydrological models that incorporate climate projections, to ensure that projects are prepared for long-term variability. The regulators can also require the third-party verification of hydrological study prepared by the project by itself or independent experts within certain defined criteria before giving the final approval of Power Purchase Agreement. This independent verification of hydrology also minimizes the risk of over or under estimating the river flow.

c . Promoting Financial Instruments for Hydrological Risk Mitigation

In mitigating and managing the hydrological risk in the project, financial instruments could also play a key role. The regulators can facilitate for the development and adoption of tools that help to mitigate risk and make hydropower projects more attractive to investors by:

Introducing provision of insurance: Regulators can encourage or mandate the use of hydrological insurance in PPA. This provision of insurance can provide

compensation in the event of adverse hydrological condition such as droughts and flood which can result reduced energy generation . This provision makes the hydropower project more resilient to hydrological risk and help to manage the impact of water flow fluctuation in the river

Introducing provision of reserve fund: Regulators can encourage or mandate to maintain the reserve contingency fund by the hydropower developers those funds can be specifically utilized to cover the financial losses caused by decrease in energy generation due to fluctuation in river water flow . This provision makes the project financially strong to operate without any problem and meet the debt obligation during the dry year as well .

d . Ensuring Climate Change Considerations into Hydropower Planning and study

Hydrological risk is not stationary and predictable, climate change is altering rainfall patterns, water availability, and river flow regimes worldwide . Regulators need to ensure that hydropower projects consider long-term climate impacts in their planning, operations, and risk mitigation strategies . Regulators may introduce separate guidelines that require hydropower developers to incorporate climate resilience into their projects . This may include, assessing the potential impact of climate change on water availability over the lifespan of the project, using climate modeling to predict long-term changes in hydrological conditions, designing projects that can adapt to shifting water flows or more extreme weather events . By requiring developers to consider these factors, regulators can ensure that hydropower projects are better prepared for future changes and less vulnerable to climate-related hydrological risks .

e . Creating a Flexible and Adaptive Regulatory Environment

The regulators itself have to be flexible to respond to changing hydrological conditions and market scenario for managing hydrological risk effectively . Regulator must establish an adaptive regulatory environment which should allow for the modification of PPA, tariffs and operational policies to address unpredicted hydrological events . For example, it can allow temporary adjustments to tariffs or generation obligations during droughts or floods, or introduce penalty relief mechanisms during force majeure situations .

f . Encouraging Innovation in Risk Management

Regulators should also promote innovation in hydrological risk management technologies . This can include the adoption of more advanced weather prediction models, the development of new financial instruments or the implementation of adaptive water storage strategies .

Conclusion:

Hydrological risk is an inherent challenge in hydropower projects, impacting their operational efficiency, financial stability and sustainability . As the world is facing challenges of climate change, managing hydrological risk will be increasingly critical to ensuring that hydropower remains a viable and reliable source of renewable energy . In this context of increasing hydrological uncertainty, effective regulatory intervention will be essential to ensuring that hydropower as sustainable and reliable source of energy . The Regulator with its clear legal mandate can play a crucial role in managing hydrological risk in hydropower projects by formulating and implementing various guideline, standards, directives and other regulatory instruments (i) for ensuring fair risk allocation in power purchase agreement, (ii) for setting standards for hydrological study and estimation of river flow (iii) for promoting financial instruments for hydrological risk mitigation (iv) for ensuring climate change considerations into hydropower Planning and study (v) for Creating a flexible and adaptive regulatory environment and for (vi) Encouraging Innovation in risk management .

Bibliography:

- Devkota L .P . and Gyawali D .R (2015) Impacts of climate change on hydrological regime and water resources management of the Koshi River Basin, Nepal, Journal of Hydrology: Regional Studies, <https://doi.org/10.1016/j.ejrh.2015.06.023>
- Nepal A, Khanal V . and Maelah R .2021 Relative Importance of Risks in Hydropower Projects and Project Finance in Nepal, JOURNAL OF ADVANCED ACADEMIC RESEARCH (JAAR), <https://orcid.org/0000-0003-2597-6037>
- Maria-Augusta Paim, ArthurR . Dalmarco, Chung-Han Yang (2019) .Evaluating regulatory strategies for mitigating hydrological risk in Brazil through diversification of its electricity mix, Energy Policy, , Volume 128, May 2019, Pages 393-401
- Water Resource of Nepal in the Context of Climate Change 2011, Water and Energy Commission Secretariat, Singha Barbar Kathmandu, Nepal
- ICIMOD - International Centre for Integrated Mountain Development
- Electricity regulatory commission Act, 2074
- ERC Bylaws on Power Purchase Agreement and term to be followed by Licensee 2076

विद्युत नियमन आयोग

सानोगौचरण, काठमाडौं, नेपाल ।

फोन नं.: - ०१-४५२२४४२, ४५३५००८, ४५४३३६०

फ्याक्स :- ०१-४५३२५८२

ईमेल: info@erc.gov.np, वेबसाइट: www.erc.gov.np

